
www.elsevier.com/locate/parco

Parallel Computing 30 (2004) 139–161
A semantic framework to address data locality
in data parallel languages

Eric Violard

LSIIT-ICPS, Universit�ee Louis Pasteur, Strasbourg, France and

Pôole API, Boulevard S�eebastien Brant, F-67400 Illkirch, Strasbourg, France

Received 15 September 2001; received in revised form 19 May 2003; accepted 15 June 2003
Abstract

We developed a theory in order to address crucial questions of program design methodo-

logy. This theory deals with data locality which is a main issue in parallel programming. In this

article, we regard this theory and its model as a minimum semantic domain for data parallel

languages.

The introduction of a semantic domain is justified because the classical data parallel lan-

guages (HPF and CH) have different intuitive semantics: Indeed, they use different concepts

in order to express data locality. These concepts are alignment in HPF and shape in CH. Con-

sequently these two languages define their own balance between compiler and programmer in-

vestments in order to reach program efficiency. We present our theory as a foundation for

defining a better balance.

� 2003 Elsevier B.V. All rights reserved.

Keywords: Data parallel programming; Equational languages semantics; Parallel programs design; Data

locality
1. Introduction

Facilities in programming languages express virtual items (objects, functions, ope-

rations, . . .) and serve as an intermediate toolbox, in one hand for the programmer

to specify what he knows about the problem to be solved and, in the other hand, for

the compiler to rely on the architecture on which the program will execute. These

facilities then connect two domains and determine the knowledge the programmer
E-mail address: violard@icps.u-strasbg.fr (E. Violard).

0167-8191/$ - see front matter � 2003 Elsevier B.V. All rights reserved.

doi:10.1016/S0167-8191(03)00089-9

mail to: violard@icps.u-strasbg.fr

140 E. Violard / Parallel Computing 30 (2004) 139–161
and the compiler can share to interact each other in order to perform an efficient

program.

Such a point of view leads to define a programming theory, supported by a rele-

vant formalism, in which any program is a statement which can be transformed

either by the programmer or by the compiler. The formalism and the features it ex-
presses have to establish a fair equilibrium point between the programmer and the

compiler investments in order to facilitate the collaboration between them.

Such a theory is even more useful if the architecture is a parallel one since pro-

gramming paradigms, algorithm definitions and the share of architecture resources

are more complex than those in sequential programming.

Any parallel programming paradigm expresses a specific balance between the pro-

grammer workload and the compiler one in order to reach program efficiency: On

one side of the spectrum is the message passing model, as in PVM or MPI, which
leaves the programmer in charge of the whole workload. Whereas, on the other side,

the compiler has the whole charge in automatic parallelization. The programming

paradigm associated with the emerging OpenMP standard [13] and data parallelism

are located somewhere between these extrema.

Although OpenMP is more recent than standard data-parallel languages CH or

HPF, in our opinion, it defines a collaboration degree between the compiler and

the programmer which is not maximum, mainly because it has no features to express

data locality. This can critically affect performance on machines which exhibit non-
uniform memory access times. The research works which aim at extending OpenMP

with some ideas inherited from the data parallelism [5,10] underline the importance

of the expressions of data locality.

OpenMP lies on an execution model which is somewhat more machine dependent.

Therefore the OpenMP user has much effort to reach efficiency while the OpenMP

compiler has much less workload. This appears to be confirmed by recent works

which aim to generate OpenMP programs from HPF programs [3] or to target the

compilation of HPF programs to multithreaded runtime environment [2]. In some
sense, these works show that data-parallelism may be a better medium.

Data parallelism is indeed a candidate to express an intermediate level of abstrac-

tion to be shared by the programmer and the compiler. A major interest of the data

parallelism paradigm is that it enables the programmer to describe a parallel algo-

rithm by choosing a well-known sequential one and then focusing on the expression

of ‘‘parallel variables’’ and ‘‘data locality’’, while the compiler can be left in charge of

the distribution onto physical processors, communications management, etc.

In some sense, it reveals that the concepts for expressing data locality are of main
interest in parallel programming and even may be viewed as the essence of paralle-

lism in comparison with sequential programming.

This paper deals with these questions and aims to introduce a new theory, in par-

ticular because there exists different intuitive semantics for data parallelism and data

locality. Hence let us consider standard data parallel programming languages such as

HPF [9] or CH [15]. Both allow data locality to be expressed as a relationship be-

tween indices of arrays and indices of so-called virtual processors, but these lan-

guages differ for expressing this relationship:

E. Violard / Parallel Computing 30 (2004) 139–161 141
• In HPF, alignment between two arrays, by using the ALIGN directive, provides a

way to inform the compiler that some data elements should reside in the same vir-

tual processor and then in the same physical one. By default an array is not

aligned with any other one, so that the compiler must guess alone a best distribu-

tion onto physical processors.
• In CH, the shape concept is a way of configuring data: It is a kind of abstract data

type which is associated with every parallel variable by using a shape declara-

tion. Typically the corresponding elements of two arrays declared of the same

shape reside in the same virtual processor. This concept of data type entails some

restrictions on authorized expressions. For example, the assignment of two vari-

ables assumes they have the same shape.

Thus features for data locality have different meanings in HPF or in CH. Moreover it
is interesting to note that these concepts yield an unbalanced workload for the

programmer and for the compiler:

• In order to express a parallel program in CH from a sequential one, the program-

mer has to provide some real effort. Then the compiler workload is weaker.

• Whereas in HPF the programmer may only consider the sequential code and the

main workload is left to the compiler which has in charge to find a best data dis-

tribution from some alignment directives.

The question is then to define a data parallelism theory which introduces features

such that the programmer and the compiler can fairly collaborate. In this article, we

propose such a theory which could bridge the gap between alignment and shape.

In order to carefully introduce the theory the paper is divided into the following

sections: The next section recalls the problem and illustrates it with a few simple

examples in HPF and CH. Section 3 introduces the theory with an informal meaning.

