CUDA Programming Model:
Massively Multithreaded Processor

® The GPU (aka device) is a highly multithreaded coprocessor to the
CPU (aka host)

® Has its own DRAM (device memory)
® Executes many threads in parallel on several multiprocessor cores

Device

Multiprocessor 1 Multiprocessor 2 o o o Multiprocessor N

® CUDA threads are extremely lightweight
® Very little creation overhead

® Context switching is essentially free
® GPU needs 1000’s of threads for full utilization



CUDA Programming Model:
Kernel

® Parallel portions of an application are executed on the device as
kernels

® One kernel is executed at a time on the device

® Many threads execute each kernel

® Each thread executes the same code...
® .. on different data based on its threadID

threadID ol1]2|3|4|5]|6]|7

float x = input[threadID];
float y = func(x);

output [threadID] = y;




CUDA Programming Model:
Grid of Thread Blocks

® Akemelis executed as a 1D or 2D grid eviee
of 1D, 2D,or 3D thread blocks Grid 1
@® A thread block is a batch of threads that [ RIS Block
can cooperate with each other by: ’
® Sharing data via shared memory E(’('f‘j;‘
® Synchronizing their execution -
® For hazard-free shared memory Grid?
accesses Kernel 2
® Threads from different blocks cannot I

synchronize their execution

Block (1, 1)

Thread | Thread | Thread | Thread | Thread
0,0 | 1,0) | 2,0) | 3,0) [ 4,0)
Thread | Thread | Thread | Thread | Thread
on | @ | D [ G | 4D
Thread | Thread | Thread | Thread | Thread
0,2 | 0,2 | 2,2 | G2 | 42




CUDA Programming Model:
Thread and Block IDs

® Threads and blocks have IDs

® So each thread can decide what data to s
work on

® Block ID: 1D or 2D
® Thread ID: 1D, 2D, or 3D

® Simplifies memory
addressing when processing
multidimensional data
® Image processing

Thread | Thread | Thread | Thread | Thread
0,0 | 1,0) | 2,0) | 3,0) | 4,0)
Thread | Thread | Thread | Thread | Thread
on | @ | &D [ G | 4D

. Thread | Thread | Thread | Thread | Thread
® Solvmg PDEs on volumes 02 | ,2 | 2 | ¢,2 | @2




Transparent Scalability

® Since thread blocks cannot synchronize, the hardware is free to schedule the
execution of a thread block on any multiprocessor at any time

® Akernel scales across any number of parallel multiprocessors

Kernel grid

Block0 Block 1
/ Block2  Block 3 \
Block4  Block 5

Block 6 Block 7

Block 0 Block 1 Block 2

Block 0 Block 1

+ B

Block 4 Block 5 Block 6

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

® Kemel launch serves as a synchronization point for blocks
® Kernel launch has negligible HW overhead, low SW overhead

Block 3

Block 7




Programming Model:
Memory Spaces

® Each thread can: arig
® Read/write per-thread registers (8192 on 1
multiprocessor, shared among all threads) Block (0, 0) Block (1, 0)
® Read/write per-block shared memory (16kB)

® Read/write per-grid global memory (on device) Shared Memory Shared Memory
® Most important, commonly used

® Each thread can also:
® Read/write per-thread local memory
® Read only per-grid constant memory
® Read only per-grid texture memory

® Used for convenience/performance Local Local
® More details later Memory Memory

Registers Registers Registers Registers

Thread (0, 0) Thread (1, 0) Thread (0, 0) Thread (1, 0)

Global
Memory

® The host can read/write global, constant,
and texture memory (stored in DRAM) o

Texture
Memory



CUDA = C with Language Extensions

® Function qualifiers for functions that execute on the device:
__global_ void MyKernel () { }
__device__ float MyDeviceFunc() { }

® Variable qualifiers for variables that resides on the device:
__shared_ float MySharedArray[32];
__constant_  float MyConstantArray[32];

@® Execution configuration to launch kernels:
dim3 dimGrid (100, 50); // 5000 thread blocks
dim3 dimBlock (4, 8, 8); // 256 threads per block
MyKernel <<< dimGrid, dimBlock >>> (...); // Launch kernel

@® Built-in variables and functions accessible in __global__and __device__ functions:
dim3 gridDim; // Grid dimension
dim3 blockDim; // Block dimension
dim3 blockIdx; // Block index within the grid
dim3 threadIdx; // Thread index within the block
void _ syncthreads(); // Thread synchronization



CUDA = C with Runtime Extensions

® Device management:
cudaGetDeviceCount (), cudaGetDeviceProperties ()

® Device memory management:
cudaMalloc (), cudaFree (), cudaMemcpy ()

® Texture management:
cudaBindTexture (), cudaBindTextureToArray ()

® Graphics interoperability:
cudaGLMapBufferObject (), cudaD3D9MapVertexBuffer ()



Example: Increment Array Elements

CPU program CUDA program
void increment_cpul(float *a, float b, int N) __global__ void increment_gpu(float *a, float b, int N)
{ {

for (int idx = 0; idx<N; idx++) int idx = blockldx.x * blockDim.x + threadldx.x;

afidx] = afidx] + b; if (idx < N)
} afidx] = afidx] + b;
}

void main() void main()
{ {

increment_cpu(a, b, N); dim3 dimBlock (blocksize);
} dim3 dimGrid( ceil( N / (float)blocksize) );

increment_gpu<<<dimGrid, dimBlock>>>(a, b, N);



Example: Increment Array Elements

Increment N-element vector a by scalar b

Let's assume N=16, blockDim=4 -> 4 blocks

blockldx.x=0 blockldx.x=1 blockldx.x=2 blockldx.x=3
blockDim.x=4 blockDim.x=4 blockDim.x=4 blockDim.x=4
threadldx.x=0,1,2,3 threadldx.x=0,1,2,3 threadldx.x=0,1,2,3 threadldx.x=0,1,2,3
1dx=0,1,2,3 idx=4,5,6,7 1dx=8,9,10,11 Idx=12,13,14,15

int idx = blockDim.x * blockld.x + threadldx.x: }

will map from local index threadldx to global index

NB: blockDim should be >= 32 in real code, this is just an example
10



Example: Host Code

// allocate host memory
unsigned int numBytes = N * sizeof (float)
float* h_A = (float*) malloc (numBytes);

