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Abstract. We present a parallel algorithm for solving the 4D Vlasov
equation. Our algorithm is designed for distributed memory architec-
tures. It uses an adaptive numerical method which reduces computa-
tional cost. This adaptive method is a semi-Lagrangian scheme based
on hierarchical finite elements. It involves a local interpolation opera-
tor. Our algorithm handles both irregular data dependencies and the big
amount of data by distributing data into blocks. Performance measure-
ments on a PC cluster’s confirm the pertinence of our approach. This
work is a part of the CALVI project 1.
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1 Introduction

The Vlasov equation can describe the evolution in time of charged particles under
the effects of electro-magnetic fields. It is used to model important phenomena in
plasma physics such as controlled thermonuclear fusion. This equation is defined
in the phase space, i.e., the position and velocity space which has 6 dimensions in
the real case (one dimension of velocity for each dimension of position). Methods
discretizing the Vlasov equation on a mesh of phase space has been proposed to
get an accurate description of the physics. Due to the high number of dimensions
of the equation domain, solving this equation with such a numerical method
yields a very large computational problem.

In order to reduce this computational cost, adaptive methods have been de-
veloped. Some of these methods are based on the semi-Lagrangian schemes [8,
13]. We developed such an adaptive method and its parallel implementation for
the 2D Vlasov equation [9]. But a higher number of dimensions brings new chal-
lenges. On an other hand, some parallel implementations of 4D adaptive Vlasov
solver exist but they are essentially designed for shared memory architectures.
Therefore new parallel adaptive schemes have to be developed for distributed
memory machines.

1 CALVI is a french INRIA project devoted to the numerical simulation of problems
in Plasma Physics and beams propagation.
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This paper presents an appropriate block-based semi-Lagrangian scheme and
its parallelization. This scheme is based on a hierarchical finite element decom-
position [3] which involves a local interpolation operator. This method yields an
efficient parallelization based on data distribution into blocks.

The paper is organized as follows. Section 2 presents our adaptive semi-
Lagrangian scheme. Section 3 presents in details its parallel implementation.
Section 4 shows our experimental results before concluding.

2 An adaptive numerical scheme

We consider the four dimensional Vlasov equation

∂f

∂t
+ v

∂f

∂x
+ E(t,x)

∂f

∂v
= 0 (1)

whose unknown f(t, (x,v)) represents the distribution of particles at time t,
where x = (x, y) ∈ R

2 and v = (vx, vy) ∈ R
2 are coordinates of a point in the

phase space, and E(t,x) is the, so called, self consistent electrostatic field, which
is generated by particles. The equation is coupled with the Poisson’s equation
which gives the electric field E.

Our resolution scheme is based on the splitting of the equation [4] into a
succession of three transport equations of the form

∂f

∂t
+ U(t, X)

∂f

∂X
= 0 (2)

whose resolution, so called advection in X , is performed by using a semi-Lagran-
gian scheme [14]. This scheme uses the property of conservation of the unknown
along the characteristic curves, i.e.,

Property 1. f(tn+1, (x,v)) = f(tn,AX
∆t(x,v)) where ∆t = tn+1 − tn is the time

step and AX
∆t, so called advection operator, is a one-to-one correspondence be-

tween points of the phase space.

Our numerical method therefore boils down to perform three successive ad-
vections on a phase space mesh : one in x, one in y and one in v. These advections
are defined by the advection operators:

Ax
∆t(x,v) = ((x − vx.∆t, y),v),

Ay
∆t(x,v) = ((x, y − vy.∆t),v),

Av

∆t(x,v) = (v − E(t,x).∆t).

We use a dyadic structured adaptive mesh, i.e., a mesh whose each cell be-
longs to an uniform grid of 2j cells per dimension. The integer j is called the
level of the cell. We use a four dimensional dyadic mesh whose each cell of level
j, say α, is then a 4-cube and can be refined into 24 smaller cells of level j + 1.
These smaller cells are called the daughters of α and, by analogy, cell α is called
their mother. We will denote J , the finest level and j0, the coarsest level of our
mesh cells.
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At any time step tn = n∆t, the solution f is represented by a dyadic mesh
Mn and a function Fn which gives the value of f at every point (x,v) corres-
ponding to a node of Mn. Each cell has 34 equally spaced nodes and we use a
biquadratic Lagrange interpolation to reconstruct the value of f at any point
(x,v) within a cell.