Section 4 presents a sound model of our theory which provides a formal framework
for demonstrating properties of data parallel programs. Section 5 is devoted to a case

study just before conclusion.

2. Some examples

Here are some very simple examples of programs in CH or HPF.

2.1. Pascal summation on aligned arrays

REAL A(0:9,0:9), B(0:9,0:9)

!HPF$ ALIGN A(I,J) WITH B(I,J)

. . .
FORALL (I¼1:9, J¼1:9)

B(I,J) ¼ A(I-1,J) + A(I,J-1)

END FORALL

. . .

142 E. Violard / Parallel Computing 30 (2004) 139–161
This program in HPF obviously aligns matrices A and B and implicitly expresses

communications at execution time to execute the assignment. Here is an equivalent

program in CH, where A and B are declared of the same shape:
shape [10][10]matrix;

real:matrix A, B

. . .
where ((pc_coord(0)>0) && (pc_coord(1)>0))

B ¼ [.-1][.]A + [.][.-1]A;

. . .
Expressions of data distribution are very close on this example since facilities exist in
these two languages to express that some index in two arrays refers to the same

virtual processor.

We can conclude here that the balance between programmer and compiler invest-

ments in these two programs is the same. Just an introductory example then!

2.2. Summation of unaligned vectors

REAL A(0:7), B(0:7), C(0:7)

!HPF$ TEMPLATE X(0:14)

!HPF$ ALIGN A(I) WITH X(I+1)

!HPF$ ALIGN B(I) WITH X(2*I)

. . .
C ¼ A + B

. . .

where the template X is used for defining the alignment of variable A relatively to
variable B. The alignment of variable C is left in charge of the compiler.

The previous HPF program could be encoded as follows in CH:

shape [15]vector;

real:vector A,B,C;

. . .
where (pc_coord(0)<8)

C ¼ [.+1]A + [.*2]B;

. . .

where A, B and C are ‘‘re-indexed’’ in the assignment in order to describe a rela-

tionship between vector values and virtual processors which is equivalent to those

described by alignment directives in the HPF program. In CH then, communications

between virtual processors are expressed explicitly through the assignation state-

ment. Moreover the ‘‘alignment’’ of C and the touched values are defined by the

programmer who has to define active virtual processors.

E. Violard / Parallel Computing 30 (2004) 139–161 143
Then translating this simple example from HPF to CH first reveals some difficul-

ties the HPF compiler will ensure and those left in charge of the programmer while

writing the CH program.

2.3. Matrix product

Here is a program in HPF. Since its code is really inspired by a sequential one, it

illustrates a common way of HPF programming:

REAL A(0:7,0:7), B(0:7,0:7), C(0:7,0:7)

!HPF$ ALIGN A(I,*) WITH C(I,*)

!HPF$ ALIGN B(*,J) WITH C(*,J)

. . .
DO K¼0,7

FORALL (I¼0:7, J¼0:7)

C(I,J) ¼ A(I,K)*B(K,J) + C(I,J)

END FORALL

END DO

. . .

The directives in this program advise the compiler to collapse all the elements in row
I of matrix A and all the elements in column J of matrix B, onto the same virtual

processor than C(I,J). This refers to a particular case of alignment, called col-

lapsing.

In this example, since the alignment is defined for every element of C, any row I of

A is replicated onto every virtual processor corresponding to an element in row I of

C. Similarly any column J of B is replicated onto every virtual processor correspond-

ing to an element in column J of C. Thus, this collapsing implies a large amount of

replication; if the compiler follows the directives no communication will be per-
formed. However, that will of course entail a probably excessive memory space usage

because of columns and rows replication, unless a DISTRIBUTE directive is inserted

and may reduce memory space on the physical architecture. Therefore the usage of

such directives can be very tricky for the programmer since they have heavy conse-

quences on the program behaviour according to their interaction and the way the

compiler will implement them.

Without any further programmer’s help, it is very difficult for the compiler to find

a good trade-off between communications and memory space usage. Hence doing
this requires to analyze not only the alignment directives, but also the scheduling

of the summation of products by using commutativity and associativity properties

of addition.

The programmer can help the compiler a little more by inserting an INDE-

PENDENT directive just before the DO loop in the program: This asserts that

the iterations of the loop could be executed in any order. Even if this directive is

added, a lot of workload remains for the compiler to produce a best distributed

code.

144 E. Violard / Parallel Computing 30 (2004) 139–161
Now, let us study the way language CH can work on the matrix product example

and the balance between programmer and compiler workload it implies.

Collapsing does not exist in CH but the programmer is responsible for memory

usage and communications which are explicit: The choice of shape for the matrices

induces a program behaviour. For example, in order to compute products locally,
the matrices have to be embedded into a three-dimensional shape: Their elements

can then be broadcasted onto adequate places and products can be computed with-

out any other communication. Another choice yields the following program, referred

to as Cannon’s algorithm [11], where the matrices are embedded into a two-dimen-

sional shape:

shape [8,8]matrix;

real:matrix A, B, C

. . .
A ¼ [.,(.+ pc_coord(0))%%8]A;

B ¼ [(.+ pc_coord(1))%%8,.]B;

. . .
for(k¼0;k<8;k++)

{

A ¼ [.,(.-1)%%8]A;

B ¼ [(.-1)%%8,.]B;

C +¼ A*B;

}

. . .

The previous program describes a memory-efficient version of the matrix product.

Let us briefly recall this algorithm: First, elements of A and B are re-arranged in such

a way that elements A(I,(I+J)%8) and B((I+J)%8,J) are placed on the same

virtual processor. This arrangement is achieved by shifting all elements of A to the
left, with wraparound, by I steps and similarly by shifting up all elements of B, with

wraparound, by J steps. Then, at every iteration, elements of A (resp. B) are moved

one step left (resp. up) so that products can be performed locally.

Much work has been done by the programmer on this program and especially the

proof of program correctness. Moreover a load balancing has been performed so

that the compiler can easily produce an efficient code.

