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Résumé

L’analyse statique d’un programme consiste en l’approximation conservatrice des
propriétés d’un programme sans l’exécuter. Plusieurs approches ont été proposées
pour l’extraction d’informations de différentes représentations d’un programme.
L’efficacité d’un analyseur est souvent déterminée par le langage source et par le
langage d’extraction.

Dans ce mémoire, nous nous sommes intéressés à l’analyse statique (c’est-à-dire
sans execution) de l’évolution des variables scalaires dans les boucles des programmes
impératifs. Cette évolution a été modélisée par des châınes de récurrences que nous
avons étendu aux fonctions périodiques, et aux approximations de fonctions à l’aide
des enveloppes d’évolution. L’analyse est décrite sous la forme d’un algorithme
classique d’analyse de flot de données, puis l’algorithme a été raffiné en une version
plus efficace qui utilise la représentation d’assignation unique d’un programme.
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Abstract

The static analysis of a program consists in safely approximating run time prop-
erties of a program without executing it. Many approaches have been proposed for
extracting information from different representations of a program. The efficiency
of an analyzer often stands in the source language and in the target language.

In this report we are interested in the static analysis of the evolution of scalar
variables in the loop structures of imperative programs. The evolution is modeled
with chains of recurrences. We give two extensions of the chains of recurrences, for
handling the periodic functions, and for approximating the evolution of a variable
via the envelopes of evolution. The analysis is described using a classic data flow
algorithm, and then refined into a more efficient algorithm using the static single
assignment intermediate representation of a program.
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Chapter 1

Introduction

Determining the behavior of a software system before its execution is a challenge
that has many applications in the software verification, certification and program
optimization.

Program analysis provides formal techniques for safely approximating some of
the run time properties. One of the difficult task that the program analyzers have to
deal with, is the interaction of the analyzed program with a complex environment.
This constant interaction introduces unpredictable behaviors, that the analyzers
have to safely approximate. The program analysis is based on a large set of formal
methods. We shortly expose a reduced number of possible program analyzers in
chapter 2.

Determining the set of possible values that a variable can take during the exe-
cution of a program is one of the most interesting property. This analysis allows,
for example, a program verifier to warn about a possible violation of the ranges of
a variable. This kind of analyzers have been constructed from the early days of the
computer engineering, and these days they are used in the verification of critical
software. Another possible use of such an analyzer is the validation of a program
optimization.

In this thesis we describe a program analyzer that allows to safely approximate
the evolution of a variable in a program. The analysis of a variable evolution has
received a large amount of attention from the research community, from the fact
that it is a crucial component in the software development and in the program
optimization. An extensive literature has been published on the analysis of variable
evolution. This thesis work describes a combination of two previous methods, one
that analyzes the monotonic evolution of variables with distance information, and the
other technique that represents evolution functions using the chains of recurrences,
as well as an extension of the method to some sub cases that were not handled by
the previous works.

In chapter 3 we expose the extensions that we have added to the chains of
recurrences representation, then in chapter 4 we give the new algorithms used for
the analysis of imperative programs. In the rest of this chapter we introduce the
data flow algorithms, the structures used for program analysis in an imperative based
compiler (the GNU Compiler Collection), and the difficulties of the implementation
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of robust and efficient program analyzers and optimizers.

1.1 Data flow algorithms

Under the name of data flow analyzers are classified, in general, all the algorithms
that study the behavior of a program with respect to the data that the program pro-
cesses. Among the classical analyzers that are taken as examples in every compiler
textbook [3, 1] we could cite for example the reaching definition, or the availability.

In order to manipulate the data in a program, the programming languages define
a naming method that allows the programmer to assign an abstract symbol to a
data element. However, the naming conventions in a programming language does
not guarantee the uniqueness properties. The programmer can use several symbolic
names for designating a same element of data, or accessing several different data
elements via the same symbolic name.

Because of the multiple symbolic names that can make reference to a same
data element, a data analyzer needs the services of an alias analyzer, that helps
disambiguating, when possible, the relation between symbolic names. When the
alias information cannot be computed at compile time, the alias analyzer will choose
a conservative answer.

1.2 Control flow algorithms

Another important aspect, when considering the study of a data flow analyzer, is the
underlying language that represents the instructions that either modify the data, or
specify the control flow of the program. In general there are two main control flow
representations over which the data flow analyzers are built:

• The control flow graph (CFG) is composed of basic blocks that contain in-
structions executed from the first to the last. The basic blocks are linked by
edges that represent the flow of control.

• The loop hierarchy tree (LHT) is based on the control flow graph and stores,
for each loop, the set of basic blocks that constitutes the loop’s body, as well
as a relation of inclusion over the loops that relates a loop to its father (i.e.
the enclosing loop) in a loop nest.

The LHT intermediate representation contains the results of a control flow anal-
ysis that detects the strongly connected components (SCCs) on the CFG [7, 5] (these
SCCs are also known as natural loops).

The LHT representation stores a relation between the loops and the CFG, but at
the creation of the LHT, the structure does not contain other information related to
the evolution of the data in the loops. Other data analyzers have to infer information
such as the induction variables (i.e. the variables that are redefined at each iteration
of the loop), the number of iterations in a loop, the data dependences of scalars or
memory locations, . . .
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It is possible to consider the information of the main induction variable and the
number of iterations in a loop as the result of a syntactic analysis of the program.
Obviously in a Fortran program like the following one:

DO i = 1, 100

...

ENDDO

a quick analysis of the abstract syntax tree is enough for determining the iteration
domain of the loop [10].

However in the general case where the program can contain goto statements,
the simple syntactic analysis is not powerful enough for the study of the program.
The analyzer can produce erroneous results when an irregular control flow is not
correctly handled in a loop nest. As an example, I’ll take the “toy loop analyzer”
Frédéric Wagner and I have written (two years ago) for the Nestor compiler [9].
Suppose that we have to handle the following code:

DO i = 1, 100

...

IF (i.GT.3) GOTO 20

...

ENDDO

20 ...

In this case our toy analyzer does not scan for irregular control flow in the loop’s
body, and just relies on the information it gathers from the loop headers. Obviously,
in this case, the “toy analyzer” is broken when it initializes the number of iterations
to 100 for the current loop. We have fixed the analyzer in a conservative way by not
allowing any further analysis or optimization on a nest that contains an irregular
control flow. But such an assumption is too conservative for an real analyzer in a
compiler.

1.3 A first characterization of array access functions

The accesses to an array are given by its access functions. The array dependence
analyzer expects a canonical representation of the access functions to be associated
to each access in the test. In an abstract syntax tree that comes directly from the
parser, this property is not satisfied. Consider the following example:

for (i = 0, j = 0; i < 100; i++)

{

A[i] = B[j + i + j]

j = j + 1;

}

The access function for the array B will be translated by the parser into an abstract
syntax tree that will represent “j+i+j”. Constructing an array dependence tester
that study this kind of expressions is not realistic:
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• first, the access function is not folded, and thus “i + 2*j” would be its canonical
folded representation,

• then, the expression contains two variables, i and j, that follow exactly the
same evolution: both variables start at zero and are incremented by one at
each iteration in the loop. Thus the canonical representation of the access
function for B would be “3*i”.

This gives the main reasons to consider the study of the access functions sepa-
rately from the dependence tester.

An analyzer that canonicalize access functions reveals to be very difficult to
write, as I have experienced in my first attempts. The role of this analyzer was to
extend the standard folder of GCC that works only on constants, to reconstruct and
to fold polynomial expressions. (The analyzer was called texpr.c and implemented
the basic arithmetics on polynomials, as well as a very basic expression analyzer.)

The difficulty in analyzing abstract syntax trees produced by the parser, comes
from the fact that a programming language allows the programmer to combine the
expressions. Without this flexibility, a language would be very difficult to use.
Thus, the compiler has to transform the original program in a representation that
avoids complex analyzers. The pass that simplifies the complexity coming from
combinations is called the expression lowering pass. This kind of lowering can be
found in several compilers, such as McCAT, MIPS-Pro - Open64, GCC, . . .

1.4 Simplification of the intermediate representations

The work on the expressions simplification in GCC has been based on the previous
seminal work of Henderen in the McCAT compiler [8]. They proposed a repre-
sentation called SIMPLE, whose purpose is to decompose difficult combinations of
expressions and implicit execution evaluation semantics (for example the truth val-
ues evaluation), into a three address code proper to analyze.

Diego Novillo (my first hacker advisor, Diego works for Red Hat Canada) and I
have implemented the original framework for the simplification, while another im-
portant work for abstracting the representation from the underlying parsed language
was performed by Jason Merrill (another great hacker of GCC from Red Hat). The
resulting representations are:

GENERIC a language independent representation, that is able to represent For-
tran 95, C, C++, ObjectiveC, and Java trees [7],

GIMPLE a three address simplified representation.

Based on the GIMPLE representation, it becomes realistic to implement robust and
efficient program analyzers and optimizers.

I’m often referring to a software engineering course by M.R. Woodward that I
have followed during my studies at the University of Liverpool. In one of his lectures
about the Jackson Structured Programming, M.R. Woodward has given an analogy
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of the JSP in terms of the lego game (I’m not sure but I think that he quoted one
of the examples given by M. Jackson). The purpose is to build a lego castle (the
report of the analysis) starting with a lego ship (the unstructured data). The first
step consists in decomposing the ship into basic bricks (the structured data), then
to assemble, or compose the bricks to build the castle.

In the case of GIMPLE, we are decomposing the unstructured constructs of
expressions into basic structured expressions that are simpler to compose into higher
level representations by further analyzers.

The Open64 compiler adopts a quite different approach by lowering the expres-
sions progressively. In particular, its the Loop Nest Optimizer works on a high level
of the WHIRL representation that has not yet lowered the expressions [11].
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Chapter 2

Symbolic program analysis

An extensive literature has been published on various methods for determining the
effects of a program on its data [1]. As an introduction, we describe shortly the
foundations of some of the techniques, and illustrate each technique with an example.

As we will see in this section, one of the most crucial point in any analysis
framework is the way the information is encoded, i.e. the symbolic intermediate
representations. The other key point is the way the algorithms direct their analysis.

2.1 Data flow analysis

The data flow analysis is based on the computation of a set of properties satisfied
by a program. A program is represented as a graph where the nodes are the basic
blocks, and the edges describe the possible control paths between the nodes [1, 3].