// allocate device memory
float* d_A = 0;
cudaMalloc ((void**)&d_A, numbytes);

// copy data from host to device
cudaMemcpy (d_A, h_A, numBytes, cudaMemcpyHostToDevice);

// execute the kernel
increment_gpu<<< N/blockSize, blockSize>>>(d_A, b);

// copy data from device back to host
cudaMemcpy (h_A, d_A, numBytes, cudaMemcpyDeviceToHost);

// free device memory
cudaFree (d_A) ;

11



Compilation

C/C++ CUDA
Application

® Any source file containing CUDA
language extensions must be
compiled with NVCC

® NVCC separates code running on the
host from code running on the device

® Two-stage compilation:

— Virtual ISA
® Parallel Thread eXecution

— Device-specific binary object

PTX to Target
Compiler
oo L e




Debugging Using the
Device Emulation Mode

® An executable compiled in device emulation mode (nvcc
—deviceemu) runs completely on the host using the CUDA
runtime
® No need of any device and CUDA driver
® Each device thread is emulated with a host thread

® When running in device emulation mode, one can:
® Use host native debug support (breakpoints, inspection, etc.)
® Access any device-specific data from host code and vice-versa
® Call any host function from device code (e.g. pr int £) and vice-versa

® Detect deadlock situations caused by improper usage of
__syncthreads



Reduction Example

® Reduce N values to a single one:
® Sum(v, V., ..., Vi Vi)
® Min(vy, v, ..., Vi Vi)
® Max(Vy, V., ..., Vi Vi)
® Common primitive in parallel programming

® Easy to implement in CUDA
® |ess soto get it right

® Divided into 4 exercises throughout this morning
® Each exercise illustrates one particular optimization strategy



Reduction Exercise

® At the end of each exercise, the result of the reduction computed on
the device is checked for correctness

® “Test PASSED” or “Test FAILED” is printed out to the console

® The goal is to replace the “T ODO" words in the code by the right
piece of code to get “test PASSED’



Reduction Exercise 1

® [ook up directory reducel

® Code walkthrough:

® nain.cpp
® Allocate host and device memory
® Call reduce () definedin reducel.cu
® Profile and verify result

® rcducel.cu

® CUDA code to be compiled with nvcc
® Contains TODOs

® Default : device emulation compilation configurations:
reducel_e (runs slowly)



Reduce 1: Multi-Pass Reduction

® Blocks cannot synchronize so reduce_kernel is called
multiple times:

® First call reduces from numValuestonumThreads

® Each subsequent call reduces by half the number of threads and thus the
size of the output array (down to an array of 1 element). Each thread
computes at most the sum of 2 elements

® Need ping pong between input and output buffers (d_Result [2]):
input for one iteration is the ouput of the previous, avoid conflicts



Reduce 1: Blocking the Data

® Split the work among the N multiprocessors by launching
numB 1 ock s=N thread blocks

Block IDs 0 b-1

b = numBlocks



Reduce 1: Blocking the Data

® Within a block, split the work among the threads (max 512 tpb)

Thread IDs 0 t-1 0
A\ J A\

Y Y
Block IDs 1] b-1

t = numThreadsPerBlock

b = numBlocks



Reduce 1: hands-on !

® Replace the TODOs in reducel . cu to get “test PASSED”

Thread IDs 0 t-1 0
A\ J A\

Y Y
Block IDs 0 b-1

t = numThreadsPerBlock

b = numBlocks



Host Synchronization

@ All kernel launches are asynchronous
® control returns to CPU immediately
® kernel executes after all previous CUDA calls have completed

® cudaMemcpy is synchronous
® control returns to CPU after copy completes
® copy starts after all previous CUDA calls have completed

® CudaThreadSynchronize() (cuda_runtime_api.h)

® blocks until all previous CUDA calls complete

21



Thread Synchronization Function

® void _ syncthreads();

@® Synchronizes all threads in a block
® Generates barrier synchronization instruction

® No thread can pass this barrier until all threads in the block reach it
® Used to avoid RAW / WAR / WAW hazards when accessing shared memory

@ Allowed in conditional code only if the conditional evaluates
uniformly across the entire thread block

22



Device Management

@ CPU can query and select GPU devices
® cudaGetDeviceCount( int *count )
® cudaSetDevice( int device )
® cudaGetDevice(int *current_device )
® cudaGetDeviceProperties( cudaDeviceProp* prop,
int device )
® cudaChooseDevice( int *device, cudaDeviceProp* prop )

@® Multi-GPU setup:

® device 0 is used by default

® one CPU thread can control only one GPU
® multiple CPU threads can control the same GPU

— calls are serialized by the driver

23



Multiple CPU Threads and CUDA = cuda not
thread-safe (yet ?)