This example clearly outlines different relationships between compiler and pro-

grammer. The question is now: Is a HPF programmer able to transform the previous
program in order to help the compiler to find out Cannon’s algorithm? This would

require that non-linear alignments are allowed in HPF programs in order to express

an initial arrangement of elements of matrices A and B. Such a statement could be

then re-written as

REAL A(0:7,0:7), B(0:7,0:7), C(0:7,0:7)

!HPF$ ALIGN A(I,J) WITH C(I,MODULO(J-I,8))

!HPF$ ALIGN B(I,J) WITH C(MODULO(I-J,8),J)

E. Violard / Parallel Computing 30 (2004) 139–161 145
. . .
DO K¼0,7

FORALL (I¼0:7,J¼0:7)

C(I,J) ¼ A(I,MODULO(I+J-K,8))*B(MODULO(I+J-K,8),J)+

C(I,J)

END FORALL

END DO

. . .

where ALIGN pseudo-directives specify an initial arrangement of elements of ma-

trices A and B as in Cannon’s algorithm. Beyond syntactical differences in languages

such as CH and HPF, this example again shows a different balance between the

programmer and the compiler workload: Non-linear alignments, if allowed in HPF,
should involve new compiling techniques [1], whereas the difficulty is in writing the

program in CH.

In the rest of the paper we introduce a theory which defines features such that the

programmer and the compiler can fairly collaborate to reach program correctness

and efficiency.
3. An introduction for the theory

3.1. Objects

The theory lies on a notion of objects called shaped data fields. A shaped data field

is mainly a container of values.

Containers without values are sometimes referred to as shapes (for example refer

to [8] in which C.B. Jay defines a very general and abstract notion of shape via a cate-

gorical pullback). An original point of the theory we introduce here consists in a par-
ticular notion of shape: we consider a shape composed of two sets of points indeed,

respectively called indices and locations, and by some arrows between them.

Any point in a shape belongs to some ‘‘geometrical space’’, i.e., Zn. A location ex-

presses a place where at most one value can be placed. Each index of a shape is con-

nected to one or more locations and allows all the values, assumed to be equal, which

are placed at these locations to be accessed ‘‘as a whole’’. Conversely, every location

is accessed by one index at most. Thus, every value of a shaped data field has a lo-

cation and is accessed via an index in the index set.
In the literature, indexed collections of values, detached from locations, are gene-

rally called data fields (for example refer to Alpha [12] or Lisper formalism [7]). It

should be clear now that the theory we introduce defines a shaped data field as such

a data field associated with a shape. For example, the shaped data field on Fig. 1 as-

sociates a shape with the data field on Fig. 2.

In the sequel, the index set of a shaped data field naturally refers to the data field

index set. Moreover when we talk about ‘‘values’’ it stands for the values within

some shaped data field.

1 1

3 3

location

index

Fig. 1. A shaped data field (left) and its shape (right). It contains four values: 1 twice and 3 twice. Each

value has its own location in Z2: For example, an instance of 1 is at location (1,1) while the other one is at

location (2,1). The locations are connected with indices (1,1), (2,1), (1,2) and (2,2) in Z2: Index (1,1) refers

to two locations while every other one is connected with only one own location. Note that index (2,2) is

connected with one location but no value is placed in it.

3

1 3

Fig. 2. The associated data field.

146 E. Violard / Parallel Computing 30 (2004) 139–161
3.2. Operations

The theory defines three kinds of operations on shaped data fields:

• A change of basis re-defines the relationship between indices and locations by

changing the indices while keeping the values and their locations unchanged. It

concerns both the shape and the data field of a shaped data field.

• A geometrical operation does not affect the shape but changes the indices of the values
on the data field: it possibly moves, deletes or duplicates some values on locations.

Any change of basis or geometrical operation is determined from a function on

indices of the resulting shaped data field to the indices of the given one.

• A global operation applies the same operation on all values. Any classical arith-

metical or logical operation on values induces a global operation. In particular,

any binary operation on values defines a global operation which combines two

shaped data fields having the same shape.

3.3. A minimum notation set

Here we introduce a minimum notation set for expressing statements. A statement

is a finite set of equations whose variables are shaped data fields. A variable is

E. Violard / Parallel Computing 30 (2004) 139–161 147
denoted by an uppercase letter (e.g., A;B;X ; . . .). The classical arithmetical or logical

operations are overloaded with global operations (e.g., Aþ B).
In order to simplify the notations, change of basis and geometrical operations on

variables are denoted in an unified way as X :f where f is considered as a pair ðh; gÞ
of partial functions: h defines the change of basis, g defines the geometrical operation
and f stands for applying first the change of basis and then the geometrical opera-

tion on X .

This means that an operation which is really a change of basis is denoted as X :f ,
where f ¼ ðh; gÞ and g is the identity and that an operation which is really a geomet-

rical one is denoted as X :f , where f ¼ ðh; gÞ and h is the identity.

In order to denote partial functions we use the classical lambda-calculus notation

kx:e and fnD for the restriction of function f to domain D.

Example 1. The shaped data field resulting from the geometrical operation illus-

trated on Fig. 3(b), applied on a shaped data field, say A, is denoted as A:spread,
where spread denotes the pair ðh; gÞ: h is the identity and g is the partial function

kði; jÞ:ð1; jÞnD, with D ¼ fði; jÞj16 i; j6 3g. Then, if B denotes the resultant shaped

data field, we write the equation B ¼ A:spread.
i

1 1 1

2 2 2

3 3 3

1 1 1

3 3 3

2 2 2

i
j

i
j

i
j

i
j

j
i

1

2

3

i
j

i
j

1

2

3

2

3

2

3

1 1

(a)

(b)

Fig. 3. Operations on shaped data fields. (a) The resulting shaped data field at the right is defined by a

change of basis applied to the shaped data field on the left. The change of basis is defined from the func-

tion which associates point of coordinate i in Z with any point ði; jÞ in the square ½1; . . . ; 3� � ½1; . . . ; 3� of
Z2. (b) Illustrates a geometrical operation defined from the function which associates point of coordinate

ð1; jÞ with any point ði; jÞ in the same square.