Let us now present one advection in X , i.e., our numerical scheme for solving
one transport equation. It gives the new representation (Mn+1,Fn+1) from a
known old one (Mn,Fn). It consists in the following procedure, for every cell α

of the uniform grid of level j0 and denoting Mn+1
α the part of Mn+1 which is

contained in α:

1. Mesh prediction: Let us note jβ , the level of any cell β; Cβ , the point
of the phase space corresponding to the center of β; β′, the cell of Mn

which contains the advected point AX
∆t(Cβ) and jβ′ , the level of β′. Then

recursively refine each cell β of Mn+1
α such that jβ′ ≥ jβ .

2. Computation of values: For every node of Mn+1
α , let N be its corre-

sponding point in the phase space and α′, the cell of Mn which contains the
advected point AX

∆t(N). By conservation property 1, set Fn+1(N) to the
interpolated value at point AX

∆t(N) by using the values of Fn at nodes of α′.
3. Mesh compression: For every group of 24 daughter cells in Mn+1

α , com-
pare every value at their nodes with the value obtained by interpolation by
using the values at mother’s nodes. If the L1-norm of the difference is lower
than a given threshold ǫ, then replace the daughter cells with their mother
into Mn+1

α .

Figure 1 shows the time loop of our resolution scheme. Notice that for sake
of conciseness, the diagnostic step has not been reported. As the advection in v

step uses the electric field E, it is preceded by the computation of E. In order
to compute E, the Poisson’s equation is discretized onto an uniform grid of the
position space (x) with 2J+1+1 points per dimension. The computation of E

then consists in a summation of values onto the 2D position space.

advection
  in x

advection
  in y

advection
  in v

comput.
 of E

Mn,Fn Mn+1,Fn+1

Fig. 1. The time loop of our resolution scheme.

3 Parallelization

In our numerical scheme an advection consists in applying the same treatment
to every parts Mn+1

α of the dyadic mesh in any order. In the following we call
block all the data used to describe such a part. Our parallel implementation is
based on the distribution of blocks amongst processors. We first present the data
structure which will represent the dyadic mesh. We propose a partitioning of the
mesh which will determine how blocks are distributed. Then we show how to
optimize communications.
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3.1 Data structure

Data structure has a great impact on the efficiency of an adaptive method im-
plementation. In our case, due to the domain high number of dimensions and the
big amount of data it represents, we search a good tradeoff between data access
cost and memory usage. In our algorithm, the access to any value is defined by
the advection operator that uses an absolute location within the phase space.
Therefore, random access is critical to our algorithm [10]. Thus, we use arrays
to store values. Moreover, we use pointers to handle mesh sparsity and we use
dynamically-allocated arrays to minimize memory usage.

Our data structure is composed with four-dimensional arrays and has two
level. The first level is made of two arrays: one [2j0+1]4-sized array of double
which stores the values at nodes of the cell of level j0 and one [2j0 ]4-sized array
of pointers whose elements are in one-to-one correspondence with cells of the
uniform grid of level j0. Each pointer either is NULL meaning that the corres-
ponding cell belongs to the mesh, or points to an array of second level. An array
of second level stores the values of all the nodes which are located within the
corresponding part of the mesh. The undefined value is stored in the array when
the corresponding node does not exist in the mesh. The second level is thus
made of some [2J−j0+1]4-sized arrays of double. Moreover since the mesh adapts
at each time step, the arrays of second level are dynamically-allocated arrays. A
data block either is stored into the array of first level if it describes a single cell
of level j0, or is stored into an array of second level.

3.2 Mesh partitioning

A good mesh partitioning is one which both reduces the cost of communications,
and balances the computational load [2]. In order to meet the first issue, we use
the following properties of our numerical method :

– During any advection in v, the treatment of any block, say B, only requires
data within blocks having the same coordinates in position space as B. (Sym-
metrically, during any advection in x, the treatment of any block, say B, only
requires data within blocks having the same coordinates in velocity space as
B.)

– Any v-advection exhibits irregular and unpredictable data dependencies be-
cause these dependencies are defined by the self consistent electrostatic field.
On an other hand, the data dependencies in any x-advection are predictable
as they are only defined by v and ∆t.

According to these properties, if we partition the mesh along the position di-
mensions, then the advections in v will induce no communication. Moreover, the
communications which will occur during the advections in x are predictable and
linear. Hence, we choose to reduce the partitioning problem to partitioning the
2D uniform grid of level j0 of the position space. This means that each partition
is defined by an 2D area made of some cells of this uniform grid. The partition
contains all the mesh cells of the 4D phase space whose projection onto the
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position space is included in this area. As said previously the induced communi-
cations are linear, therefore we only consider connex areas to form our partitions.
More precisely, we choose to define our partitions from some rectangular areas,
which simplifies the communications scheme.