2.1.1 Computing over lattices

The information extracted from the program is represented as elements of a complete
lattice L = (L,v,t,u,⊥,>). The elements of the lattice are partially ordered by v,
such that all subsets of the lattice have least upper bounds, as well as greatest lower
bounds. ⊥ represents the least element, and > represents the greatest element. The
meet operator u is used to combine the information coming from different control
paths.

The effects of a program on a value l1 ∈ L are computed using the transfer
function of the program F : L→ L, yielding to another value l2 ∈ L. The function
F is monotone:

l1 v l2 ⇒ F (l1) v F (l2)

The monotonicity of F translates the fact that, by reevaluating the information on a
more precise subset l1, we do not lose the information we had before the reevaluation,
i.e. we obtain F (l1) that is more precise or the same as F (l2).
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2.1.2 The forward data flow analysis

In a forward analysis, the information are computed by propagation from the entry
basic block to the exit basic block.

On the entry of a basic block the information is computed using the meet op-
erator over all the predecessors,

On the exit of a basic block the information is computed as the application of
the transfer function on the entry initial conditions.

In other words, for each basic block we compute:

In(b) = ui∈Pred(b)Out(i)

Out(b) = Fb(In(b))

where Fb represents the transfer function for the basic block b.
When the program contains loop structures, the evaluation of the properties in

the basic block that represents the loop header depends on:

• the basic block that precedes the loop,

• and on the basic block that ends the loop’s body.

The evaluation of the properties of the loop’s body are computed as a fix point, i.e.
the computation of the loop’s transfer function will stop when the set of information
gathered in the loop stabilizes.

The transfer function is monotone and is computed over a finite lattice, which
guarantees the termination of the analysis for loop structures. The analysis can
be stopped at any step of the iterative search of the fix point, since the computed
values are conservative approximations of the program’s real properties. This allows
computations on infinite lattices as well.

In a classic data flow algorithm, the properties are usually stored in bit-arrays.
The corresponding lattice is a hypercube whose dimension is the size of the bit-array.

The data flow algorithm is generally organized around a work list, that records
the set of basic blocks for which the initial conditions have changed. The properties
on exit of these basic blocks have to be evaluated again, and thus they are scheduled
in the work list.

A symmetrical algorithm exists for backward data flow analysis, where the in-
terpretation of the program starts from the exit basic block, and uses tSucc(b) for
computing the information on exit of a basic block in function of the successors.

2.2 Constraints based analysis

The object of a constraint based analyzer is the determination of a system of con-
straints that describe the behavior of the program.

For example, during the verification of a program, one could be interested in the
domain of possible values a variable is susceptible to take. One of the earliest works
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on the constraint based analysis is that of Cousot and Halbwachs [12] in 1978. They
represent the evolution of a variable in the analyzed program by a system of linear
constraints modeled by polyhedral domains. They describe a fix point iterative
algorithm based on convex unions of polyhedra.

The constraint based analyzers are closely related to the abstract interpretation
techniques.

2.3 Model checking techniques

In the model checking analysis of a program, the behavior of a program is modeled,
for example, by a graph whose nodes are memory states of the program, and whose
edges represent possible transitions between these states. Since the determination of
the exact path of execution is sometimes an undecidable property, one has to study
the evolution of the program over a possibly infinite number of worlds (in the case
of program analysis, a world could be a memory state) reachable from the entry
points [13]. (In general reactive systems S :< Σ,Θ,R > are described using Kripke
models that are constituted of a set of worlds Σ, a set of entry worlds Θ, and a set
of transitions between these worlds R.)

Almost any code analysis can be described in terms of model checking, by search-
ing the interesting properties over the abstract representation of the program. How-
ever, the main reason why they are not commonly used in compilers is that they
are very costly in terms of memory space and execution time. Instead, the model
checking is extensively used in verification tools that can afford huge latencies.

As an example of program analysis that could be implemented as a model
checker, I will present the alias analysis, on which I have written some sketches
some time ago, based on the course of “Knowledge Representation and Reasoning:
Modal and Description Logics” taught by Ullrich Hustadt, and “Formal Methods”
taught by Michael Fisher at the University of Liverpool.

As we shall see the alias analyzer is based on the model checking of the program,
while the queries are written using the modal logic. Thus we shortly introduce the
modal logic, followed by our algorithm for the alias analyzer.

2.3.1 Modal logics

The modal logics are a formal way of handling notions of necessity, possibility,
knowledge, time, etc. The modal logics give an alternative to the first-order logic, in
the sense that modal logics are different in expressive power, and are more natural
to work with.

The modal logics are built over the formulae of the propositional logic and intro-
duce two or more modal operators. In the case of more than two modal operators
the logic is called multi-modal. Otherwise the modal operators are represented by:

a box 2 whose meaning is: for all the worlds, the proposition quantified by 2 is
true,
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a diamond 3 whose meaning is: there exists a world in which the proposition
quantified by 3 is true.

If ϕ is a proposition, then the quantification could stand for:

2ϕ 3ϕ
ϕ is necessary ϕ is possible
ϕ is known ¬ϕ is not known
ϕ is believed ¬ϕ is not believed
ϕ is obligatory ϕ is permitted
ϕ will always be true ϕ will be true at some future time

Depending on the intended meaning of the modal operators 2 and 3, we obtain a
variety of modal logics.

We will show how to reason in terms of modal logics when analyzing the aliasing
information in a program.

2.3.2 The alias analysis

The alias analysis is a classic technique [3] used in compilers for determining the set
of symbolic names that may access the same storage location. In this analysis, we
are interested in two main properties :

The must point-to sets record for two given variables the necessity that at any
point in the program they must refer to the same storage location.

The may point-to sets record for two given variables the possibility that at a
given point in the program they may refer to the same storage location.

Based on this definition, the must point-to propositions will be quantified by the
2 modal operator, while the may point-to will be quantified by the 3 operator.

In the classic alias analysis, the compiler records the alias information into lists
of aliases, from which it extracts the information every time a client asks about the
relation between two variables. In other terms, if we forget about the efficiency of
the implementation, the compiler performs a proof for every question the client pass
is asking. Thus given a question encoded under the form of modal formulae:

• “is it true that 2(a alias b)?”, the compiler has to prove that for all the
possible states of the program during its execution, the property (a alias b) is
true,

• “is it possible that 3(a alias b)?”, the compiler has to prove that there exists at
least one reachable state of the execution of the program in which the property
(a alias b) becomes true.

Now we should explain how the compiler directs its proofs based on the abstract
syntax trees that represent the program to be analyzed.
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2.3.3 Proving modal formulae over a program

A compiler transforms the original program from the abstract syntax tree represen-
tation into a set of possible execution traces. When the program contains iterative
structures (i.e. loops), the set of possible traces can be infinite: that happens when
the number of iterations in a loop is not computable. In such a case, only a finite
number of traces are selected, and the analysis will be suboptimal, but conservative.

An interpreter uses the set of execution traces to build the set of possible worlds.
Each possible world contains a set of relations under the form: (a alias b).

The model checker works on this set of possible worlds. Thus when studying a
may alias proposition: 3(a alias b), the model checker verifies whether the property
(a alias b) exists in a possible world, and stops when it finds one such world. When
there are infinite number of worlds, the property could be undecidable, and thus the
conservative answer is output: it is possible that a may points-to b.

The same scenario happens for the propositions quantified by 2. It is possible
to transform the property 2ϕ into ¬3(¬ϕ), then verify that there does not exist a
world in which the property ϕ does not hold.

In the model checking technique, we have seen that a compiler C transforms
the Abstract Syntax Tree (AST) into sets of execution traces. This step consists
in building a model of the program. Then, from this model, an interpreter I ex-
tracts the alias information into a set of possible worlds. A model checker uses
this set of possible worlds to prove propositions quantified by modal operators, by
enumeratively checking in every world whether the property holds or not.

Another approach to the alias analysis using a model checker is that of Martena
and San Pietro [14]. They use a syntax based compiler to translate C programs into
the Promela language, then they extract the alias information based on the results
of a Spin simulation.

David A. Schmidt describes in [15] the relation between the data flow analysis and
abstract interpretation with the help of model checking. The collecting semantics is
expressed using formulae from the modal µ-calculus.

2.4 Abstract interpretation

Since the exact properties of a program are sometimes undecidable, the abstract
interpretation defines a way to depict the exact semantics of a program using the
semantics of an abstract set of symbols that represent a safe approximation of the
properties of the program. The connections between the ”real world” and the ”sketch
world” are defined in terms of an abstraction α and a concretization γ functions, and
are known under the name of Galois connections [1]. A Galois connection is then
represented by these two functions between the corresponding lattices: (L1, α, γ, L2).

The theory of abstract interpretation defines several automatic methods for con-
structing new program analyzers by compositions of Galois connections [1]. This is
one of the most powerful techniques since it allows the reuse of basic analyzers in
more complex ones by composition. The interface between two of these modules is
the definition of a Galois connection.
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Another promising technique is that of logic functors described by Sébastien
Ferré and Olivier Ridoux in [34, 35]. They propose to construct customized logics
by composition of basic logics with the help of a unique interface.

2.4.1 Evolution of variables by finite differentiations

Mohammad R. Haghighat has presented in [38] an algorithm based on abstract in-
terpretation for detecting the exact evolution function for the variables in a program.
He defines an abstract interpreter that transforms the semantics of a program into
an abstract syntax. Strongly connected components of the control flow graph are
detected as natural loops, and are processed apart. The analysis transforms loops
into a system of recurrence relations (see Appendix C.1), that are solved by the
method of finite differences and symbolic interpolation. The algorithm interprets
the loop body a fixed number of times, and constructs a table of differences. Then
based on this difference table, the algorithm deduces, by symbolic interpolation (see
section 3.5), the exact characteristic function that describes the behavior of each
variable in function of the main induction variable of the loop.

Robert van Engelen has shown in [17] that Haghighat’s analysis algorithm could
produce wrong results, if the number of interpretations of the loop body is set too
low. He then presents an algorithm that represents the recurrence relations using
the chains of recurrences. The chains of recurrences allows then the deduction of
the closed form functions using a rewriting system (see Appendix C).

In this chapter we have seen a set of tools that could be used for the static analy-
sis of a program. We have also stressed the importance of the intermediate languages
used for representing a program, and for extracting the information from the pro-
gram, as well as the importance of the way the analyzer conducts the information
extraction.

In the next chapter, we shall extend the chains of recurrences for allowing the
description of periodic functions, and for allowing to approximate evolutions in the
case of uncomputable properties.