148 E. Violard / Parallel Computing 30 (2004) 139–161
Similarly, the shaped data fields, say A0 and B0, on Fig. 3(a) satisfy the equation

B0 ¼ A0:spread0, where spread0 is the pair composed of partial function kði; jÞ:inD
and the identity.
3.4. Theory adequacy

In this section, we consider several examples which aim at illustrating the ade-

quacy of the theory just defined. The next section will provide a formal model to

prove the following assertions:

Example 2 (Expression of uniform dependencies). Let us consider the dependencies

B½i� ¼ A½iþ 1�, for any i 2 ½0; . . . ; 6�. In our theory they can be expressed as
B ¼ A:shift; ð1Þ

where A and B are shaped data fields representing arrays A and B and ‘‘shift’’ denotes

any pair of functions ðh; gÞ satisfying h � g ¼ ki:iþ 1nD with domain D ¼ fij06
i6 6g.

For example, Fig. 4 represents two shaped data fields A and B which satisfy Eq.

(1) for two different pairs ðh; gÞ of functions:

• The left part (a) represents the case of a change of basis where h ¼ ki:iþ 1nD and g
is the identity,

• The right part (b) represents the case of a geometrical operation where

g ¼ ki:iþ 1nD and h is the identity.

In both cases, any value of B accessed by an index i 2 ½0; . . . ; 6� is equal to the value

of A accessed by index iþ 1: The dependencies between arrays A and B are then

satisfied.
Nevertheless the two cases express different placements of values onto locations. In

the first case there is no communication because the values B½i� and A½iþ 1� have the
same location. The second case means that A and B have the same shape: Elements

B½i� and A½iþ 1� forcefully have then different locations and communications are

required.
b0 b1 b2 b3 c4 b5 b6

a7a6a5a4a3a2a1

(a) A change of basis

b0 b1 b2 b3 b4 b5 b6

a1 a2 a3 a4 a5 a6 a7

(b) A geometrical operation

Fig. 4. Array B obtained by shifting array A.

E. Violard / Parallel Computing 30 (2004) 139–161 149
These examples could be written, in HPF for the case of change of basis or in CH

for the case of geometrical operation, as follows:

Example 3 (Summation of unaligned vectors). Let us consider again the Example 2.2:

arrays A, B and C depend each other according to the relationship C½i� ¼ A½i� þ B½i�,
for any i 2 ½0; . . . ; 7�.

It is expressed as C ¼ Aþ B in HPF independently of the placement of values. In
our theory this could be expressed by the following statement:

REAL A(1:7),B(0:6) shape [8]vector;

!HPF$ ALIGN B(I) WITH A(I+1) real:vector A, B;

.
B(0:6) ¼ A(1:7) B ¼ [.+1]A;

.
1 W
C ¼ A:id1 þ B:id2;
where id1 and id2 are pairs ðh1; g1Þ and ðh2; g2Þ of functions whose composition is

equal to the identity on the domain ½0; . . . ; 7�. These pairs of functions express a

particular placement of the arrays. For instance, the placement of arrays in the HPF
program could be expressed by the following definitions: 1
h1 ¼ g�1
1 g1 ¼ ki:iþ 1nD

h2 ¼ g�1
2 g2 ¼ ki:2� inD
with D ¼ fij06 i6 7g, as depicted on Fig. 5.

Previous examples have shown that the relationship between a statement in our

sense and a data parallel program is quite obvious since this theory defines parallel

variables, data locations, global operations and communications. Here we confront
the theory with a major semantic point in data parallel languages: the semantics of

indices in a variable.

In languages such as HPF the indices in a program refer to indices of arrays with-

out any reference to data location. Then, if a program expresses that a value in some

index depends on the value in another one, it may involve any other relation between

locations, which may imply or not some communication: In such cases we say that

communications are hidden. Moreover the association between indices and locations

may not be one-to-one: An array index can then address several locations. This is a
particular, but powerful, case of data alignments through directives.

In other data parallel languages such as CH, indices refer to virtual processors: X½i�
means the local value of X in the ith processor. The association between indices and

locations is then one-to-one and any dependence between a value in some index and

a value in some other one involves a similar dependence between the two associated
here f�1 stands for the inverse of f , provided f is injective.

b5 b6 b7a0 a2 a3 a4 a5 a6 a7a1b0

c1 c2

b1

c3 c4

b2

c5 c6

b3

c7

b4

c0

A

B

C

Fig. 5. Relative placements of arrays A, B and C.

150 E. Violard / Parallel Computing 30 (2004) 139–161
locations. Therefore, parallel variables are distributed on the mesh and communica-

tions are made explicit.

Example 4 (Matrix product). Let us consider the computation of all products

A½i; k� � B½k; j� for 16 i; j; k6 n, mapped on a cubic three-dimensional array P. Here

is a statement for this problem, by introducing geometrical operations
P ¼ A:spread1 � B:spread2;
where spread1 ¼ ðh; g1Þ and spread2 ¼ ðh; g2Þ with

• h the identity,

• functions g1 and g2 defined as g1 ¼ kði; j; kÞ:ði; kÞnD and g2 ¼ kði; j; kÞ:ðk; jÞnD,
where D ¼ fði; j; kÞj16 i; j; k6 ng.

Shaped data fields A and A:spread1 have the same shape: it maps indices of both
matrix and cube onto locations. Moreover, since two different indices cannot be

associated with the same location in a shape, an index of the cube cannot be asso-

ciated with the same location as an index of the matrix. Last, the shape of these data

fields may be a one-to-one correspondence between indices and locations. These

points are shown on Fig. 6. This statement can thus be interpreted in different in-

tuitive semantics of data parallel languages, for example in CH.