Now to achieve the second requirement that is load balancing we build ap-
proximately balanced areas for any given test case. Notice that our approach
in this work is to perform a static partitioning. Future work will be directed at
modifying partitions dynamically to follow the evolution in time of the physics
more closely. As said previously, each area will be a 2D rectangular one. Nu-
merous techniques tends to build such areas by minimizing the ratio between
height and width and reduce the amount of border elements in each direction
that usually induces communications (see [1] as example). Besides these tech-
niques, our partitioning uses some knowledge on the considered test case. More
precisely, it uses a bounding box, say B, which approximates the shape of the
beam of particles. It is assumed that most of computational load is carried by
the mesh elements contained within bounding box B. The other parameters used
in the building of our partitions are P , the number of processors and j0, the level
of the uniform grid. Notice that level j0 defines the coarse grid and determines
the number of discretisation points per surface unit of the physics domain. We
therefore consider it as a parameter and not as an unknown because we do not
want to influence the solution accuracy.

The partitioning problem then reduces to find P rectangles composed of
coarse cells such that these rectangles do not overlap and every rectangle ap-
proximatively covers the same extent of surface of B. Our partitioning problem is
an optimization one which is minimizing the greatest area amongst the P surface
extents of B which are covered by each of the P rectangles. This optimization
problem can be expressed as an 0-1 integer linear programming problem. It is
thus in general NP-hard, and as such, it is considered unlikely that there exists
an efficient algorithm for solving it. Instead, we propose an heuristic which con-
sists in recursively splitting the bounding box area into 2 approximatively equal
parts. It is thus assumed that the number of processors is a power of 2.

3.3 Obtaining regular communications

The communications are generated by the data dependences which are induced
by the advection operator: the treatment of a node corresponding to the point
(x, y, vx, vy) of the phase space requires the values of the cell containing the ad-
vected point. As we partition the mesh along the (x, y)-axis (Cf. section 3.2), the
communications only occur during a x- or y-advection and the data dependences
are defined by the linear advection operators x 7→ x− vx.∆t and y 7→ y− vy.∆t.
Figure 2 (left) shows these data dependences for the x-advection in the Carte-
sian (x, vx)-plane : the data on the oblique line are needed to compute the data
on the vertical line. Figure 2 (right) shows which data blocks are required to
compute the data blocks on a column. In this particular case, we observe that
the computation of any data blocks only requires the data within two blocks :
the block itself and a neighboring block at the left or at the right depending on



6 Olivier Hoenen and Eric Violard

x

x-vx.dt

x-vx.dt

x

vxmin

vxmax

0

xmin xmax

Fig. 2. Data dependencies and blocks required for updating one column of blocks.

the vx sign. It is a suitable situation where the communication volume is mini-
mum. This situation occurs when the test case parameters satisfy a particular
condition. Our algorithm works on the assumption that this condition holds.
This condition can be expressed as

xmax − xmin

2j0
≥ max{|vxmin|, |vxmax|}.∆t

3.4 Communication overlapping

Conceptually, in the application of partitioning, each partition is assigned to a
processor. In this section, we consider a lower level of abstraction and discuss how
data have to be effectively distributed across processors in order to reach the best
performance. To allow easy access to boundary data on neighboring processors,
the data structure is extended to include ghost cells on each processor. Ghost
cells are remote data blocks replicated in local memory to reduce access time
[5]. The data structure have allocated memory for some boundary blocks that

x

y

p0

p1

p2

Fig. 3. Extension of global ordinary data structure to local regions, i.e., data structures
with replicated blocks (for 3 processors).

can be filled in with data from the adjoining processors. This is illustrated in
Figure 3. In the following, the region assigned to a processor that is formed from
the partition extended with replicated blocks will be refered to as local region.
Each advection in our numerical scheme then consists in an “update operation”
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which computes data within the local region and fills in some of replicated blocks
with updated data.

Several implementations of this update operation can be investigated [12].
Our implementation is described in algorithm 1. This algorithm tends to maxi-
mize the overlapping of communication and computation.

Algorithm 1: Update of one local region

Input: A, one local region
Output: B, the updated region
begin

init recv of replicated blocks of B from adjoining processors
foreach border blocks of B do

compute it from blocks of A

init its send to the neighboring processor
end

compute inner blocks of B (from inner and border blocks of A)
wait all send/recv

end

We use two data structures we call A and B. Data structure A stores the
data before the operation and B stores the resulting data. Since our numerical
scheme consists in a succession of advections, the output data is used as the
input by the next operation. The role of each structure changes each time the
operation is performed. This change of role is achieved by pointer assignments.
In addition, the local region is virtually split into three disjunctive parts : the
replicated blocks, the border blocks and inner blocks. These parts are defined by
the direction (x, y or v = (vx, vy)) of the next advection. They are shown on
Fig. 4.