Then we give a modified version of the monotonic evolution algorithm [28] based
on a more precise representation of the evolution functions using the envelope chains
of recurrences.
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Chapter 3

Chains of recurrences

Chains of recurrences (chrecs) were firstly proposed for evaluating closed form func-
tions at regular intervals [23, 24]. The chains of recurrences were used by Robert
van Engelen [17, 18, 16] in an algorithm that analyzes induction variables. In these
previous works, there was no way to represent periodic functions, and thus it was
impossible to express the properties of flip-flop operations in a loop.

In this chapter we extend the chains of recurrences to handle the case of periodic
chains of recurrences. Then, we propose the envelope chains of recurrences for safely
approximating the uncomputable properties of a program, such as the zero-trip loop
problem, or the undecidable execution paths in a conditional expression.

The basic properties described by the previous works on this subject are left in
Appendix C, the current chapter should present only the new contributions.

3.1 Periodic chains of recurrences: pchrecs

In terms of induction variables, periodicity is introduced in a loop by flip-flop oper-
ations, as described by Michael Wolfe in [21]. The usual operations over the chains
of recurrences are extended to the periodic chains of recurrences.

3.1.1 Periodic functions

Definition 1 (periodic number) A one dimensional periodic number

u(n) = [u0, u1, . . . , up−1]n

is equal to the item whose rank is equal to n mod p. p is called the period of u(n).

u(n) =





u0 if n = 0 mod p
u1 if n = 1 mod p
. . .
up−1 if n = p− 1 mod p

Definition 2 (pseudo-polynomial) A pseudo-polynomial is a polynomial func-
tion whose coefficients are periodic numbers.
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Another representation of the pseudo-polynomials is where each value of the
period is a polynomial:

Q(n) =





q0 if n = 0 mod p
q1 if n = 1 mod p
. . .
qp−1 if n = p− 1 mod p

with q0, q1, . . . , qp−1 polynomials.
We define the periodic chains of recurrences (pchrecs) based on these two repre-

sentations of the pseudo-polynomials. As a shortcut we write:

pchrec = |chrec0, chrec1, ..., chrecp−1|

for a periodic chain of recurrences of period p.

3.1.2 Operations on pchrecs

The operations on the pchrecs are defined as on the pseudo-polynomials [27]: the
result of a binary operation on periodic functions has a period equal to the least
common multiple of their periods. In the general case a binary operation is defined
as follows:

|a0, a1, ..., ap−1| � |b0, b1, ..., bq−1| = |c0, c1, ..., cm−1|
with m = lcm(p, q), � a binary operation, and ck = ak mod p � bk mod q. The
elements ai and bj are chains of recurrences, and thus it is possible to have again,
at this level, pchrecs, or any type of chrec.

A unary operation is defined as follows:

f(|a0, a1, ..., ap−1|) = |f(a0), f(a1), ..., f(ap−1)|

with f a unary operation, and the elements ai are chains of recurrences.

3.2 Envelopes of chains of recurrences: echrecs

The algorithm on monotonic evolution by Peng Wu and Albert Cohen [28] used
what they call minimal and maximal distance information. The minimal distance
information records the minimal evolution of a variable along a path from one use of
the variable to another use. They extended their original algorithm with the distance
information for being able to represent conditional expressions, as well as loop level
jumps, such as the continue statements. If we look more closely, their new version
of the algorithm uses the arithmetics on intervals in their abstract interpreter.

If we want to use the chains of recurrences interpreter in their algorithm, we
would need a similar mechanism for handling intervals of evolutions. In other words
we would like to write for �8

1 :

{[−∞,+∞],+, [1, 8]}
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that is a chain of recurrence whose initial condition is unknown, and that follows an
increasing undetermined evolution that could vary between 1 and 8.

This observation was the basis for considering the chains of recurrences over the
intervals, instead of over the classic commutative rings [25] (Appendix B gives a
definition of the lattice of intervals).

3.2.1 A formal definition

Definition 3 (Envelope of chains of recurrences) An envelope of chains of re-
currences is a chain of recurrence over the intervals.

Envelope chains of recurrences (echrecs) are enough descriptive to represent a
set of possible evolutions.

The operations over the echrecs are not different of the operations over classical
chrecs, and, at the elements level, the operations use the arithmetic on intervals.

3.2.2 Application of echrecs to program analysis

Based on the echrecs, it is possible to make the monotonic evolution algorithm
work on the general case which comprise polynomials, exponentials, and periodic
functions. Note that the monotonic evolution algorithm extended to minimal and
maximal distance information, proposed by Peng Wu and Albert Cohen [28, 30],
does not register initial conditions, and does not record the exact evolution function
of a variable. However the initial value of a variable at the entry point in a loop can
determine its variation in the case where its evolution is exponential.

As an illustration of echrecs for the program analysis, consider the following
example (the expressions between sharp signs constitute the abstract information
gathered by the analyzer):

i = 3

loop

if (volatile_variable != 0)

i = i + 2

else

i = i + 1

endif

endloop
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First propagation:

#i = [-oo, +oo]#

i = 3

#i = {[3, 3]}#

loop

#i = {[3, 3], +, [0, 0]}#

if (volatile_variable != 0)

#i = {[3, 3], +, [0, 0]}#

i = i + 2

#i = {[3, 5], +, [0, 2]}#

else

#i = {[3, 3], +, [0, 0]}#

i = i + 1

#i = {[3, 4], +, [0, 1]}#

endif

#i = {[4, 5], +, [1, 2]}#

endloop

----

Second propagation:

loop

#i = {[3, 3], +, [1, 2]}#

if (volatile_variable != 0)

#i = {[3, 3], +, [1, 2]}#

i = i + 2

#i = {[3, 5], +, [1, 2]}#

else

#i = {[3, 3], +, [1, 2]}#

i = i + 1

#i = {[3, 4], +, [1, 2]}#

endif

#i = {[4, 5], +, [1, 2]}#

endloop

Note that if the exit condition depends on the evolution of i, the analyzer would
not be able to determine at compile time the exact number of iterations the loop
would run. This problem is known under the name of zero-trip loop problem. In this
case it is possible, as in the Peng Wu’s monotonic evolution, to approximate with
the help of an interval, the number of iterations. The use of an approximation for
the number of iterations solves the problems of finding the exit value of a variable
from a loop, and thus it makes possible to approximatively analyze a loop nest even
when the loop bounds are not known.
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Figure 3.1: Envelope and a possible evolution path for {[4, 5],+, [1, 2]}.
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Figure 3.2: Possible exit values for possible number of iterations.
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3.3 Using chains of recurrences in program analysis

When analyzing a program, some of the properties could not be computable, and
thus the compiler has to safely approximate these properties. For this reason it is
important to take the elements of the chains of recurrences over a complete lattice
(see section 2.1.1). If we take the chains of recurrences over the classic commutative
rings [25], we need two more symbols to represent

• the tautology: > for the leak of information, and

• the contradiction: ⊥ for contradictory information.

This constitutes a three level lattice as the one used in the constant propagation
algorithm proposed by Mark Wegman and Kenneth Zadeck [32], (see Figure 3.3).

20 1−2 −1

Bottom

Top

Figure 3.3: Lattice of integer constants

3.4 Factorization of chains of recurrences over the inte-
gers

In this section we consider only the case of univariate chains of recurrences over
the integers. We start by considering the symbolic multiplication, and deduce a
factorization algorithm based on the syntactic properties of the chains of recurrences.

Kaltofen has given in 1982 a survey of the factorization of integer polynomials
[33].

Factorization of polynomial functions over the integers has several applications
in program analysis. One of them is to detect from a linearized array access function
the possible access functions of the original multi dimensional array.

3.4.1 Integer factorization

The simplest case of the multiplication is when both operands are integer constants.
The corresponding case in the factorization algorithm is when we have to factor an
integer constant.

One of the algorithms for factoring integers is to test the divisibility by all the
prime integers less or equal to the square root. This algorithm can be found in the
section 4.5.4 of TAOCP [2].
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3.4.2 One factor is an integer constant

Another simple case is when one of the multiplication operands is an integer constant:

a ∗ {b,+, c} → {a ∗ b,+, a ∗ c}

in which case the factorization algorithm is given an expression under the form
{x,+, y}. The algorithm is as follows:

Input: A chrec {x, +, y}

Output: A constant chrec {a}, and a chrec {b, +, c}

such that {a} * {b, +, c} = {x, +, y}.

Step1: Factorize the coefficients x, and y,

and keep their factors into the lists lx, and ly.

Step2: for each factor a in lx

if a belongs to ly

then return {a}, and {x/a, +, y/a}.

end if

end for

if none of the factors of x is a factor of y,

then return {1}, and {x, +, y}.

3.4.3 Two chains of recurrences

In the case where both operands are chains of recurrences, the symbolic evaluation
of the multiplication gives:

{a,+, b} ∗ {c,+, d} →

→ {a ∗ c,+, a ∗ d+ b ∗ c+ b ∗ d,+, 2 ∗ b ∗ d}
This constitutes the basis for a syntactic algorithm to factorize the chain of

recurrences that are under the form {x,+, y,+, z}. The procedure is as follows:
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Input: A chrec {x, +, y, +, z}

Output: Two chrecs {a, +, b} and {c, +, d}

such that {a, +, b} * {c, +, d} = {x, +, y, +, z},

or {a} and {b, +, c, +, d}

such that {a} * {b, +, c, +, d} = {x, +, y, +, z}.

Step1: if 2 is a factor of z,

then z := z / 2

else go to Step4

end if

Step2: Factorize the coefficients x, and z,

and keep their factors into the lists lx, and lz.

Step3: for each factor b in lz

d := z / b

for each factor a in lx

c := x / a

if y is equal to a*d + b*c + b*d

then return {a, +, b} and {c, +, d}

end if

end for

end for

Step4: Factorize the coefficient y,

and keep its factors into the list ly.

for each factor a in lx

if a belongs to ly,

and a belongs to lz,

then return {a} and {x/a, +, y/a, +, z/a}

end if

end for

return {1} and {x, +, y, +, z}

The algorithm factors all the coefficients of the chain of recurrence, and then
matches against the template expression given by the symbolic evaluation of the
multiplication. Thus the lists of factors lx, ly, and lz are constructed recursively by
calling the same algorithm.

The complexity in the worst case is O(n3) in the number of factors of the coef-
ficients.
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3.5 From the finite differences to the chains of recur-
rences

In this section we show the relation between the finite differences technique and the
chains of recurrences.

The finite differences technique for interpolating a polynomial function from a
sequence an of integers consists in building a difference table. The elements of the
forward difference table are:

• at the first differentiation bn = ∆n = an+1 − an,

• at the second differentiation cn = ∆2
n = bn+1 − bn, and so on.