Let us consider now an other statement for the same problem by introducing

changes of basis substituted for geometrical operations:
P ¼ A:spread3 � B:spread4;
where spread3 ¼ ðh3; gÞ and spread4 ¼ ðh4; gÞ with

• g the identity,

• functions h3 ¼ g1 and h4 ¼ g2.

Shaped data fields A and A:spread3 have two different shapes but the same values are

associated with the same locations. Since every index on a vertical line of the cube, as

shown on Fig. 7, is connected to at least one location and since the values accessed

by an index on such a line are the values which are accessed by an unique index in A,

i

j k

i

j k

index set

locations locations

index set

Fig. 6. Shaped data fields A and A:spread1.

i

j k

i

j k

index set

index set

locations locations

Fig. 7. Shaped data fields A and A:spread3.

E. Violard / Parallel Computing 30 (2004) 139–161 151
this means that any index in A is necessarily connected to all the locations which are

associated with the indices on the line in A:spread3. This means that the shape of A
cannot be a one-to-one correspondence between indices and locations.

This statement expresses then virtual indices in an array which can be associated

with different locations on a machine. This is typically what a data alignment ex-
presses in HPF through an ALIGN directive. It describes then a different algorithm

since dependences, involving communications in the previous expression, have been

modified and now refer to locations, involving data alignment.
4. A formal model of the theory

This section presents the mathematical definitions of shaped data fields and their
associated operations. These definitions could serve as a semantic domain for data

parallel languages. Very few works are dedicated to semantics of data parallel lan-

guages: Let us mention the language L [4] and its semantics which is a model for

languages such as CH. Our proposal is more general and meets the different cases

we talked about just above.

4.1. Shaped data fields

The theory refers to mathematical objects called shaped data fields. This section
includes their formal definition beginning with the related notions of data field
and shape.

152 E. Violard / Parallel Computing 30 (2004) 139–161
A data field is a model for collections of indexed values such that any index

uniquely corresponds to a value. Any index is composed of the coordinates of a

point in a ‘‘geometrical space’’, i.e., a given Zn: An index is thus an integer tuple.

Note that the points which index the values of a data field may belong to different

geometrical spaces. In the sequel, we call I the union of all Zn, for all n 2 N.
A data field then associates a value in a given data type with some elements of I

which form its index set. A data field is then formally defined as follows:

Definition 5. Let V be a given data type. A data field, whose values are in V , is any
partial function X from I to V :
2 W
X : I * V :
We note DFðV Þ, the set of data fields whose values are in V .
A shape expresses a set of arrows between two sets of points: indices and loca-

tions. These arrows describe a relation from indices to locations: indices form the do-

main of the relation and locations form its co-domain. Since the relation is assumed

to be injective (any location has at most one corresponding index), its inverse is a

function.

Therefore, a shape is defined by a function from locations to indices. Moreover,

since locations and indices are two subsets of I , it is a partial function from I to I
whose domain of definition is the set of locations, and whose image is the set of in-

dices.

Definition 6. A shape is any partial function r from I to I :
r : I * I :
We note S, the set of shapes.
A shaped data field X is a data field X associated with a shape r. This association

means that each index in the index set of the data field is an index of the shape: it

belongs to the image of this shape. Formally, defðXÞ � imgðrÞ. 2

In order to properly define this association, a shaped data field is defined via a

partial function as follows:

Definition 7. Let V be a given data type. We call shaped data field, whose values are

in V , a constant partial function X , from shapes to data fields whose values are in V ,
which returns a data field X, such that defðXÞ � imgðrÞ for any shape r in its do-

main of definition.
X : S * DFðV Þ such that 8r 2 defðX Þ defðX ðrÞÞ � imgðrÞ:
here defðXÞ stands for the domain of definition of X and imgðrÞ is a shorthand for the image of r.

E. Violard / Parallel Computing 30 (2004) 139–161 153
4.2. Operations

These definitions associate a mathematical meaning of operations with the nota-

tion introduced in Section 3.3. For sake of conciseness, the definitions are given

using semantic equations [14]: such an equation defines the result of a given operation
applied on arbitrary arguments. Moreover, the result of any operation is a shaped

data field, i.e., a function: It is defined itself by its image, i.e., a data field, resulting

from an arbitrary argument, i.e., a shape.

Last, in every semantic equation, it is implicit that the shaped data field applied on

r, on the left side, is undefined if and only if all the values of the data field, on the

right side, are undefined.

Here is some notations: g; h; r : I * I , A;B;X : S * DFðV Þ, geom ¼ ðid; gÞ and

basis ¼ ðh; idÞ, with id the identity on I .

Definition 8. A global operation, denoted as þ, on two shaped data fields A and B is

such that
ðAþ BÞðrÞ ¼Def AðrÞ þ BðrÞ:
The notation þ on the right side of this semantic equation is for the addition on data
fields. This addition can be defined by the equation
ðAþBÞðzÞ ¼ AðzÞ þBðzÞ;

where the result is defined on the intersection of the domains of definition of the two

arguments.

Definition 9. A geometrical operation, denoted as ‘‘geom’’, is such that
ðX :geomÞðrÞ ¼Def X ðrÞ � g if defðX ðrÞ � gÞ � imgðrÞ
undefined otherwise:

�

This definition says that for any shaped data field X , whose data field X is associated

with shape r, the result of the geometrical operation, defined from g and applied on
X , is the data field associated with shape r, which maps value XðgðzÞÞ, if defined, to
each index z of r.