@ CUDA resources allocated by a CPU thread can be consumed only
by CUDA calls from the same CPU thread

@ Violation Example:
® CPU allocates GPU memory, stores address in p
® issues a CUDA call that accesses memory via p

24



Optimization techniques



Hardware Implementation:
A Set of SIMD Multiprocessors

Device

® Each multiprocessor is a set of 32-bit
processors with a Single Instruction Multiple Multiprocessor N
Data architecture ]

® 16 multiprocessors on G80
® 8 processors per multiprocessor

Multiprocessor 2

Multiprocessor 1

® At each clock cycle, a multiprocessor executes
the same instruction on a group of threads — - —
called a warp

® The number of threads in a warp is the warp
size (= 32 threads on G80)

® A half-warp is the first or second half of a warp

® ® 6o | ProcessorM

Instruction
Unit




Hardware Implementation:
Memory Architecture

Device

® The global, constant, and texture spaces are
regions of device memory Multiprocessor N

® Each multiprocessor has:

® A set of 32-bit registers per processor
(8192 per multiprocessor)

® On-chip shared memory (16K on G80) Shared Memory
® Where the shared memory space resides Registers Registers Registers

Multiprocessor 2

Multiprocessor 1

Instruction

® A read-only constant cache Unit

Processor 1 Processor2 | ® ® ® | Processor M
® To speed up access to the constant
memory space

Constant

® A read-only texture cache Cache

® To speed up access to the texture Texture
memory space

Device memory




Hardware Implementation:
Execution Model

® Each multiprocessor processes batches of blocks one batch after
the other

® Active blocks = the blocks processed by one multiprocessor in one batch
® Active threads = all the threads from the active blocks

® The multiprocessor’s registers and shared memory are split among
the active threads

® Therefore, for a given kernel, the number of active blocks depends
on:
® The number of registers the kernel compiles to
® How much shared memory the kernel requires

® |f there cannot be at least one active block, the kernel fails to launch



Hardware Implementation:
Execution Model

Device

Grid 1
® Each active block is split into Kernel 1 _
warps in a well-defined way 0.0
BIoc[V’/
. . 04)
® Warps are time-sliced -
Grid 2
Kernel 2 -1 *
® |n other words: I
® Threads within a warp are

executed physically in parallel Block (1,1)
® Warps and blocks are executed Thread | — -
logically in parallel (0 0) aro || e2o | @0 |
EEEEE
0, 1) (31,1)
EEEREE
0, 2) 31,2) 32,2) (63, 2)




Memory Latency and Bandwidth

® Host memory Grid

® Device ~ host memory bandwidth is 4 GB/s
peak (PCl-express x16) Block (0, 0) Block (1, 0)

® Test with SDK’s bandwidthTest (memcpy)
® Gilobal/local device memory

® High latency, not cached

® 380 GB/s peak, 1.5 GB (Quadro FX 5600)
® Shared memory

® On-chip, low latency, very high bandwidth, 16

KB Local Local Local
Memory Memory Memory

Shared Memory Shared Memory

Registers Registers Registers Registers

Thread (0, 0) Thread (1, 0) Thread (0, 0) Thread (1, 0)

® Like a user-managed per-multiprocessor
cache Global

Memor

® Texture memory V
® Read-only, high latency, cached o

® Constant memory

Texture

® Read-only, low latency, cached, 64 KB Memory



Performance Optimization

® Expose as much parallelism as possible
® Optimize memory usage for maximum bandwidth
® Maximize occupancy to hide latency (while fetching memory)

® Optimize instruction usage for maximum throughput (choose
instructions using few cycles)



Expose Parallelism:
GPU Thread Parallelism

® Structure algorithm to maximize independent parallelism

® [f threads of same block need to communicate, use shared memory
and __syncthreads()

® [ threads of different blocks need to communicate, use global
memory and split computation into multiple kernels
® No synchronization mechanism between blocks

® High parallelism is especially important to hide memory latency by
overlapping memory accesses with computation



Optimize Memory Usage:
Basic Strategies

® Processing data is cheaper than moving it around
® Especially for GPUs as they devote many more transistors to ALUs than memory

® And will be increasingly so
® The less memory bound a kernel is, the better it will scale with future GPUs

® So you want to:
® Maximize use of low-latency, high-bandwidth memory
® Optimize memory access patterns to maximize bandwidth

® |cverage parallelism to hide memory latency by overlapping memory accesses with
computation as much as possible

® Kernels with high arithmetic intensity (ratio of math to memory transactions)
® Sometimes recompute data rather than cache it



Minimize CPU - GPU Data Transfers

® CPU . GPU memory bandwidth much lower than GPU memory bandwidth

® Use page-locked host memory (cudaMallocHost () ) for maximum CPU « GPU
bandwidth

® 3.2 GB/s common on PCl-e x16
® -4 GB/s measured on nForce 680i motherboards (8GB/s for PCl-e 2.0)

® Be cautious however since allocating too much page-locked memory can reduce overall system
performance

® Minimize CPU — GPU data transfers by moving more code from CPU to GPU

® Even if that means running kernels with low parallelism computations

® ntermediate data structures can be allocated, operated on, and deallocated without ever
copying them to CPU memory

® Group data transfers
® One large transfer much better than many small ones



Optimize Memory Access Patterns

® Effective bandwidth can vary by an order of magnitude depending
on access pattern

® Optimize access patterns to get:
® (oalesced global memory accesses
® Shared memory accesses with no or few bank conflicts
® (Cache-efficient texture memory accesses
® Same-address constant memory accesses



Global Memory Reads/Writes

® Gilobal memory is not cached on G8x
® Highest latency instructions: 400-600 clock cycles
® Likely to be performance bottleneck

® Optimizations can greatly increase performance



Coalesced Global Memory Accesses

® The simultaneous global memory accesses by each thread of a half-
warp (16 threads on G80) during the execution of a single read or
write instruction will be coalesced into a single access if:

® The size of the memory element accessed by each thread is either 4, 8, or 16 bytes
® The elements form a contiguous block of memory

® The N" element is accessed by the N* thread in the half-warp

® The address of the first element is aligned to 16 times the element’s size

® Coalescing happens even if some threads do not access memory (divergent warp)



Coalesced Global Memory Accesses

to 1 t2 13 t14 115

SRR SR B

128 132 136 140 144 184 188 192

Coalesced £1oat memory access

to 1 t2 13 t14 115

SRANEONE SRR T

128 132 136 140 144 184 188 192

Coalesced £1oat memory access
(divergent warp)