For example, for the sequence an = 96, 726, 2556, 6216, 12336, 21546, the corre-
sponding difference table is:

k 0 1 2 3 4 5

∆0
k 96 726 2556 6216 12336 21546

∆1
k 630 1830 3660 6120 9210

∆2
k 1200 1830 2460 3090

∆3
k 630 630 630

∆4
k 0 0

The function that generates the an sequence is interpolated using the Newton’s
forward formula:

f(n) =

p∑

i=0

∆i
0

(
n

i

)
= a0 + b0n+ c0

n(n− 1)

2
+ d0

n(n− 1)(n− 2)

2 · 3 + . . .

Applied in the previous example, we get:

f(n) = 96 + 630n+ 1200
n(n− 1)

2
+ 630

n(n− 1)(n− 2)

2 · 3

f(n) = 96 + 240n+ 285n2 + 105n3

Now if we write this function under the chain of recurrences syntax, we get:

{96,+, 630,+, 1200,+, 630}

that is exactly the first column in the difference table. This property of the pure-sum
chains of recurrences has been described by Zima in [25], under the form:

{φ0,+, φ1,+, . . . ,+, φp} = φ0 + φ1

(
n

1

)
+ φ2

(
n

2

)
+ . . .+ φp

(
n

p

)

This tight relation between the pure-sum chains of recurrences and the finite
difference technique shows that the foundations of the algorithms for induction vari-
ables described by Mohammad Haghighat in [38], and Robert Van Engelen in [17]
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are common. The differences between these two algorithms are based only on the
way the analyzers proceed in the interpretation of the program.

For the analysis of exponential functions (i.e. pure product chains of recur-
rences), instead of constructing a difference table, we have to construct a division
table. If we allow the mix of difference and division lines in the table, then we obtain
an expressive power equivalent to the general chains of recurrences.

3.6 Possible extensions

3.6.1 Derivative of a chrec

Under the coefficients of a chrec stands the property that a function is completely
determined by its integration coefficients.

After having observed that the last coefficient of a pure sum chain of recurrence
of degree n is always equal to its n-th derivative (i.e. its integration constant for the
polynomial of degree 0), and that the first coefficient of the chrec is the integration
constant for the degree n, I started to investigate on the meaning of the coefficients
of a chrec. This work is still not finished, and thus a not so formal description of
the properties of the chains of recurrences are described below.

The original question was, is it possible to extract the integration coefficients
from the coefficients of a chrec? By answering this question it is possible to deduce
an algorithm for deriving and integrating the chains of recurrences.

For example, the evolution of the polynomial

x7 + 2x6 + 3x5 + 4x4 + 5x3 + 6x2 + 7x+ 8

is embedded into the initial conditions of integration

5040, 1440, 360, 96, 30, 12, 7, 8

The same polynomial is represented as

{8,+, 28,+, 438,+, 3510,+, 12336,+, 20760,+, 16560,+, 5040}

under the chrec notation. The first coefficient of the chrec, 8, is the integration
coefficient for the degree 7, while the right hand side represent a combination of the
other integration coefficients. The last coefficient, 5040, represent the integration
coefficient for the degree 0 of the polynomial.

The successive derivatives of the above polynomial are:

{8 ,+, 28 ,+, 438 ,+, 3510 ,+, 12336 ,+, 20760 ,+, 16560 ,+, 5040}
{7 ,+, 77 ,+, 1130 ,+, 6216 ,+, 14160 ,+, 14040 ,+, 5040}

{12 ,+, 240 ,+, 2556 ,+, 8820 ,+, 11520 ,+, 5040}
{30 ,+, 726 ,+, 4740 ,+, 9000 ,+, 5040}

{96 ,+, 1920 ,+, 6480 ,+, 5040}
{360 ,+, 3960 ,+, 5040}

{1440 ,+, 5040}
{5040}
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The derivative of a chain of recurrence Φ = {φ0,+,Φ1} is computed by deter-
mining the coefficients of the derivative from the right hand side Φ1.

The integration of a chain of recurrence consists in determining the coefficients
for one level above, and this requires an integer as a parameter: the left hand side.
This integration coefficient does not perturb the evolution of the rest of the chain.

For a chain of recurrence {φ0,+, φ1,+, . . . ,+, φn}, the coefficients are given by:

φ0 = {int(n)},
...

φn−k = {int(k),+,
k∑

i=1

int(k − i)
(i+ 1)!

,+, . . . ,+,
int(0)

2k
},

...

φn−3 = {int(3),+,
12int(2) + 2int(1) + int(0)

24
,+,

3int(1) + int(0)

6
,+,

int(0)

8
},

φn−2 = {int(2),+,
3int(1) + int(0)

6
,+,

int(0)

4
},

φn−1 = {int(1),+,
int(0)

2
},

φn = {int(0)}

where int(k) is the k-th integration coefficient. Each coefficient of a chain of recur-
rence is a function of the integration coefficients.

The general term
∑k

i=1
int(k−i)
(i+1)! looks like the Taylor series:

T (x) =
∞∑

i=0

f (i)(0)

i!
xi

however the other coefficients are more difficult to characterize, this is still a work
in progress.

The proof for the general term of the coefficients of a chrec could be performed by
finite differentiation of the function Φ = {φ0,+, φ1,+, . . . ,+, φn} and its successive
derivatives Φ(k) for which we have shifted k times to the right the coefficients.

In the rest of this subsection, we shortly give a sketch of the integration algorithm,
with the above description of the coefficients of a chrec being the key of the algorithm.

The first step before computing the integral or the derivative of a chain of re-
currence, the initial conditions of integration have to be determined. These initial
conditions are determined by firstly computing the int(1) from the before last coef-
ficient φn−1 of the chrec, by evaluating

int(1) = {φn−1,+,−
int(0)

2
}(n− 1) = φn−1 − (n− 1) · int(0)

2

then determining the int(2) from the chain of recurrence

int(2) = {φn−2,+,−
3int(1) + int(0)

6
,+,− int(0)

4
}(n− 2)
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and so on.

Derivation of chrecs

The derivation of a chain of recurrence {φ0,+, φ1,+, . . . ,+, φn} is performed by
taking the right hand side of the chrec, {φ1,+, . . . ,+, φn}, and then evaluating for
each coefficient φk its instantiation at the k−1 level: i.e. φk(k−1), for k = 1, 2, . . . , n.

Integration of chrecs

The integration of a chain of recurrence {φ0,+, φ1,+, . . . ,+, φn} is performed by
evaluating for each coefficient, φk(k + 1) for k = 0, 1, 2, . . . , n, and then by adding
the integration coefficient to the left side of the chrec.

3.6.2 Mixing operations on polynomial and exponential CRs

There are some difficult operations that were not addressed in the previous papers on
chrecs. What is the result of the multiplication of a polynomial with an exponential
function? Is it still a function that we can express using the chrecs?

A possible solution is to use a Taylor decomposition of the exponential function
into an infinite sum of polynomials. Then split this infinite sum in two parts: one
that gathers all the terms with a degree less or equal to the degree of the polynomial
function the other containing all the terms with a degree strictly greater. The
operation is then performed only on this first part. The result is the sum of a finite
term polynomial function with the second part that is an infinite sum for which we
have the general term expression.

I have not tried to implement this extension, but the general idea would be to
express the result of the addition again as an exponential function.
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Chapter 4

Determining the evolution of
scalar variables

Now that we have settled the landscape of the possible techniques for analyzing
a program, we describe in more details an algorithm for detecting the evolution
functions for scalar induction variables.

Determining the evolution of a variable is of paramount importance in a compiler.
Based on this information it is possible to deduce properties such as the number of
iterations of a loop, the dependence relations between memory accesses, or more
aggressively, express the evolution of a variable in function of the main induction
variable of the loop, exposing more parallelism in the vectorization pass.

In the first time, I give a simple algorithm that is able to determine the evolution
of a variable in some cases. I discuss the weaknesses of this basic algorithm, and
deduce a more efficient algorithm. Then, I describe the minimal algorithm that
allows the detection of the main induction variable, making it possible to determine
the number of iterations, the aim being to reduce the compilation time spent in the
analysis. Finally, I will expose the much more difficult cases as a theoretical extent
in the last section.

4.1 Determining the evolution with a basic data flow
algorithm

This algorithm uses the loop hierarchy tree (LHT) for detecting the loop nests, and
then focuses on the study of the induction variable for a loop nest.

The algorithm follows the lines of the algorithm described by Peng Wu and Albert
Cohen [29, 30, 31, 28] for analyzing the affine monotonicity of variables’ evolution,
and the intermediate representation of the chains of recurrences described by Eugene
Zima [23].

First step the interpretation of the loop nest begins from the outermost loop level,
and propagates the information in the loop’s body following the control flow
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graph (CFG) in which all the back edges were excluded. The algorithm as-
sociates with each variable (could be a version name in the case of the static
single assignment representation) a symbolic function following the envelope
chains of recurrence syntax. At the entry point of a loop, the right hand side
of the chain of recurrence grows by one in the new dimension indexed by the
number of the loop, and is initialized (i.e. {left,+, [0, 0]}, or {left, ∗, [1, 1]}).
The left part could be a multivariate chain of recurrence that represent all
the parent loops indexes.

At each step, the interpreter keeps a list of variables for which the evolution
has changed (i.e. the right hand side of the chain of recurrence has been
modified). The left hand side is modified for keeping track of the modifications
on the variable from the loop header to the current point. This left hand side
information is not merged during the reevaluation of the loop.

Second step if we have modified the evolution part for one of the variables, then
merge the information obtained in end of the loop with the initial conditions
in entry of the loop, and restart the first step. Otherwise the algorithm has
reached its stability point.

If the evolution of a variable changes at a step i, then at the step i+ 1, we have
to update the information of all the variables that were defined as a function of the
first one. This inefficiency of the basic algorithm is exposed in Example 4.

For a more efficient algorithm we should direct the analysis to first analyze the
evolution of the variables that does not depend on any other, then successively study
the variables that depend only on the variables for which the evolution is known. As
we will see, the schedule of the analyzer can be produced by topologically sorting
(see Appendix A.2) the scalar dependence graph (see Appendix A.1) for the entire
loop nest. The schedule constitutes the basis of the more efficient algorithm exposed
in the next section.

Also to be noted is that if we had to analyze programs with cyclic scalar depen-
dences with diameters larger than two (that could represent in some cases flip-flop
operations, or mixers, see sections 4.5 and 4.6), it would be a quite tedious task
based on the interpreter we had described in this section. This is one more reason
to separate the scalar dependence analysis from the current interpreter.