Definition 10. A change of basis, denoted as ‘‘basis’’, is such that
ðX :basisÞðrÞ ¼Def X ðh � rÞ � h:
This definition says that for any shaped data field X , whose data field X is associated

with shape h � r, the result of the change of basis, defined from h and applied on X , is
the data field associated with shape r, which maps value XðhðzÞÞ, if defined, to each

index z of r.
Thus, X and X :basis have the same values placed at the same locations: since the

shape of X is h � r, considering any value of X at location l, its corresponding index

154 E. Violard / Parallel Computing 30 (2004) 139–161
is ðh � rÞðlÞ, i.e., hðzÞ with z ¼ rðlÞ. This value is then equal to the value of X :basis at
location l. This proof is summarized by the following commuting diagram:

Definition 11. The composition of a change of basis and a geometrical operation is

defined as
X :ðh; gÞ ¼Def ðX :basisÞ:geom:
Let us call Y the result of this operation. By definition, and for any r such that

Y ðrÞ is defined, we have
Y ðrÞ ¼ ððX :basisÞ:geomÞðrÞ ¼ ðX :basisÞðrÞ � g ¼ ðX ðh � rÞ � hÞ � g
¼ X ðh � rÞ � ðh � gÞ:
It means that, for any shaped data field X , whose data field X is associated with

shape h � r, the result Y is the data field associated with shape r, which maps value

Xððh � gÞðzÞÞ, if defined, to each index z of r, i.e., value YðzÞ is equal to value

Xððh � gÞðzÞÞ.
5. A case study

In this section, we use the theory to deal with the matrix product problem.

Let us show how to write a first statement for this problem. This initial statement

is built from the following set of recurrent equations:
ti;j;k ¼ 0 if ði; j; kÞ 2 D�1;

ti;j;k ¼ ai;k � bk;j þ ti;j;k�1 if ði; j; kÞ 2 D;

ti;j;k ¼ ci;j if ði; j; kÞ 2 Dn�1;
with
D�1 ¼ ½0; . . . ; n� 1� � ½0; . . . ; n� 1� � f�1g;
D ¼ ½0; . . . ; n� 1� � ½0; . . . ; n� 1� � ½0; . . . ; n� 1�;
Dn�1 ¼ ½0; . . . ; n� 1� � ½0; . . . ; n� 1� � fn� 1g;
where indexed variables a, b and c identify the n� n matrices, and t is an inter-
mediate variable indexed on ½0; . . . ; n� 1� � ½0; . . . ; n� 1� � ½�1; . . . ; n� 1�.

E. Violard / Parallel Computing 30 (2004) 139–161 155
Here is our first statement:
T :init ¼ � � �
T :current ¼ A:spreada � B:spreadb þ T :prec

T :term ¼ C:expand;
where A, B, C and T rely to variables in the previous recurrent equations set and

‘‘init’’, ‘‘current’’ and ‘‘term’’ operations restrict variable T on some sub-domains.

They are defined as follows:
init ¼ ðid; idnD�1
Þ current ¼ ðid; idnDÞ term ¼ ðid; idnDn�1

Þ:

And spreada ¼ ðha; gaÞ, spreadb ¼ ðhb; gbÞ, prec ¼ ðhp; gpÞ and expand ¼ ðhe; geÞ ex-

press dependencies in the recurrent equations set.

They are such that
ha � ga ¼ kði; j; kÞ:ði; kÞnD;
hb � gb ¼ kði; j; kÞ:ðk; jÞnD;
hp � gp ¼ kði; j; kÞ:ði; j; k � 1ÞnD;
he � ge ¼ kði; j; kÞ:ði; jÞnDn�1

:

Such dependencies determine the scheduling of computations. Without any other

precision, the previous statement is the semantics of the following program written

using a HPF-like notation:

REAL A(0:N-1,0:N-1), B(0:N-1,0:N-1), C(0:N-1,0:N-1)

REAL T(0:N-1,0:N-1,-1:N-1)

. . .
FORALL (I¼0:N-1,J¼0:N-1)

DO K¼0,N-1

T(I,J,K)¼A(I,K)*B(K,J)+T(I,J,K-1)

END DO

END FORALL

FORALL (I¼0:N-1,J¼0:N-1)

C(I,J)¼T(I,J,N-1)

END FORALL

. . .

where the scheduling is explicit but the relationship between array indices and virtual

processors is undefined. Note that this program is incorrect in HPF because it is not

allowed to put a DO loop inside a FORALL body in HPF.

Setting pairs ðha; gaÞ, ðhb; gbÞ, ðhp; gpÞ and ðhe; geÞ to a particular instance attaches

additional operational properties to the statement and preserves its correctness.

In the sequel, a line of reasoning is followed in order to find out some efficient so-
lutions. The reasoning is based on both a proof system and an operational semantics

associated with the considered statements. The proof system enables the user to

prove the correctness of statements whereas the operational semantics enables him

to weigh their efficiency. These issues are formally described in [16,6], respectively,

156 E. Violard / Parallel Computing 30 (2004) 139–161
and defined for a class of statements called well-formed statements. Well-formed

statements are statements in single-assignment form and such that the shape of each

variable can be inferred uniquely from the shape of one of them, called template.
Moreover, the partial functions (g and h) of a well-formed statement do not depend

on the values of the variables. All the statements in this paper meet these conditions.
Given a well-formed statement, a procedure determines one shape for each variable

so determining, for each variable, its extent of indices, its extent of locations and the

placement of its values onto locations. Then, each equation of the statement is

viewed as both a relation between indexed values and a transition rule. The relation

is stated by the proof system, whereas the transition rule is part of the operational

semantics. In particular, here is what the operational semantics defines

• the virtual processors array for carrying out computations (induced from shapes
of the shaped data fields involved in the statement, and induced itself from the

changes of basis),

• the data placement on this array (also induced from shapes),

• the required memory size for storing data on each virtual processor (induced from

the data placement),

• the computations to be performed by any virtual processor of the array (also in-

duced from the data placement and from the ‘‘owner-computes’’ rule),

• the required (virtual) communications between the virtual processors of the array
(also induced from the data placement),

• the computations scheduling (induced from the communications).

So, the previous statement can be transformed step by step by both the programmer

and the compiler, for example in order to define a better trade-off between com-

munications and memory usage. Some transformations may consist in substituting a

pair of functions, say ðh0; g0Þ, for some other, say ðh; gÞ, such that h0 � g0 ¼ h � g. The
so obtained statement expresses the same dependencies, i.e., remains correct, but a
different relationship between indices and locations, i.e., is attached to a different

operational meaning.