Non-Coalesced Global Memory Accesses

to 1 t2 13 t14 115

' SRR T

128 132 136 140 144 184 188 192

Non-sequential £1oat memory access

t0o t1 2 3 t13 t14 115

128 136 140 144 184 188 192

Misaligned starting address




Non-Coalesced Global Memory Accesses

to 1 t2 13 t13 t14 t15

bSO\ T NN

128 132 136 140 144 184 188 192

Non-contiguous £1oat memory access

to 1 t2 13 t14 115

e N R R S

12bytes
( N N J I o000

128 1 40 152 164 176 296 308 320

Non-coalesced £1oat3 memory access
(element size #2")




Avoiding Non-Coalesced Accesses

® rorirregular read patterns, texture fetches can be a better alternative to global
memory reads

® |(f all threads read the same location, use constant memory

® For sequential access patterns, but a structure of size = 4, 8, or 16 bytes:
® Use a Structure of Arrays (SoA) instead of Array of Structures (AoS)

X y z Point structure

X

y

z

X

y

X

X

X

y

y

AoS

SoA

® Or force structure alignment
® Using __ align(X), where X = 4, 8, or 16

® Or use shared memory to achieve coalescing
® More on this later



CUDA Visual Profiler

® Helps measure and find potential performance problem
® GPU and CPU timing for all kernel invocations and memcpys
® Time stamps

® Access to hardware performance counters

~ B daProfiler = [simp BRI - = < - R daprofiler - [simp

@ File Profle Options Window Help ® e Br Options Window Help

Profiler output | Column plot

tamp Method GPU Time CPU Time Occupancy 9ld_coherent | gst_incoherent

4.0

L ezt etz




Profiler Signals

® Events are tracked with hardware counters on signals in the chip:

® timestamp

@® (ld_incoherent

® gld_coherent Global memory loads/stores are coalesced (coherent) or
® st incoherent non-coalesced (incoherent)

@® gst_coherent

® local_load Local loads/stores

@® local_store

® branch Total branches and divergent branches taken by

@ divergent_branch threads

® instructions — instruction count

® warp_serialize — thread warps that serialize on address conflicts to shared or

constant memory

cta_launched — executed thread blocks



Interpreting profiler counters

® Values represent events within a thread warp

® Only targets one multiprocessor

® Values will not correspond to the total number of warps launched for a
particular kernel.

® [aunch enough thread blocks to ensure that the target multiprocessor is given
a consistent percentage of the total work.

® Values are best used to identify relative performance differences
between unoptimized and optimized code

® |n other words, try to reduce the magnitudes of gld/gst_incoherent,
divergent_branch, and warp_serialize



Back to Reduce Exercise:
Profile with the Visual Profiler

Profiler output Column plot

Timestamp Method GPU Time CPU Time Occupancy gld_incoherent  gld_coherent gst_incoherent gst_coherent [*
98401 memcopy
mem
v
c2c_mradix_r2
memcopy

Profiler output Column plat

Column - gld

simple CUFFT 0.0 4.00 16.00 20.00

tran

ComplexPo
4.00 12.00 16.00 20.00

Column - gld_in




Back to Reduce Exercise:
Problem with Reduce 1

® Non-coalesced memory reads!

Thread IDs \\‘\ ]
\ v\
\ \\ Y
\

Block IDs W 0 Elements read by a warp
in one memory access

v\

\
t= nu}n‘l; hreadsPerBlock
\

b = numBlocks

~ ~
~ ~
~ ~
~ ~
~ ~

W\
- I N A e
31 . t-1

Thread IDs 0 1 . -
\ /
~

0




Reduce 2

® Distribute threads differently to achieve coalesced memory reads

® Bonus: No need to ping pong anymore : no thread writes where another
thread reads

Thread IDs \ \.\ t1

0 ..

Block IDs \\

t ‘n‘umThreadsPerBlock Elements read by a warp
b= numslocks in one memory access

A\

W\
A\
\\

\ll—l_

ThreadIDs 0 1
N /

Iol




Reduce 2: Go Ahead!

® Have alookin reduce?2 directory

® Goal: Replace the TODOs in reduce?2 . cu to get “test
PASSED”

ThreadIDs 0 ... t1 o .. t10 .. t1 o .. t1
0 b-1 0 b-1

t = numThreadsPerBlock

Block IDs

b = numBlocks



Maximize Use of Shared Memory

® Shared memory is hundreds of times faster than global memory

® Threads can cooperate via shared memory
® Not so via global memory

® A common way of scheduling some computation on the device is to block it up to
take advantage of shared memory:
® Partition the data set into data subsets that fit into shared memory
® Handle each data subset with one thread block:
® Load the subset from global memory to shared memory

® _ syncthreads|)
® Perform the computation on the subset from shared memory

— each thread can efficiently multi-pass over any data
® _ syncthreads() (if needed)
® Copy results from shared memory to global memory



Maximize Occupancy to Hide Latency

® Sources of latency:
® Global memory access: 400-600 cycle latency

® Read-after-write register dependency
® |Instruction’s result can only be read 11 cycles later

® Latency blocks dependent instructions in the same thread
® But instructions in other threads are not blocked

® Hide latency by running as many threads per multiprocessor as
possible!
® Choose execution configuration to maximize

occupancy = (# of active warps) / (maximum # of active warps)
® Maximum # of active warps is 24 on G8x



Execution Configuration: Constraints

® Maximum # of threads per block: 512

® 4 of active threads limited by resources:
® # of registers per multiprocessor (register pressure)
® Amount of shared memory per multiprocessor

® Use —-maxrregcount=N flag to NVCC
® N = desired maximum registers / kernel

® At some point “spilling” into LMEM may occur
® Reduces performance - LMEM is slow
® Check .cubin file for LMEM usage



Determining Resource Usage

® Compile the kernel code with the -cubin flag to determine register
usage.