In the case of the algorithm proposed by Robert van Engelen [18, 17, 16], the
topological sort of the scalar dependence graph is embedded in the work list of
assignments that are analyzed. The idea of topologically sorting the SDG comes
from these previous works. However the separation of the SDG from the list of
assignments to be analyzed is important in the case we want to detect more difficult
cases, such as the flip-flop operations, or the difficult cases that we expose in section
4.6.
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4.2 The improved data flow algorithm

We have given a rough idea of how the algorithm could be improved by directing
the analyzer to analyze the variables of the loop nest. The improved algorithm that
we obtain by including the scheduler is:

First step Produce an analysis schedule for the entire loop nest. The scalar de-
pendence graph (SDG) is built and is topologically sorted. The result may be
either a list of variables that should be sequentially analyzed, or a list of sets
of variables that can be analyzed in parallel due to the independence of their
evolutions. If the code is not under a static single assignment (SSA) form,
then the extraction of parallel plans from the SDG could render the evolution
analyzer more efficiently, by requiring less iterations over the loop nest. Under
SSA, the one variable at a time schedule is acceptable since the evolution of a
variable is studied by following the def-use links.

When the SDG contains cycles, they are extracted with all the variables that
depend on these cycles. When a cycle belongs to a same loop level, the cycle
is produced by a flip-flop operation, and is analyzed by the periodic specific
algorithm. It could be the case that the cycle spans over multiple loop levels,
in which case the evolution is much more difficult to characterize.

Second step Following the schedule, analyze all the levels of the scheduling list.
At a given level, analyze only the evolution of the variables that belong to
the level. Thus, the analyzer augments its knowledge about the program by
following the schedule, and it stops when all the variables in the schedule are
analyzed.

Third step Analyze the variables from the strongly connected components (SCC)
of the SDG. We suppose that the first step postpones the analysis of the cyclic
components until here. Thus the first thing to do is to determine the SCCs
that does not depend on other variables than those for which we already know
the evolution from the second step. This constitutes again a scheduling list,
that is produced by topologically sorting the rest of the graph after having
collapsed all the cycles into a single node: the in and out dependence edges
are all linked to the symbolic node, while the cyclic dependence edges are saved
and used in the next step of the analysis.

It could be the case that a SCC contains one or more SCCs, in which case the
evolution of any variable of the SCC is difficult to describe. See section 4.6 for
a short discussion on these strange objects.

The skeleton of the analyzer is as follows:
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detect evolutions in a loop nest N =

construct_SDD (body (N))

(AG, CG) = extract_SCCs (SDD)

For each variable V in AG, in topological order,

analyze_evolution (V)

if CG contains cycles of higher order, then the algorithm fails.

For each cycle C in CG, in topological order

(i.e. starting with the cycles with all dependences analyzed)

construct_periodic_chrec (C)

extract_SCCs (SDD) =

detect all SCCs in the SDD

extract all the variables in cyclic dependences

as well as all the variables that depend on them.

Return

an acyclic graph: AG,

and a graph with cycles: CG.

4.3 The light weight version

One of the issues in any industrial compiler is the compilation speed. We will
focus on this constraint in this section. The aim is to give a minimal algorithm for
determining, when possible, the iteration domain, at a low compile time cost.

4.3.1 Selecting the candidate loops

A well formed loop has a single exit edge. If this condition is not verified, the
analyzer avoids the analysis of the loop. This drastic condition discards all the
loops that contains a break, or a “user goto” (i.e. a goto not introduced by the
compiler) in their body, and that cannot be reduced to the normal form. This kind
of loop are much more difficult to analyze correctly, and thus the early elimination
of these loops will avoid the later difficult cases.

Then, the analyzer focus on the exit condition. If the exit condition makes use
of unusual components, such as function calls, volatile variables, etc., then the loop
is discarded as well. The ideal case is an exit condition that uses a combination of
integer or real variables and constants.

The loops that have filtered until this stage are more seriously analyzed: we
compute the scalar dependence graph (SDG) for the loop’s body, and store it in
the loop structure for later uses. If the underlying representation is the static single
assignment, then it is possible to avoid the construction of the entire SDG by con-
structing a partial SDG that focuses only on the exit condition variables and their
dependences. By following the def-use chains, the algorithm avoids the walking of
the whole loop nest body.

Based on the SDG, it is possible to compute an analysis schedule (by partially
topologically sorting the list of relations a→ b). If there exists cyclic components in
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the SDG that conflicts with the determination of a proper analysis schedule, then
the loop is discarded. This belongs to one of the difficult cases that should not be
analyzed by the fast algorithm. The schedule will allow the analysis of the variables
whose evolution does not depend on any other, as well as the minimal set of variables
to be analyzed in the loop for determining the evolution of the variables involved in
the exit condition.

Consider for example the following GIMPLE code:

i = 3;

while (1)

{

if (i > 100)

goto end;

j = i + 3;

i = i + 1;

}

end:;

The first step is to compute the scalar dependence graph, that will contain the rela-
tion j → i. Since the exit condition is based on the evolution of i, the only variable
that the analyzer should take care of for determining the number of iterations the
loop will run is i.

4.3.2 Determining the evolution of a variable

Starting the analysis with the first variable of the schedule guarantees that it does
not depend on any other variable, then picking up the next variable of the schedule
guarantees that this second variable will probably depend on the first variable, but
on no other variable whose evolution hasn’t been computed yet. Since we already
know the evolution for the first variable, it is possible, in some cases, to compute an
approximation of the evolution for the second variable, and so on.

The last variable in the schedule is a component of the exit condition. Thus,
after having determined the evolution of all the variables in the schedule, we can try
to compute the number of iterations for the current loop. The number of iterations
is computed as the smallest number of iterations after which the main induction
variable satisfies the exit condition.
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4.3.3 An overview of the algorithm

The skeleton of the analyzer is as follows:

for each loop nest N in the LHT

if N is a good candidate, then

construct_SDD (body (N))

for each loop L in N

determine the exit conditions of L,

end for

determine the reduced analysis schedule

for each variable V in the schedule

analyze the evolution of V

end for

for each loop L in the loop nest N

determine the number of iterations

end for

end if

end for

4.4 An SSA based algorithm

The static single assignment (SSA) representation (described for example in [3]) is
also susceptible to improve the compile time with respect to the classic data flow
analysis. We shortly describe the SSA specificities of the algorithm in this section.

The SSA version of the chains of recurrences analysis works on a variable at a
time model. This is a characteristic that occurs in many conversions of iterative
data flow algorithms to SSA (for example in the SSAPRE: the partial redundancy
elimination based on SSA [36, 37]).

In the rest of this section, I describe the algorithm that analyze a variable V in
the loop nest N:

Initialization step Retrieve the loop φ-node of the variable V in the current loop.
The loop φ-node represents a merge point between the evolution of V in the
outer loop (the constant part with respect to the current loop), and the evo-
lution of V in the current loop nest.

If the loop does not contain a loop φ-node for the variable V, then V is constant
in this loop, but can vary in the inner loops. Thus at this loop level, the
evolution determined outside the loop is associated to the variable V. The
exploration of the loop nest continues with the analysis of the next inner loop
nest, and then with the siblings of the inner loop nest. For each of these loop
nests, the Initialization step is reexecuted.

Analysis step When the loop contains a loop φ-node, it is possible to use the
information from the SSA representation to navigate to the definitions of the
variable.
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The initial conditions are the first analyzed: i.e. the definition that is not
contained in the current loop nest.

Then the update edge is taken to the bottom of the loop nest, and step after
step the SSA-edges are followed until either:

• reaching again the φ-node from which the analysis has started,

• or reaching a node for which the evolution has already been determined.

This constructs a reverse order path, that is then walked from the last analyzed
node to the bottom of the current loop. The last exit condition means also
that it could be the case that some of the versions of the variable are not
walked in the current loop nest (see Example 5). However, the evolution of
these versions does not determine the evolution of the variable in the loop
nest. These versions of the variable are analyzed only when another variable
depends on one of them.

During the construction of the path there are two possible types of nodes that
we have to analyze:

• an assignment, in which case if one of the right hand side operands is the
use of the same variable, then the analysis follows the link to its definition,

• a φ-node, in which case only one of the arguments is taken, that does not
belong to an inner loop, i.e. we follow the SSA chain towards the original
φ-node. The other arguments of the φ-node are followed and analyzed
during the back walking of the path.

At each step of this path, a new version of the variable is analyzed. A new
initial condition is associated to each version of the variable, while the evolution
part of the chain of recurrence is associated to the real variable in the current
loop. Thus for a given analysis of a definition, the chain of recurrence is not
completely instantiated. The initial condition is in fact the result of a simple
range propagation in the loop’s body [39], while the evolution part is still
susceptible to change during the analysis of the remaining code in the loop.

Construction of chains of recurrences During the analysis of an assignment
expression, the evolution of the right hand side is first determined. Then the
initial condition is associated to the left hand side version, and the evolution
part updates the evolution of the real variable.

When analyzing a φ-node that stands at the merge point of two or more
branches of a conditional expression, the analyzer has to approximate the
information coming from all the edges. Since only one of the branches have
been analyzed for the moment, the analyzer has to gather the information
coming from the other branches as being an alternate possible evolution. It
then launches the analysis on these other branches, and reminds of the fact
that the evolution that it analyzes is an alternate branch of control. This step
introduces envelopes of evolutions as an approximation of the real evolution
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function. Example 6 shows the analyzer on a loop containing a conditional
expression.

When analyzing a loop φ-node, the initial condition in the outer loop has been
determined. The only thing that remains to analyze is the evolution of the
variable in the inner loop. This step is performed by calling recursively the
same algorithm on the inner loop. On end of the algorithm, the number of
iterations is computed, and the evolution function is instantiated to the exit
value of the main induction variable. Example 8 shows the analysis of a loop
nest containing two loops.

4.5 Analysis of flip-flop operations

The strongly connected components (SCCs) are analyzed for determining whether
they produce a periodic behavior in the loop or not. If every variable in the SCC con-
tains exactly one dependence in the SCC, then the SCC is regular, and its behavior
is periodic. Else the SCC is a more complex object described in section 4.6.