As examples, let us consider the following cases where we focus on the placement

of matrix A values relatively to T ones. In each case, the data placement is deter-

mined by a particular pair ðha; gaÞ.
Each case is illustrated with a figure. The figure shows the locations of shaped

data field T . In order to simplify the drawing, every location of T is identified with

its corresponding index. The locations of A values is a subset of the locations of T .
These locations are grey painted. Last, an arrow between two locations specifies a

(virtual) communication.

(1) Replication (Fig. 8). Let us define
ha ¼ kði; j; kÞ:ði; kÞnD
ga ¼ id

k

i

j

Fig. 8. Matrix replication.

E. Violard / Parallel Computing 30 (2004) 139–161 157
It expresses that value ai;k is located at every location where some ti;j;k, j 2 ½0; . . . ;
n� 1�, is located. Consequently, products computation does not require matrix A
values communications. In return each value ai;k is (virtually) stored n times.

(2) Broadcast (Fig. 9). Let us define
ha ¼ id

ga ¼ kði; j; kÞ:ði; kÞnD:
It expresses that value ai;k has its own location which is different from the

locations where T values are placed. Thus, value ai;k is broadcasted to all the

locations where some ti;j;k, j 2 ½0; . . . ; n� 1�, is located.

(3) Alignment and broadcast (Fig. 10). Let us define
ha ¼ kði; j; kÞ:ði; kÞn½0;...;n�1��f0g�½0;...;n�1�;

ga ¼ kði; j; kÞ:ði; 0; kÞnD:
It expresses that value ai;k is placed at the same location as ti;0;k. As previously,

value ai;k is broadcasted to all the locations where some value ti;j;k,
j 2 ½0; . . . ; n� 1�, is located.

(4) Cannon’s algorithm (Fig. 12).

The previous cases could be somewhere unsatisfactory for the compiler, for

example if broadcast cannot be efficiently implemented due to some architecture
limitations. In such cases, the programmer can be helpful by allowing to

change the sequence of products accumulation and then by allowing an other
k

i

j

i

j

Fig. 9. Matrix broadcast.

k

i

j

Fig. 10. Matrix alignment and broadcast.

158 E. Violard / Parallel Computing 30 (2004) 139–161
communication-memory trade-off. This could be done in a HPF-like notation by

inserting a DO INDEPENDENT directive in the previous program.

The semantics of the new program could be defined as
ha � ga ¼ kði; j; kÞ:ði; hi;jðkÞÞnD;
hb � gb ¼ kði; j; kÞ:ðhi;jðkÞ; jÞnD;
where hi;j, i; j 2 ½0; . . . ; n� 1�, is any permutation of ½0; . . . ; n� 1�.
Let us focus again on the placement of A. As seen previously it is possible to split

dependencies into an alignment and a broadcast.

An interesting case is when the dependency allows A values to be aligned with

values ti;j;0 of T and then to be broadcasted along k axis, as drawn on Fig. 11.

In this case the broadcast can be performed while products are computed. Such

an alignment is allowed if and only if kði; jÞ:ði; hi;jð0ÞÞ and kði; jÞ:ðhi;jð0Þ; jÞ are

two permutations of ½0; . . . ; n� 1� � ½0; . . . ; n� 1�. This reasoning may be con-
ducted either by the programmer or by the compiler and may yield the following

definition for hi;j:
hi;jðkÞ ¼ ðiþ j� kÞ%n:
It induces a new equivalent statement where the pair ðha; gaÞ is defined as follows:
ha ¼ kði; j; kÞ:ði; ðiþ jÞ%nÞn½0;...;n�1��½0;...;n�1��f0g;

ga ¼ kði; j; kÞ:ði; ðj� kÞ%n; 0ÞnD;
k

i

j

Fig. 11. Matrix alignment and broadcast along k axis.

E. Violard / Parallel Computing 30 (2004) 139–161 159
in which ha defines the initial placement of Cannon’s algorithm and ga expresses
the communications to be performed.

From this new statement, the compiler can use a well-known uniformization
technique to make communications uniform (Fig. 12) and implement these

communications by using links of a parallel architecture.
Applying the same transformations for shaped data field B, i.e., defining ðhb; gbÞ
as
hb ¼ kði; j; kÞ:ððiþ jÞ%n; jÞn½0;...;n�1��½0;...;n�1��f0g;

gb ¼ kði; j; kÞ:ðði� kÞ%n; j; 0ÞnD;
yields Cannon’s algorithm.

This case study illustrates a typical use of our framework to improve data locality.

Statement transformations in our framework lie on composition of functions using

formal calculus, either to compose functions (in order to prove correctness), or to

find out part of them (in order to reach efficiency). The example outlines how both

the programmer and the compiler can participate in performing this calculus. Part of
the calculus (relying on analytic geometry) can be automated and performed by the

compiler, part relying on some more complex or abstract algebraic properties can be

incrementally achieved by the programmer.

Due to its unifying aspect, our framework enables the programmer and the com-

piler to overcome some difficulties on each side and to deal with some complicated

issues such as non-affine index expressions or sparse computations. As examples, in

[6], we consider the one-dimensional unordered radix-2 FFT (that exhibits non-affine

dependencies) and use our framework to concisely transform a statement describing
the binary-exchange algorithm into a statement describing the two-dimensional

transpose one. This transformation consists in just adding one new equation for de-

fining a new template. The new template results from a change of basis applied to the

old one. This transformation can deeply modify the parallel algorithm. In [17], our

framework is used to minimize communications when solving the Navier–Stokes

equation. The applied transformations involve complex index functions (built from

quotient, remainder and product of integer variables). In [18], it is shown how our

framework can be used to systematically derive sparse formulations from dense pro-
grams. A particular sparse storage of a matrix is expressed by the application of a

change of basis on a shaped data field. Thanks to the algebraic properties of the
k

i

j

Fig. 12. Uniform communications.