® Open the .cubin file with a text editor and look for the “code” section.

architecture {sm_10}

abiversion {0}

modname {cubin} per thread local memory

code { (used by compiler to spill registers to
name = BlackSchale device memory)

per thread block shared memory

per thread registers
bincode {

0xa0004205 0x04200780 0x40024c09 0x00200780




Execution Configuration: Heuristics

® (# of threads per block) = multiple of warp size (32)
® To avoid wasting computation on under-populated warps
® (# of blocks) / (# of multiprocessors) > 1
® So all multiprocessors have at least a block to execute
® Per-block resources (shared memory and registers) at most half of total available
® And: (# of blocks) / (# of multiprocessors) > 2
® To get more than 1 active block per multiprocessor

® With multiple active blocks that aren’t all waiting at a __syncthreads(), the
multiprocessor can stay busy

® (# of blocks) > 100 to scale to future devices

® Blocks stream through machine in pipeline fashion

® 1000 blocks per grid will scale across multiple generations
® Very application-dependent: experiment!



Occupancy Calculator

® To help you: the CUDA occupancy calculator

http://developer.download.nvidia.com/compute/cuda/CUDA_QOccupancy_calculator.xls

E Microsoft Excel - CUDA_Occupancy_calculator.xls

D

 [CUDA GPU Occupancy Calculator

Just follow steps 1. 2, and 3 helow! (or click here for help)
1.) Select a GPU from the list (click): [Helo)

2.) Enter your resource usage:

'Active Threads per Multiprocessor
Active Warps per Multiprocessor

Active Thread Blocks per Multiprocessor

Occupancy of each Multiprocessor

Maximum Simultanecus Blocks per GPU

(Hote: This assumes there are at least this many blocks)

Multiprocessor
Warp Occupancy

Multiprocess:
Warp O ceupancy

Physical Limits for GPU:

Threads Per Block Registers Per Thread

Varying Shared Memory Usage

Multiprocessar
Warp Occupancy

Registers Per Thread



http://developer.download.nvidia.com/compute/cuda/CUDA_Occupancy_calculator.xls

Back to Reduce Exercise:
Problem with Reduce 2

® Reduce 2 does not take advantage of shared memory!

® Reduce 3 fixes this by implementing parallel reduction



Parallel Reduction Implementation

indics o] 2 e o i i e

Values |10 1 |8 |-1]0]|-2]3]5 1110 2
Step 1 Thread v J + J v J * J J J J - J
sir o B0 3 & 8 8 9 @ B

{ 1 { ¥

Values |11 |1 |7 |-1]-2]|-2]8]5 5 -3 2
Step 2 Thread v {_J v ‘_/ + ‘_/ ‘_/
Stride 2 IDs $ ? ? 1’

Values |_1t; 117 ]|-1]|6|-2|8]|5|4|-3|]9]7 1] 2] 2
Step 3 Thread é <__/ é <__/
Stride 4 IDs 1 1

Values |24 | 1 |7 | 1|6 |-2|8 |5 |17 |39 |7 [183[11]2]2
Step 4 Thread éF /
Stride 8 IDs 1

Values |41 | 1 |7 |1|6|-2|8 |5 (17|39 |7 |[183[11]2]2




Parallel Reduction Complexity

® Takes log(N) steps and each step S performs N/28 independent
operations
@ Step complexity is O(log(N))
® For N=2°, performs 3 ¢, ;2 = N-1 operations
@® Work complexity is O(N)

® [s work-efficient (i.e. does not perform more operations than a sequential
reduction)

® With P threads physically in parallel (P processors), performs
> so.oCEIl(27%/P) operations
® 5. 0Ceil(2°5/P) < 3 oy pfloor(22%/P) + 1) < N/P + log(N)
@ Time complexity is O(N/P + log(N))
® Compare to O(N) for sequential reduction



Reduce 3

® Each thread stores its result in an array of
numThreadsPerBlock elements in shared memory

® Each block performs a parallel reduction on this array

® rcduce_kernel iscalled only 2 times:

® First call reduces from numValues tonumBlocks
® Second call performs final reduction using one thread block



Reduce 3: Go Ahead!

® Have alookin reduce3 directory

® Goal: Replace the TODOs in reduce3 . cu to get “test
PASSED”

ncics. | I N NN N N

Values |10 1 |8 |-1]|0|-2|3|5|=2|-3|2|7]|0]|11]0]2
v v v v v v v v
Step 1 Thread
LR WA WA SVAF WAF WAF WAF WA W,
¥ p ¥ ¥ ¥ ¥ ¥ ¥
Values |11 |1 |7 |1 |-2|-2|8|5|-5|-3|9 |7 [11]11]2]?2
Step 2 Thread v + v -
Stride 2 IDs $*J ?*/ ?"/ if"/
Values |_1+8 11716 |28 ([5]|4]|3|9 |7 |18[11]2]2
Step 3 Thread é} 4——/ é 4——/
Stride 4 IDs i i



Optimize Instruction Usage:
Basic Strategies

® Minimize use of low-throughput instructions
® Use high precision only where necessary

® Minimize divergent warps



Arithmetic Instruction Throughput

® r1oat add/mul/mad, int add, shift, min, max: 4 cycles per warp

® int multiply (*) is by default 32-bit
® Requires multiple cycles per warp
® Use_ [ulmul24 () intrinsics for 4-cycle 24-bit i nt multiply

® Integer divide and modulo are more expensive

® Compiler will convert literal power-of-2 divides to shifts

® But we have seen it miss some cases
® Be explicit in cases where compiler can't tell that divisor is a power of 2!
® Usefultrick: foo%n == foos& (n-1) if nisapower of 2



Arithmetic Instruction Throughput

® Reciprocal, reciprocal square root, sin/cos, log, exp: 16 cycles per
warp

® These are the versions prefixed with “__

® Examples:_ _rcp(), __sin(), __exp()

N

® Other functions are combinations of the above:
® /x==rcp (x) *y takes 20 cycles per warp
® sort (x)==rcp(rsqrt (x)) takes 32 cycles per warp



Runtime Math Library

® There are two types of runtime math operations:

® _ func():direct mapping to hardware ISA

® Fast but lower accuracy (see prog. guide for details)

® Examples:_ _sin(x), __exp(x), _ pow(x,y)
® runc ():compile to multiple instructions

® Slower but higher accuracy (5 ulp or less)

® Examples: sin (x), exp(x), pow(x,Vy)

® The -use_fast_math compiler option forces every func () to
compileto __ func ()



Make Your Program Float-Safe!