The SCCs that produce periodic behaviors are selected, and the evolution of
the whole cycle is determined by analyzing the evolution of each component taken
without the SCC dependences. Then, the evolutions are merged, as well as the
initial conditions.

construct_periodic_chrec (C) =

for each variable V in the cycle C

determine the initial conditions of V

determine the evolution of V

end for

merge initial conditions

merge evolutions

associate with each variable in the cycle a pchrec

4.6 Bizarre mixer objects

After the transformation of the cyclic part of the scalar dependence graph into an
acyclic graph by collapsing SCCs, it is possible that the resulting graph still contains
SCCs.

In this section we’re investigating on the properties of these multi-cyclic graphs.
Their periodic behavior is still difficult to explain. The difficulty comes from the fact
that the cycles exchange information, and their evolution depends on the evolution
of their sibling cycle. This results in a mixing of the information contained in all
these cycles.

Figure 4.1 illustrates the case of a mixer with two cycles.
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Figure 4.1: A mixer.

4.6.1 The Fibonacci system of recurrence relations

The Fibonacci sequence, discovered by Leonardo Pisano Fibonacci, begins

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, . . .

The nth Fibonacci number is generated by adding the previous two. Thus, the
Fibonacci sequence has the recurrence relation

fn = fn−1 + fn−2

with f0 = 0 and f1 = 1, that can be modeled by the following program:

a = 0

b = 1

loop

fib = a + b

a = b

b = fib

endloop

The scalar dependence graph of this program is represented in Figure 4.2. This
graph contains two strongly connected components, and is in some way the minimal
object that follows the mixers pattern.

b fib

a

Figure 4.2: The scalar dependence graph for the Fibonacci system of recurrences.

We can safely transform the first version of the Fibonacci program into:
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a = 0

b = 1

fib = b

loop

fib = fib + a

a = b

b = fib

endloop

This program has a scalar dependence graph represented in Figure 4.3.

b fib

a

Figure 4.3: The scalar dependence graph for the modified Fibonacci program.

The two SDGs of the Fibonacci programs are similar to the SDG of a flip-flop
with a period of two, but they contain one more dependence in the cycle. The
behavior of these cycles is no more periodic.

The Fibonacci recurrence relation can be solved into the closed form [6]:

f(n) =
1√
5

(
φn − φ′ n

)

Where φ is the golden ratio 1+
√

5
2 and φ′ = 1−

√
5

2 .

4.6.2 Other strange objects

Consider the SDG containing two SCCs:

a→ b→ c→ a→ d→ e→ f → d

represented in Figure 4.4.
It could have been extracted from the program:

loop

d = e

e = f

f = d

a = b op d

b = c

c = a

endloop
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d e f

b ca

Figure 4.4: Two flip-flop operations, one dependent on the other.

The first SCC a→ b→ c→ a depends on the second one d→ e→ f → d, and thus
by collapsing the cycles we obtain an acyclic graph with a single edge: abc → def .
The evolution of the variables in this loop can be modeled by the periodic chains
of recurrences. The periodicity of the cycle d → e → f → d is not altered by the
existence of the dependence a→ d, and thus the period of this cycle is equal to two.
The periodicity of the other cycle, a → b → c → a depends on the period of the
cycle d → e → f → d, and the period is computed by the least common multiple
of the periods of the cycles taken without the dependence. Example 3 shows the
evolution of the variables of the above program for a given initial context.

Now suppose that these two flip-flop cycles exchange information: i.e. there
exists a dependence from the second cycle to the first cycle: for example e→ b. The
resulting graph is represented in Figure 4.5.

d e f

b ca

Figure 4.5: Two interdependent flip-flop operations.

loop

d = e

e = f op b

f = d

a = b op d

b = c

c = a
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endloop

After having collapsed both the cycles a→ b→ c→ a and d→ e→ f → d, we still
have a SCC, namely abc → def → abc. The analyzer doesn’t know how to handle
this kind of evolution, and thus classifies it as unknown.
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Chapter 5

Conclusion

The detection of induction variables is a well known analysis that has been previously
addressed by a large number of techniques. In this thesis we have extended two of
the previous techniques: the monotonic evolution, and the chains of recurrences.

Together, the monotonic evolution and the chains of recurrences techniques com-
pletes each other. The approximation of the evolution by intervals is used for de-
termining some of the uncomputable properties of the program, and the chains of
recurrences extend the previous works on monotonic evolution by allowing to gather
more precise information on the initial conditions and evolutions.

We have given two major extensions of the chains of recurrences: the first allows
the analyzers to handle the periodic functions, and the second allows the approxi-
mation of the evolution. We have also compared the algorithms used by Haghighat
and Van Engelen starting from the observation that under the chains of recurrences
stands the Newton’s interpolating method.

We have implemented the extension of the chains of recurrences algorithms from
chapter 3 in a library of basic functions for constructing and manipulating the chains
of recurrences. This library is not flexible enough for its integration in a compiler,
and thus the chains of recurrences has also been implemented using the internal
representation of trees of the GCC. This implementation uses the internal tree ex-
pression folder for the arithmetic operations on integers. An interesting development
would be to extend the current analyzer to the floating point arithmetics. But this
is a much more difficult task for obtaining conservative approximations.

The algorithms on the detection of the monotonic evolution described in chapter
4 have been adapted and implemented using the experimental branch of development
tree-ssa of the GNU Compiler Collection. We hope that our contribution will be
included in this branch of GCC after some more work.
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Appendix A

Misc. Algorithms

A.1 Scalar Dependence Graph

The aim of this preliminary analysis is to extract the information that will direct
the variable evolution analyzer. This analyzer extracts from the instruction stream
the order in which the variables were defined and used.

We’re interested exclusively in finding the scalar dependences for the integer
variables in the loop’s body. We restrict the action field of the analyzer to the
integers induction variable for avoiding the floating point arithmetic evaluations.
The extension of the analyzer to handle floating point arithmetics is possible, but
needs infinite precision evaluations and a rounding of the result as described in the
ANSI/IEEE-754 standard [19].

The algorithm is based on a loop nest at a time analysis and constructs the scalar
dependence graph by excluding any extensions of the dependence graph out of the
loop nest’s bounds.

Example 1 (Scalar Dependence Analysis) As an example of construction of
the scalar dependence graph, we will see the action of the compiler on the following
program:

i_0 = 3;

loop

i_1 = phi (i_0, i_2);

j_0 = i_1 + 1;

k_0 = i_1 + j_0;

i_2 = k_0 + 2;

endloop

The analyzer walks the loop’s body from the first instruction to the last, and
translates the assignment instructions into a set of tuples that constitute the oriented
edges of the scalar dependence graph.
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i_0 = 3;

loop

{}

i_1 = phi (i_0, i_2);

{}

j_0 = i_1 + 1;

{(j->i)}

k_0 = i_1 + j_0;

{(j->i), (k->i), (k->j)}

i_2 = k_0 + 2;

{(j->i), (k->i), (k->j), (i->k)}

endloop

If we consider the original code in the SSA form, each variable has its version
number. The SDG analyzer has to record only the variable’s name. If the graph
contains the version number, the graph becomes acyclic and the detector of flip-flop
variables that is based on the discovery of strongly connected components will not
work.

The φ-node does not introduce edges in the graph since it represents inter-
iterations dependences. An assignment to a scalar variable introduces edges between
the left hand side of the assignment and the scalar variables of the right hand side.
Note that the operations dealing with memory accesses are not handled by this
analyzer, neither are the operations involving function calls.

It is possible to improve the algorithm based on the SSA form by avoiding to walk
over all the loop’s body. For a given variable to be analyzed, it is possible to construct
a partial SDG by following the def-use links. This improves the compilation speed
by avoiding to fetch all the underlying representation of the loop’s body into the
caches.

A.2 Topological order

The previous analysis has extracted a set of dependences over the variables defini-
tions that will direct the study of the variables evolution. In order to respect all
these dependences we have to order them into a linear task list using a topological
sort.

The topological sorting of a directed acyclic graph satisfies the property [2, 5]
that if mi → mj is an edge of the graph, then mi ≺ mj .

The topological order can be extracted only when the graph represents a partial
order. For a graph with cycles, we extract the acyclic part of the graph. This
acyclic part results, after sorting, in an analysis schedule, while the cyclic parts are
decomposed into strongly connected components (SCC) and variables that depend
on the SCCs. The following section describes how to detect and extract strongly
connected components from the scalar dependence graph.

The algorithm for “embedding the partial order into a linear order” has been
taken from the section 2.2.3 of TAOCP [2]. This algorithm stops when all the nodes
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not involved or dependent on a cycle have been sorted. The residue graph contains
all the cycles and the variables dependent on a cycle.

When we are interested only on the evolution of a single variable, it is possible
to partially sort the graph: i.e. start the analysis from the target, and then gather
the dependence relations downward. This algorithm can be used in the light weight
version of the monotonic evolution algorithm, that focuses the search on the variables
involved in the exit condition.

A.3 Detecting Strongly Connected Components

After having extracted a topologically sorted list from the SDG, the set of variables
not processed are either a component of a strongly connected region (SCR), or
dependent on a variable in a SCR.

The strongly connected components (SCC) are detected by the Tarjan’s algo-
rithm [20]. This algorithm has been used by Wolfe and Gerlek in Beyond Induction
Variables [21].

In the same time as the SCC detection, we determine the length of each SCC.
Based on the length of a SCC we determine the period of the variables involved in
the SCC.

A.4 Detecting the period of a SCC

In a strongly connected component the variables exchange their information with
their neighbors in the scalar dependence graph. After a complete tour they inherit
from their initial information that could have been altered by some operations at
some point in this cycle. The periodicity of a variable in the cycle is determined by
the length of a tour, and is given by the following formula:

period = length(SCC)− 1

The −1 is due to the fact that in a flip-flop, one of the variables is the one that
stores the intermediate result until all the other variables are updated.

Example 2 (A simple cycle) Every variable in a cyclic dependence chain of length
three has a period two.

loop

a = b

b = c

c = a

endloop

Let’s execute the first two iterations of the loop: the information gathered by the
interpreter are between sharp signs.
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#(a = undef), (b = ib), (c = ic)#

loop

#(a = undef), (b = ib), (c = ic)#

a = b

#(a = ib), (b = ib), (c = ic)#

b = c

#(a = ib), (b = ic), (c = ic)#

c = a

#(a = ib), (b = ic), (c = ib)#

endloop

loop

#(a = ib), (b = ic), (c = ib)#

a = b

#(a = ic), (b = ic), (c = ib)#

b = c

#(a = ic), (b = ib), (c = ib)#

c = a

#(a = ic), (b = ib), (c = ic)#

endloop

After two iterations, the variables b and c contain the same values as at the
starting point of the program. Thus, the values taken by the variables b and c vary
periodically, and can be described by the following notation:

b = |ib, ic|

c = |ic, ib|
where the first value of the expression is the value at the entry point in the loop, and
the second value is that after one execution of the loops body.