160 E. Violard / Parallel Computing 30 (2004) 139–161
operations on shaped data fields, this change of basis can be spread through the

whole statement and the accesses to the sparse structure can be optimized.
6. Conclusion

Data locality expression is of great importance in data-parallelism. Therefore, a

formal framework is necessary to formally define and to explain this notion. We pro-

posed our theory as such a framework. It offers a notion of data locality in which

those of HPF and CH could join up.

In comparison with the alignment concept in HPF, the compiler workload is

lower since a statement defines a precise data placement, on the other hand, in com-

parison with the shape concept in CH, the user workload is lower since a statement
can be incrementally improved.

The theory is supplied with a sound model on which both a proof system and an

operational semantics can be based. The proof system enables the user to systemati-

cally prove the correctness of data parallel statements. The operational semantics en-

ables him to weigh the impact of statement transformations on efficiency. These two

issues were defined for a subset of statements called well-formed statements for

which a procedure determines the shape of every variables from functions h (defining

a change of basis). It may be interesting to extend the set of considered statements.
For example, an interesting case is when functions g (defining a geometrical opera-

tion) depend on the values of some variables. In that case, the previously mentioned

procedure may be reused and a proof system and an operational semantics may be

defined. More precisely, it may be interesting to state which statements are comput-

able.

Our framework is designed to be a medium which can be used by the programmer

and the compiler in order to obtain an efficient program. For example, there is no

limitation of complexity about the index functions that are used to access values. Al-
though the compiler and the user have their own limitations (i.e., mathematical res-

trictions required to automatically find the optimal solution in the compiler side and

problem understanding in the user side) the medium remains the same.

This theoretical framework allows the programmer and the compiler to share a

minimum knowledge to reach efficiency. We think that it could help both the pro-

grammer and the compiler to transform the program for reaching a best implemen-

tation.
References

[1] C. Ancourt, F. Coelho, F. Irigoin, R. Keryell, A linear algebra framework for static hpf code

distribution, 1993. in: Workshop on Compilers for Parallel Computers, Delft, The Netherlands,

December 1993.

[2] G. Antoniu, L. Boug�ee, R. Namyst, C. P�eerez, Compiling data-parallel programs to a distributed

runtime environment with thread isomigration, Parallel Processing Letters 10 (2/3) (2000) 201–207.

E. Violard / Parallel Computing 30 (2004) 139–161 161
[3] S. Benkner, T. Brandes, Exploiting data locality on scalable shared memory machines with data

parallel programs, in: A. Bode, T. Ludwig, W. Karl, R. Wism€uuller (Eds.), Euro-Par 2000 Parallel

Processing Conference, Munich, Germany, August 29–September 1, 2000. Lecture Notes in

Computer Science, vol. 1900, 2000, Springer, Berlin, pp. 647–656.

[4] L. Boug�ee, J.-L. Levaire, Control structures for data-parallel SIMD languages: semantics and

implementation, FGCS 8 (1992) 363–378.

[5] B. Chapman, P. Mehrotra, H. Zima, Enhancing OpenMP with features for locality control, Technical

Report TR99-02, Institute for Software Technology and Parallel Systems, U. Vienna, February 1999.

Available from <www.par.univie.ac.at>.

[6] P. Gerner, E. Violard, A theoretical framework of data parallelism and its operational semantics, in:

EURO-PAR’2000, LNCS, vol. 1900, Springer-Verlag, Berlin, 2000, pp. 668–677.

[7] P. Hammarlund, B. Lisper, On the relation between functional and data parallel programming

languages, in: FPCA’93, ACM Press, 1993, pp. 210–222.

[8] C.B. Jay, A semantics for shape, Science of Computer Programming 25 (1995) 251–283.

[9] C.H. Koelbel, D.B. Loveman, R.S. Schreiber, G.L. Steele Jr., M.E. Zosel, The High Performance

Fortran Handbook, MIT Press, Cambridge, MA, 1994.

[10] F. Kuijlman, H.J. Sips, C. van Reeuwijk, W.J.A. Denissen, A unified compiler framework for work

and data placement, In: Proceedings of the ASCI 2002 Conference, Lochem, June 2002, pp. 109–115.

[11] V. Kumar, A. Grama, A. Gupta, G. Karypis, Introduction to Parallel Computing: Design and

Analysis of Algorithms, Benjamin/Cummings, 1994.

[12] C. Mauras, ALPHAALPHA: un langage �eequationnel pour la conception et la programmation d’architectures

parall�eeles synchrones. PhD thesis, U. Rennes, 1989.

[13] The OpenMP Forum. OpenMP Fortran Application Program Interface. Proposal Ver 1.0, SGI,

October 1997. Available from <http://www.openmp.org>.

[14] R.D. Tennent, in: C.A.R. Hoare (Ed.), Semantics of Programming Languages, Prentice Hall,

Englewood Cliffs, NJ, 1991.

[15] Thinking Machines Corp., CH Programming Guide, November 1990.

[16] E. Violard, What really is data parallelism?, Technical Report RR 00-01, LSIIT-ICPS, Universit�ee

Louis Pasteur, January 2000.

[17] F. Voisin, Etude d’outils logiciels pour la parall�eelisation et la transformation de programmes dans les

applications de calculs num�eeriques (Software tools study for parallelization and transformation of

programs in numerical computation applications), PhD thesis, Universit�ee Strasbourg I––Louis

Pasteur, July 2001.

[18] F. Voisin, G.-R. Perrin, Sparse computations with PEI, International Journal of Foundations of

Computer Science 10 (14) (1999) 425–442.

http://www.par.univie.ac.at
http://www.openmp.org

	A semantic framework to address data locality in data parallel languages
	Introduction
	Some examples
	Pascal summation on aligned arrays
	Summation of unaligned vectors
	Matrix product

	An introduction for the theory
	Objects
	Operations
	A minimum notation set
	Theory adequacy

	A formal model of the theory
	Shaped data fields
	Operations

	A case study
	Conclusion
	References