® Future hardware will have double precision support
® (80 is single-precision only
® Double precision will likely have additional cost

® Important to be float-safe to avoid using double precision where it is
not needed
® Add f’ specifier on float literals:

® foo = bar * 0.123; // double assumed
® foo = bar * 0.123f; // float explicit

® Use float version of standard library functions
® foo = sin(bar); // double assumed
® foo = sinf(bar); // float explicit



Deviations from IEEE-754

® Addition and multiplication are IEEE compliant
® Maximum 0.5 ulp (Unit in the Last Place) error

® However, often combined into multiply-add (FMAD)
® |ntermediate result is truncated

® Division is non-compliant (2 ulp)

® Not all rounding modes are supported

® Denormalized numbers are not supported

® No mechanism to detect floating-point exceptions



Back to Reduce Exercise:
Problem with Reduce 3

® Reduce 3 has high-cost test on thread-numbers!

® Reduce 4 fixes this by modifying the mapping between threads and
data during parallel reduction



Reduce 4:
Parallel Reduction Implementation

indics o] 2 e o i i e

Values | 10 11

Step 1 Thread - 45, ) %j g«j aJ 4;4/ 341 aJ 434/

Stride 1 IDs

<4—

Values |_1+1 117 |- 2 5 -3 7 2
5. J J J

ez Do @ 1 2 3

Values |_1t; 17|16 |-2|8|5|4(|3]9]7 11|22
Step 3 Thread é <__/ é <__/
Stride 4 IDs 1 1l

Values |24 | 1 |7 |1 |6 |-2|8 |5 |17][-3|9 |7 |13[11]2]2
Step 4 Thread é% /
Stride 8 IDs 1

Values |41 | 1 |7 |1 |6 |-2|8 |5 |17]|-3]|9 |7 |13[11]2]2




Reduce 4: Go Ahead!

® Openup reduce4 directory

® Goal: Replace the TODOs in reduce4 . cu to get “test
PASSED”

ncics. | I N NN N N

Values 10| 1 |8 |-1]|]0]|-2|3 |5 |-2|3|2]|7]0]11
- - - v + +
Step 1 Thread
ot Tt g 3/ @l ad @Y &7 @Y ==</
<3 3 3 <3 3 3 3
Values |11 |1 |7 |1 ]|2]|-2|8]|5|-5]|3|9]|7]11]11 2
Step 2 Thread v v v +
Stride 2 IDs $*J ?*/ ‘V:"/ ?"/
Values |_1+8 1171|1628 |54 |3|9 |7 |13[11]2]?2
Step 3 Thread é} 4——/ é 4——/
Stride 4 IDs i 1



Shared Memory Implementation:
Banked Memory

® |n a parallel machine, many threads access memory
® Therefore, memory is divided into banks
® Essential to achieve high bandwidth

® Each bank can service one address per cycle

® A memory can service as many simultaneous
accesses as it has banks

® Multiple simultaneous accesses to a bank o

result in a bank conflict Bank 15

® Conflicting accesses are serialized




Shared Memory Is Banked

® Bandwidth of each bank is 32 bits per 2 clock cycles
® Successive 32-bit words are assigned to successive banks

® (80 has 16 banks
® So bank = address % 16

® Same as the size of a half-warp
® No bank conflicts between different half-warps, only within a single half-warp



Bank Addressing Examples

® No bank conflicts ® No bank conflicts
® Linear addressing ® Random 1:1 permutation
stride ==

Thread 0
Thread 1
Thread 2
Thread 3

Thread 4
Thread 5
Thread 6
Thread 7

Thread 0
Thread 1
Thread 2
Thread 3
Thread 4
Thread 5
Thread 6
Thread 7

Thread 15




Bank Addressing Examples

® 2-way bank conflicts

® Linear addressing
SUEES

Thread 0
Thread 1
Thread 2
Thread 3
Thread 4

Thread 8
Thread 9
Thread 10
Thread 11

® 3-way bank conflicts

® Linear addressing
stride ==

Thread 0
Thread 1
Thread 2
Thread 3
Thread 4
Thread 5
Thread 6
Thread 7

Thread 15




Shared Memory Bank Conflicts

® Shared memory is as fast as registers if there are no bank conflicts

® The fast case:

® |f all threads of a half-warp access different banks, there is no bank conflict

® |[f all threads of a half-warp read the same word, there is no bank conflict
(broadcast)

® The slow case:
® Bank conflict: multiple threads in the same half-warp access the same bank
® Must serialize the accesses
® Cost = max # of simultaneous accesses to a single bank



Conclusion

® New architecture and programming model for GPU Computing
® Fast on-chip shared memory for thread cooperation
® General global memory access and storage model
® Program the GPU in standard C with small extensions

® CUDA can achieve great results on data-parallel computations with
a few simple performance optimization strategies:

® Structure your application and select execution configurations to maximize
exploitation of the GPU’s parallel capabilities

® Minimize CPU ~ GPU data transfers

® Coalesce global memory accesses

® Take advantage of shared memory

® Minimize divergent warps

® Minimize use of low-throughput instructions

® Avoid shared memory accesses with high degree of bank conflicts



Where to go from here

® Get CUDA & SDK  http://developer.nvidia.com/CUDA
® CUDA works on all NVIDIA 8-Series GPUs (and later)
® GeForce, Quadro, and Tesla

® Talk about CUDA  http:/forums.nvidia.com
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CUDA Advantages over Legacy GPGPU

® Random access byte-addressable memory
® Thread can access any memory location

@® Unlimited access to memory
® Thread can read/write as many locations as needed

® Shared memory (per block) and thread synchronization
® Threads can cooperatively load data into shared memory
® Any thread can then access any shared memory location
® Low learning curve
® Just a few extensions to C
® No knowledge of graphics is required