The period of a SCC A that depends on another SCC B is given by the least
common multiple of the period of A taken without dependences on B, and of the
period of B.

period(A) = lcm(length(A)− 1, length(B)− 1)

Example 3 gives an illustration of this case.

Example 3 (A dependence between two cycles) In this example we show the
evolution of the variables, in the initial context #a = undef, b = ib, c = ic, d =
undef, e = ie, f = if#, for the following program:

loop

d = e

e = f

f = d

a = b + d
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b = c

c = a

endloop

The scalar dependence graph for this example is illustrated in Figure 4.4.

#a = undef, b = ib, c = ic, d = undef, e = ie, f = if#

loop

#a = undef, b = ib, c = ic, d = undef, e = ie, f = if#

d = e

#a = undef, b = ib, c = ic, d = ie, e = ie, f = if#

e = f

#a = undef, b = ib, c = ic, d = ie, e = if, f = if#

f = d

#a = undef, b = ib, c = ic, d = ie, e = if, f = ie#

a = b + d

#a = ib + ie, b = ib, c = ic, d = ie, e = if, f = ie#

b = c

#a = ib + ie, b = ic, c = ic, d = ie, e = if, f = ie#

c = a

#a = ib + ie, b = ic, c = ib + ie, d = ie, e = if, f = ie#

endloop

loop

#a = ib + ie, b = ic, c = ib + ie, d = ie, e = if, f = ie#

d = e

#a = ib + ie, b = ic, c = ib + ie, d = if, e = if, f = ie#

e = f

#a = ib + ie, b = ic, c = ib + ie, d = if, e = ie, f = ie#

f = d

#a = ib + ie, b = ic, c = ib + ie, d = if, e = ie, f = if#

a = b + d

#a = ic + if, b = ic, c = ib + ie, d = if, e = ie, f = if#

b = c

#a = ic + if, b = ib + ie, c = ib + ie, d = if, e = ie, f = if#

c = a

#a = ic + if, b = ib + ie, c = ic + if, d = if, e = ie, f = if#

endloop

Using the chains of recurrences notation, we write:

b = | < ib,+, ie >,< ic,+, if > |
c = | < ic,+, if >,< ib,+, ie > |

e = | < ie >,< if > |
f = | < if >,< ie > |
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Appendix B

Computing over the lattice of
intervals

This is a well known technique that we have used in several sections of this thesis.
There are many possible presentations of the arithmetic of intervals, and we have
chosen the one exposed in [34]. The proof of the theorem is given in [35].

[−inf, +inf]
Top

[+inf, −inf]
Bottom

[−1, −1][−2, −2]

[−2, −1] [0, 1][−1, 0]

[−2, 1] [−1, 2]

[−2, 2]

[−2, 0] [−1, 1] [0, 2]

[1, 2]

[2, 2][1, 1][0, 0]

[−1, +inf]

[0, +inf]

[1, +inf]

[2, +inf]

[−inf, 0]

[−inf, 1]

[−inf, −1]

[−inf, −2]

Figure B.1: The complete lattice Interval

Definition 4 (Syntax of Intervals) ASInterval = {[x, y] | x, y ∈ Z⊎{−∞,+∞}}.

Definition 5 (Semantics of Intervals) SInterval is (I, |=) where I = Z and i |=
[x, y]⇔ x ≤ i ≤ y.

Definition 6 (Implementation of Intervals) PInterval is (v,u,t,⊥,>), where
for every [x1, y1], [x2, y2] ∈ ASInterval
• [x1, y1] v [x2, y2] iff x2 ≤ x1 and y1 ≤ y2,
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• [x1, y1] u [x2, y2] = [max(x1, x2),min(y1, y2)],

• [x1, y1] t [x2, y2] =

{
[min(x1, x2),max(y1, y2)] if x2 ≤ y1 and x1 ≤ y2

undef otherwise
,

• > = [−∞,+∞],

• ⊥ = [+∞,−∞].

Theorem 1 (Completeness/consistency) PInterval is consistent and complete
in v,u,t,⊥,> wrt. SInterval.
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Appendix C

Chains of recurrences

We introduce chains of recurrences by repeating some known definitions for the
recurrence relations and closed form functions [6], then we give the formal definitions
of chains of recurrences as described by Zima [23, 24, 25], finally we give some
implementation details for dealing with the rewriting rules for chains of recurrences
described by Van Engelen [18, 17, 16].

C.1 Recurrence relations

A recurrence relation is a function which gives the value of a sequence at some
position based on the values of the sequence at previous positions and the position
index itself. If the current position n of a sequence s is denoted by sn, then the next
value of the sequence expressed as a recurrence relation would be of the form

sn+1 = f(s1, s2, . . . , sn−1, sn, n)

Where f is any function. An example of a simple recurrence relation is

sn+1 = sn + (n+ 1)

which is the recurrence relation for the sum of the integers from 1 to n+ 1.

C.2 Closed form functions

A closed form function which gives the value of a sequence at index n has only one
parameter, n itself. This is in contrast to the recurrence relation form, which can
have all of the previous values of the sequence as parameters.

The benefit of the closed form is that one does not have to calculate all of
the previous values of the sequence to get the next value. It is very useful to
get the value of the sequence at some index n. In the case where the recurrence
relation is computed in a loop, the closed form function removes loop carried scalar
dependences.
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There are many techniques used to find a closed-form solution for a recurrence
relation. Some are

• Repeated substitution. Replace each sk in the expression of sn (with k < n)
with its recurrence relation representation. Repeat again on the resulting
expression, until some pattern is evident.

• Estimate an upper bound for sn in terms of n. Then, solve for the unknowns
(say there are r unknowns) by finding the first r values of the recurrence
relation and solving the linear system formed by them and the unknowns.

• Find the characteristic equation of the recurrence relation and solve for the
roots.

C.3 The chains of recurrences

The chains of recurrences were introduced by Eugene Zima for evaluating the closed
form of functions at regular intervals: i.e. we need the values of F (i) for the values
i = 0, 1, . . . , n. For this purpose, the function F (i) is transformed into a system of
recurrence relations, defined as follows:

fj(i) =

{
φj if i = 0,
fj(i− 1)�j+1 fj+1(i− 1) if i > 0,

j = 0, 1, . . . , k − 1,

where φ0, . . . , φk−1 are constant expressions, �j ∈ {+, ∗}, and fk(i) is a closed form
function that is either a constant, or defined again as a chain of recurrence. When
�j = + for j = 0, 1, . . . , k − 1, the chain of recurrence is called a pure sum, and
when �j = ∗ for j = 0, 1, . . . , k− 1, the chain of recurrence is called a pure product.

The simplified notation for this system of recurrence relations is:

fj(i) = {φj ,�j+1, fj+1}i
As an example taken from [25]:

F (i) =
i!(n− i)!

n!
, i = 0, 1, . . . , n,

that is represented by a chain of recurrence:

f0(i) =

{
1 if i = 0,
f0(i− 1) ∗ f1(i− 1) if i > 0,

f1(i) =
g0(i)

h0(i)

g0(i) =

{
1 if i = 0,
g0(i− 1) + 1 if i > 0,

h0(i) =

{
n if i = 0,
h0(i− 1) + (−1) if i > 0.
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Using the linear notation, this system can be written as:

F (i) = {1, ∗, {1,+, 1}{n,+,−1}}(i),

i = 0, 1, . . . , n.

C.4 Simplification and interpretation of chrecs

The operations over the chains of recurrences are described in several publications
[17, 25]. We expose here, for reference, the reduced set of rules given in [25].

S1: c+ {ϕ0,+,Φ1} = {c+ ϕ0,+,Φ1}

S2: c{ϕ0,+,Φ1} = {cϕ0,+, cΦ1}

S3: c{ϕ0, ∗,Φ1} = {cϕ0, ∗,Φ1}

S4: c
{ϕ0,+,Φ1} = {cϕ0 , ∗, cΦ

1 }

S5: {ϕ0,+,Φ1} ± {ψ0,+,Ψ1} = {ϕ0 ± ψ0,+,Φ1 ±Ψ1}

S6: {ϕ0, ∗,Φ1} ∗ /{ψ0, ∗,Ψ1} = {ϕ0 ∗ /ψ0, ∗,Φ1 ∗ /Ψ1}

S7: {ϕ0,+,Φ1} ∗ {ψ0,+,Ψ1} = {ϕ0 ∗ ψ0,+,ΦΨ1 + Φ1E(Ψ)}

where E is the shift operator, E(Ψ) = Ψ + Ψ1.
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Appendix D

Examples

In this chapter the information gathered by an analyzer are included between the
lines of the program and are marked by sharp signs.

D.1 The basic monotonic evolution algorithm

Example 4 (Inefficiency of the basic monotonic evolution algorithm) In the
following code, the evolution of j will be known only after the evolution of i has been
established. The computation of the variable j during the first iteration is not nec-
essary.

i = 3

j = 4

loop

j = i + 2

i = i + 1

endloop

----

First propagation:

#i = {[-oo, +oo]}, j = {[-oo, +oo]}#

i = 3

#i = {[3, 3]}, j = {[-oo, +oo]}#

j = 4

#i = {[3, 3]}, j = {[4, 4]}#

loop

#i = {[3, 3], +, [-oo, +oo]}, j = {[4, 4], +, [-oo, +oo]}#

j = i + 2

#i = {[3, 3], +, [-oo, +oo]}, j = {[5, 5], +, [-oo, +oo]}#

i = i + 1

#i = {[4, 4], +, [1, 1]}, j = {[5, 5], +, [-oo, +oo]}, i changed#

endloop

----
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Second iteration:

loop

#i = {[3, 3], +, [1, 1]}, j = {[4, 4], +, [-oo, +oo]}#

j = i + 2

#i = {[3, 3], +, [1, 1]}, j = {[5, 5], +, [1, 1]}, j changed#

i = i + 1

#i = {[4, 4], +, [1, 1]}, j = {[5, 5], +, [1, 1]}, j changed#

endloop

----

Third iteration:

loop

#i = {[3, 3], +, [1, 1]}, j = {[4, 4], +, [1, 1]}#

j = i + 2

#i = {[3, 3], +, [1, 1]}, j = {[5, 5], +, [1, 1]}#

i = i + 1

#i = {[4, 4], +, [1, 1]}, j = {[5, 5], +, [1, 1]}#

endloop

D.2 Illustrations of the SSA based algorithm

Example 5 (Not walked versions) This example shows that some of the ver-
sions of the analyzed variable (the code is in SSA form) could not interfere with the
evolution of the real variable.

i_0 = 2

loop

i_1 = phi (i_0, i_2)

...

i_3 = i_1 + 3

...

i_4 = 4

loop

i_2 = phi (i_4, i_5)

...

i_5 = i_2 + 5

end loop

end loop

In this case the analysis follows the SSA-chain i1 → i2 → i4 and stops on i4 since
its evolution is already determined. The version i3 is not walked during the analysis,
since the evolution of the real variable i does not depend on the evolution of the
version i3.
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Example 6 (A conditional expression in the loop) The conditional expressions
are often difficult to analyze in loops, because they introduce sometimes conditions
that cannot be analyzed at compile time. One such example is illustrated in the
following program:

i_0 = 2

loop

i_1 = phi (i_0, i_2)

...

if (volatile_variable)

i_3 = i_1 + 1

else

i_4 = i_1 + 2

end if

i_2 = phi (i_3, i_4)

...

end loop

The volatile variable is a variable whose value cannot be computed at compile time.
A static analysis cannot predict the path that will be taken at run time, and thus the
analysis has to approximate the evolution of the variable.