@ No graphics APl overhead
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A quick review

® device = GPU = set of multiprocessors

® Multiprocessor = set of processors & shared memory
® Kernel = GPU program

® Grid = array of thread blocks that execute a kernel

® Thread block = group of SIMD threads that execute a kernel and can
communicate via shared memory

Memory Location Cached Access Who

Local Off-chip No REELANE One thread

Shared On-chip N/A Read/write All threads in a block
Global Off-chip No REELANE All threads + host
Constant Off-chip Yes Read All threads + host
Texture Off-chip Yes Read All threads + host




Application Programming Interface

® The APl is an extension to the C programming language

® |t consists of:

@ Language extensions
® To target portions of the code for execution on the device
® A runtime library split into:

® A common component providing built-in vector types and a subset of the C
runtime library supported in both host and device codes

® A host component to control and access one or more devices from the host
® A device component providing device-specific functions



Language Extensions:
Function Type Qualifiers

Executed on

Only callable from

the: the:
__device  float DeviceFunc() device device
__global_ void KernelFunc/() device host
__host___ float HostFunc () host host

®  global__ defines a kernel function
® Must return void

®  device_ _and__ _host__ canbe used together
®  device  functions cannot have their address taken

® For functions executed on the device:
® No recursion

® No static variable declarations inside the function

® No variable number of arguments




Language Extensions:
Variable Type Qualifiers

Memory Scope Lifetime
__device_ _ shared_ int SharedVar; shared block block
__device_ int GlobalVar; global grid application
~_device_ constant  int ConstantVar; constant grid application
®  device_  isoptional whenused with__shared_ or__ constant_

® Automatic variables without any qualifier reside in a register
® Except for large structures or arrays that reside in local memory

® Pointers can only point to memory allocated or declared in global memory:

® Allocated in the host and passed to the kernel:
__global__ void KernelFunc(float* ptr)
® Obtained as the address of a global variable:
float* ptr = &GlobalVar;




Language Extensions:

Execution Configuration
® A kernel function must be called with an execution configuration:

__global_ void KernelFunc(...);

Allocated in addition to the compiler allocated shared memory
® Mapped to any variable declared as:
extern _ shared_  float DynamicSharedMem]|[];

® Any call to a kernel function is asynchronous
® Control returns to CPU immediately



Language Extensions:
Built-in Variables

® dim3 gridDim;
® Dimensions of the grid in blocks (gridDim. z unused)
® Jdim3 blockDim;
® Dimensions of the block in threads
® dim3 blockIdx;
® Block index within the grid
® dim3 threadldx;
® Thread index within the block



Common Runtime Component

® Provides:

® Built-in vector types
® A subset of the C runtime library supported in both host and device codes



Common Runtime Component:
Built-in Vector Types

® [ulchar[l..4], [ulshort[l..4], [ulint[1l..4],
[ul]long[l..4],float[1l..4]
® Structures accessed with %, v, z, w fields:

uint4 param;
int y = param.y;

® dim3
® Basedon uint3
® Used to specify dimensions



Common Runtime Component:
Mathematical Functions

powtf, sqrtf, cbrtf, hypott
expf, exp2f,expmlt

logf, log2f, 1oglOf, loglpt
sinf, cosf, tanft
asinf,acosf,atanf, atan2ft
sinhf, coshf, tanhf

asinhf, acoshf, atanhft

ceil, floor, trunc, round

® Eic.

® When executed in host code, a given function uses the C runtime implementation
if available

® These functions are only supported for scalar types, not vector types



Common Runtime Component:
Texture Types

® Texture memory is accessed through texture references:

texture<float, 2> myTexRef; // 2D texture of float wvalues

® Texture fetching in device code:
float4d value = tex2D(myTexRef, u, v);



Host Runtime Component

® Provides functions to deal with:
® Device management (including multi-device systems)
® lemory management
® Texture management
® |nteroperability with OpenGL and Direct3D9
® Error handling

® |nitializes the first time a runtime function is called

® A host thread can execute device code on only one device
® Multiple host threads required to run on multiple devices



Host Runtime Component:
Device Management

® Device enumeration

® cudaGetDeviceCount () , cudaGetDeviceProperties|()

® Device selection

® cudaChooseDevice (), cudaSetDevice ()



Host Runtime Component:

Memory Management

® Two kinds of memory:
® [inear memory: accessed through 32-bit pointers

® CUDA arrays: opaque layouts with dimensionality, only readable through
texture fetching

® Device memory allocation

® cudaMalloc () ,cudaMallocPitch (), cudaFree (),
cudaMallocArray (), cudaFreeArray ()

® Memory copy from host to device, device to host, device to device

® cudaMemcpy (), cudaMemcpy2D (),
cudaMemcpyToArray (), cudaMemcpyFromArray (), €ic.
cudaMemcpyToSymbol (), cudaMemcpyFromSymbol ()
® Memory addressing
® cudaGetSymbolAddress ()



Host Runtime Component:
Texture Management

® Texture references can be bound to:
® CUDA arrays

® Linear memory
® 1D texture only, no filtering, integer texture coordinate

® cudaBindTexture (), cudaUnbindTexture ()



Host Runtime Component:
Interoperability with Graphics APls

® OpenGL buffer objects and Direct3D9 vertex buffers can be mapped
into the address space of CUDA:

® To read data written by OpenGL
® To write data for consumption by OpenGL

® cudaGLMapBufferObiject (),
cudaGLUnmapBufferObject ()
cudaD3D9MapVertexBuffer (),
cudaD3D9UnmapVertexBuffer ()



Host Runtime Component:

Events
@ Events are inserted (recorded) into CUDA call streams

@® Usage scenarios:
® measure elapsed time for CUDA calls (clock cycle precision)
® query the status of an asynchronous CUDA calll
® block CPU until CUDA calls prior to the event are completed
® GasyncAPI sample in CUDA SDK

cudaEvent_t start, stop;

cudaEventCreate(&start); cudaEventCreate(&stop);
cudaEventRecord(start, 0);

kernel<<<grid, block>>>(...);

cudaEventRecord(stop, 0);

cudaEventSynchronize(stop);

float et;

cudaEventElapsedTime(&et, start, stop);

cudaEventDestroy(start); cudaEventDestroy(stop);
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Host Runtime Component:
Error Handling