The analyzer determines the loop’s φ-node, and then analyzes the initial condi-
tion out of the current loop. It initializes the real variable to: i = i1 = i0 = {[2, 2]}.

Then, the analyzer follows the SSA edge i1 → i2 and since i2 is a φ-node, it
follows only one of the branches: i2 → i3. It determines that the right hand side
contains i1 and that by following the edge i3 → i1 it ends on the starting φ-node. It
decides then to stop the recursive walk of the SSA edges. The assignment “i3 = i1+1”
is analyzed: the initial condition for the version i3 is set to {[3, 3]}, and the evolution
of the real variable i is set to {[2, 2],+, [1, 1]}. The back walking continues, and the
analyzer ends on the φ-node “i2 = φ(i3, i4)”.

The second argument of the φ-node is followed i2 → i4, and since the right
hand side contains i1 that reaches the starting φ-node, the recursion stops, and the
assignment “i4 = i1 + 2” is analyzed: {[4, 4]} is associated to i4, and the evolution
of the real variable is updated to {[2, 2],+, [1, 2]}.

Finally the initial condition for version i2 is computed as the interval {[3, 4]}.
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Example 7 (Extended example) We extend the previous example to the analy-
sis of the variable k that depends on i.

i_0 = 2

loop

i_1 = phi (i_0, i_2)

k_1 = phi (i_0, k_2)

...

if (volatile_variable)

i_3 = i_1 + 1

k_3 = k_1 + 5

else

i_4 = i_1 + 2

end if

i_2 = phi (i_3, i_4)

k_4 = phi (k_1, k_3)

...

k_2 = k_4 + i_2

...

end loop

The initial value of k is determined: k = k1 = i0 = {[2, 2]}. Then the edge k1 →
k2 → k4 → k1 is analyzed. Since k4 is a φ-node, the second argument is analyzed as
an alternative: the edge k4 → k3 → k1 is analyzed. “k3 = k1 + 5” is analyzed as an
alternative: k3 ← {[7, 7]}, and k ← {[2, 2],+, [0, 5]}.

Then, k4 ← {[2, 7]}, and the walk on the path reaches the definition of “k2 =
k4 +i2”. At this point, the previous evolution of i = {[2, 2],+, [1, 2]} and i2 = {[3, 4]}
is retrieved and merged into: (i@i2) ← {[3, 4],+, [1, 2]}. The version of k2 is set to
{[2, 7]} + {[3, 4]} = {[5, 11]}, and the evolution of k is updated to {[2, 2],+, ([0, 5] +
[3, 4]),+, [1, 2]} = {[2, 2],+, [3, 9],+, [1, 2]}.
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Example 8 (Analysis of a loop nest) The analysis of a loop nest uses the mul-
tivariate extension of the chains of recurrences. The loop indexes are taken for
naming the dimensions.

i_0 = 2

loop_A

i_1 = phi (i_0, i_2)

if (i_1 > 100)

goto end_A

...

j_0 = 0

loop_B

j_1 = phi (j_0, j_2)

i_4 = phi (i_1, i_3)

if (j_1 > 10)

goto end_B

...

i_3 = i_4 + 5

j_2 = j_1 + 1

endloop

end_B

i_2 = i_4 + 1

endloop

end_A

The analyzer detects that the inner loop has its exit condition on j, and after
having determined from the scalar dependence graph that j does not depend on other
variables, it starts the analysis with the variable j. Since j has no φ-node in the loop
A, the analysis is started again on the inner loop B. As in the previous examples, the
initial value is determined: j = j1 = j0 = {[0, 0]}, and then the edge j1 → j2 → j1
is analyzed. The final evolution of the variable j is determined as {[0, 0],+, [1, 1]}.
From this evolution function, the number of iterations is determined: the least iter-
ation number that satisfies the condition is 11.

The variable i is then analyzed: initial value is i ← i1 ← i0 ← {[2, 2]}, and
after having followed the edge i1 → i2 → i4 → i1, the analyzer comes back on the
φ-node i4 = φ(i1, i3). Since i4 is a loop φ-node, the analyzer reinitializes a new
pass of the same algorithm on this loop: the initial condition for the variable i is
i ← i4 ← i1 ← {[2, 2]}, and the edge i4 → i3 → i4 is analyzed, from which the
analyzer determines that the variable i follows the evolution i ← {[2, 2],+, [5, 5]}B.
The analysis is finished for the loop B. The chain is followed backward from i4 to i2.
At this point, the initial condition of i2 is computed as the value of i on end of the
loop B: i2 ← {[2, 2],+, [5, 5]}B(11) = {[57, 57]}, and the evolution of i is updated to:
i← {{[2, 2],+, [5, 5]}B ,+, [1, 1]}A.

54



Bibliography

[1] F. Nielson, H.R. Nielson, C. Hankin. Principles of Program Analysis. Springer-
Verlag, 1999.

[2] D. E. Knuth. The Art of Computer Programming. Addison-Wesley Publishing
Company, 1969.

[3] S. Muchnick. Advanced Compiler Design and Implementation. Morgan Kauf-
mann Publishers, 1997.

[4] M. Wolfe. High Performance Compilers for Parallel Computing. Addison-
Wesley Publishing Company, 1995.

[5] A.V. Aho, R. Sethi, and J.D. Ullman. Compilers: Principles, Techniques and
Tools. AddisonWesley, 1986.

[6] Planet Math. http://planetmath.org

[7] The First Annual GCC Developers’ Summit. http://www.gccsummit.org/2003/

[8] L. Hendren, C. Donawa, M. Emami, G. Gao, Justiani, and B. Sridharan. De-
signing the McCAT compiler based on a family of structured intermediate repre-
sentations. In Proceedings of the 5th International Workshop on Languages and
Compilers for Parallel Computing, pages 406-420. Lecture Notes in Computer
Science, no. 457, Springer-Verlag, August 1992.

[9] G.A. Silber. The Nestor library: source to source transformations of Fortran
programs. http://www.cri.ensmp.fr/people/silber/nestor/index.html

[10] F. Wagner, S. Pop. Optimisation temporelle des nids de boucles. Rapport de
Travail d’Etude et de Recherche, LSIIT-ULP, 2001.

[11] S. Pop. Interface and Extension of the Open Research Compiler. Internship
Report, http://www-rocq.inria.fr/˜pop/, INRIA 2002.

[12] P. Cousot and N. Halbwachs. Automatic Discovery of Linear Restraints Among
Variables of a Program. In Proc. of POPL 1978, pages 84-97. ACM Press, 1978.

[13] T. E. Uribe. Combinations of Model Checking and Theorem Proving. In Fron-
tiers of Combining Systems: Third International Workshop, FroCoS 2000:

55



Nancy, March 2000: Lecture Notes in Artificial Intelligence, vol. 1794 (Springer-
Verlag, 2000), pp. 151–170.

[14] V. Martena, P. San Pietro. Alias Analysis by Means of a Model Checker. 10th
International Conference on Compiler Construction (CC 01), LNCS vol. 2027,
2001.

[15] D.A. Schmidt. Data Flow Analysis is Model Checking of Abstract Interpretation.
In Proc. of POPL ’98, ACM Press, 1998.

[16] R.A. van Engelen, K.A. Gallivan. An Efficient Algorithm for Pointer-to-Array
Access Conversion for Compiling and Optimizing DSP Applications

[17] R.A. van Engelen. Efficient Symbolic Analysis for Optimizing Compilers. In
proceedings of the International Conference on Compiler Construction, ETAPS
2001, LNCS 2027, pp. 118-132

[18] R.A. van Engelen. Symbolic evaluation of chains of recurrences for loop op-
timization. Technical report, TR-000102, Computer Science Deptartment,
Florida State University, 2000.

[19] American National Standards Institute, Inc. IEEE standard for binary
floating point arithmetic. Technical Report 754-1985, ANSI/IEEE, 1985.
http://grouper.ieee.org/groups/754/

[20] R. E. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on
Computing, 1:146, 1972.

[21] M. Wolfe. Beyond induction variables. In Proceedings of the SIGPLAN’92 Con-
ference on Programming Language Design and Implementation, pages 161–174,
1992.

[22] E.V. Zima. Automatic Construction of Systems of Recurrence Relations. USSR
Comput. Maths. Math. Phys., Vol.24, N 6, 1984, pp. 193–197.

[23] O. Bachmann, P. S. Wang, E. V. Zima. Chains of Recurrences - a method to
expedite the evaluation of closed-form functions. In Proceedings of the Interna-
tional Symposium on Symbolic an Algebraic Computation - ISSAC’94, pages
242–249, Oxford, England, United Kingdom, July 1994. ACM Press.

[24] Kislenkov, Mitrofanov, Zima. Multidimensional chains of recurrences. ISSAC
98, Proceedings of the 1998 International Symposium on Symbolic and Alge-
braic Computation, Rostock, Germany, 13-15 Aug. 1998.

[25] E.V. Zima. On computational properties of chains of recurrences. ISSAC 01,
Proceedings of the 2001 International Symposium on Symbolic and Algebraic
Computation, Canada 2001.

[26] B. Franke, M. O’Boyle. Compiler Transformation of Pointers to Explicit Array
Accesses in DSP Applications.

56



[27] B. Meister. De l’utilisation de périodiques dans les problèmes polyédriques en
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