@ All CUDA calls return error code:

® except for kernel launches
® cudakError_t type

@ cudakError_t cudaGetLastError(void)
® returns the code for the last error (no error has a code)

@ char* cudaGetErrorString(cudaError_t code)
® returns a null-terminted character string describing the error

printf(“%s\n”, cudaGetErrorString( cudaGetLastError() ) );
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Device Runtime Component

® Provides device-specific functions



Device Runtime Component:
Mathematical Functions

® Some mathematical functions (e.g. sin (x)) have a less accurate,
but faster device-only version (e.9. __ sin(x))

® oow
® __log,__log2,___1logl0
® cxp

® <in, cos, tan



Device Runtime Component:
GPU Atomic Integer Operations

@ Atomic operations on integers in global memory:

® Associative operations on signed/unsigned ints
® add, sub, min, max, ...

® and, or, xor

® Increment, decrement

® Exchange, compare and swap

® Requires hardware with compute capability 1.1
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Device Runtime Component:
Texture Functions

® For texture references bound to CUDA arrays:

® For texture references bound to linear memory:




Device Runtime Component:
Synchronization Function

® void _ syncthreads();
@ Synchronizes all threads in a block

® Once all threads have reached this point, execution resumes
normally

® Used to avoid RAW / WAR / WAW hazards when accessing shared
or global memory

® Allowed in conditional code only if the conditional is uniform across
the entire thread block



Compilation

® Any source file containing CUDA language extensions must be
compiled with nvce
® NVCC is a compiler driver

® Works by invoking all the necessary tools and compilers like cudacc, g++, cl,

® NVCC can output:

® Either C code (CPU Code)
® That must then be compiled with the rest of the application using another tool

® Or PTX object code directly

® Any executable with CUDA code requires two dynamic libraries:
® The CUDA runtime library (cudart)
® The CUDA core library (cuda)



Compiling CUDA

Target code



Compiling CUDA

C/C++ CUDA
Application
NVCC
Virtual
PTX to Target Physical
Compiler

o JL e

Target code




NVCC & PTX Virtual Machine

float4d me = gx[gtid];
me.x += me.y * me.z;

C/C++ CUDA
Application
® EDG
® Separate GPU vs. CPU code
® Opens4

® Generates GPU PTX assembly

® Parallel Thread eXecution (PTX)
® Virtual Machine and ISA
® Programming model
® Execution resources and state

ld.global.v4.£32 {S$£f1,$£3,$£5,8f7}, [Sr9+0];
mad.f£32 $f1, $f5, $£3, s$fl;



Role of Open64

Open64 compiler gives us

® A complete C/C++ compiler framework. Forward looking. We do not need to add
infrastructure framework as our hardware arch advances over time.

® A good collection of high level architecture independent optimizations. All GPU
code is in the inner loop.

® Compiler infrastructure that interacts well with other related standardized tools.



GeForce 8800 Series and
Quadro FX 5600/4600
Technical Specifications

Number of multiprocessors Clock frequency Amount of device memory
(GHz) (MB)

GeForce 8800 GTX 16 1.35 768
GeForce 8800 GTS 12 1.2 640
Quadro FX 5600 16 1.35 1500
Quadro FX 4600 12 1.2 768

® Maximum number of threads per block: 512

® Maximum size of each dimension of a grid: 65535

® Warp size: 32 threads

® Number of registers per multiprocessor:
® Shared memory per multiprocessor:

® Constant memory:

8192

16 KB divided in 16 banks

64 KB




CUDA Libraries

® CUBLAS

® CUDA “Basic Linear Algebra Subprograms”
® |mplementation of BLAS standard on CUDA
® For details see cublas_library.pdf and cublas.h

® CUFFT
® CUDA Fast Fourier Transform (FFT)
® FFT one of the most important and widely used numerical algorithms
® For details see cufft_library.pdf and cufft.h



CUBLAS Library

® Self-contained at API level
® Application needs no direct interaction with CUDA driver

® Currently only a subset of CUBLAS core functions are implemented

® Simple to use:
® Create matrix and vector objects in GPU memory
® Fill them with data
® Call sequence of CUBLAS functions
® Upload results back from GPU to host

® Column-major storage and 1-based indexing
® For maximum compatibility with existing Fortran apps



CUFFT Library

® Efficient implementation of FFT on CUDA

® Features
® 1D, 2D, and 3D FFTs of complex-valued signal data
® Batch execution for multiple 1D transforms in parallel
® Transform sizes (in any dimension) in the range [2, 16384]



Tesla Architecture Family

Number of Multiprocessors Compute

Capability
GeForce 8800 Ultra, 8800 GTX 16 1.0
GeForce 8800 GT 14 1.1
GeForce 8800M GTX 12 1.1
GeForce 8800 GTS 12 1.0
GeForce 8800M GTS 8 1.1
GeForce 8600 GTS, 8600 GT, 8700M GT, 8600M GT, 8600M GS 4 1.1
GeForce 8500 GT, 8400 GS, 8400M GT, 8400M GS 2 1.1
GeForce 8400M G 1 1.1
Tesla S870 4x16 1.0
Tesla D870 2x16 1.0
Tesla C870 16 1.0
Quadro Plex 1000 Model S4 4x16 1.0
Quadro Plex 1000 Model IV 2x16 1.0
Quadro FX 5600 16 1.0
Quadro FX 4600 12 1.0
Quadro FX 1700, FX 570, NVS 320M, FX 1600M, FX 570M 4 1.1
Quadro FX 370, NVS 290, NVS 140M, NVS 135M, FX 360M 2 1.1

Quadro NVS 130M 1 1.1