(a) (b) (c)

replicated block

border block

inner block

Fig. 4. The local region p2 in Fig.3 split into three kinds of blocks: (a) when the next
update is a x-advection, (b) when the next update is a y-advection, (c) when the next
update is a v-advection (no replicated or border block).

The algorithm works on the assumption that all required data of A are ini-
tially available. In particular, it means that the replicated blocks have been filled
in with data at the first time step. The algorithm first initiates the non-blocking
receive of all these blocks in B. Then, it computes each border block of B and
initiates its send as soon as it is computed. Communications are overlapped with
the computation of the inner blocks and next border blocks of B.
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4 Implementation and performance measurements

Our code has been written in C and use the portable implementation MPICH [7].
In order to reduce memory copies, we defined two MPI data-types that describe
the storage of data within the cells which are received or sent.

A difficulty here is that data blocks may have two different memory mapping
because a data block describes one single or more cells, as said in section 3.1.
Because of the adaptive mesh, it is not possible to predict which kind of blocks
will be sent or received. Therefore we use two MPI data-types : MPI Block1 and
MPI Block2, one for each block kind. These two types are identical except that
the extent of type MPI Block2 is greater than the extent of type MPI Block1

in memory. Each of these two types is a structure with the same fields and the
same offset for each of these fields. We use type MPI Blocks2 to initiate a block
receive. Therefore data are received in place whatever the kind the block has.
Last, a call to function MPI Get count is used to determine the block type.

For our experiments, we use a PC cluster’s equipped with 17 dual core proces-
sors with 2 GB of RAM each. Processors are Athlon 4800+ cadenced at 2.4 GHz

and connected through an Gigabit Ethernet. Each core is seen as an independent
MPI processor unit.

Our test case is the uniform magnetic focusing of a semi-Gaussian beam of
protons. The emittance of this proton beam is 2.36×10−5 π m rad, its current
is equal to 100 mA, and its energy is 5 MeV . The initialization parameters are
computed by solving the envelope equation of the equivalent KV beam (see [6]).
These physical parameters give a tune depression of 0.7. The length of the period
is equal to S = 26.6292 m. We perform 75 time steps (with ∆t = 0.0841 s). The
particles beam is given by a semi-Gaussian distribution function

f0(x,v) =

{

1
8π2 e(−

vx
2+vy

2

2
) if x2 + y2 < 6

0 else

where x and v live in [−6, 6]2. The number of points is equal to 128 in each
direction of position space and 64 in each direction of velocity space. We use
j0 = 3 and J = 5. Fig.6 shows projection of the distribution function.

Impact of load balancing. We compare two partitioning of the mesh. The
first one uses our heuristics to build balanced areas with a bounding box set
to the square [−3.5, 3.5]2. The second one splits the domain into equally sized
areas such that the difference between width and height is minimum. Figure 5
(right) shows the wall-clock time of the code in each of these two cases. Since the
x-projection of the distribution function is round in shape and forms a disk of
center (0, 0), the second partitioning gives well-balanced areas for 4 processors.
Therefore our heuristics cannot enhance performance in that case. Otherwise
simulations are between 15% and 30% faster with our heuristics.

Performance and speedup. We observe that the performance improves un-
til 32 processors. But the speedup is under-linear due to load imbalance arising
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Fig. 5. Performances of our code on a PC cluster

from the beam evolution in time. Figure 5 (left) shows the speedup and efficiency
obtained when the workload is well-balanced throughout the execution (setting
the compression threshold ǫ = 0) in comparison with an unbalanced execution.
Note that the version of the code is not fully optimized, particularly the inter-
polation operation cost can be reduce. We observe a slight loss of efficiency. It
is not due to communications because they are totally overlapped by compu-
tation: we checked that in this experiment all messages are received before the
wait barrier is reached. Thus, it can be explained by the computation of field E

that is sequential.

Fig. 6. Representation of the x − y projection (left) and x − vx projection (right) of
the distribution function at time step 20

5 Conclusion

In this paper, we proposed a new adaptive numerical scheme and its parallel im-
plementation for solving the 4D Vlasov equation. On the contrary to the previous
method [11], each part of the predicted mesh can be computed independently
of each other, at each time step. Thus, our parallel implementation based on
mesh partitioning induces low overhead. Moreover, we made some assumptions
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on the physical parameters in order to ensure a regular communication pattern.
Experiments on a PC cluster shown a good scalability provided the computa-
tional workload is well balanced throughout the whole simulation. They shown
that a static partitioning alone is not enough to obtain the good scalability and
performance even in the advantageous case of the focusing beam. Future works
then consist in integrating to the code a mechanism that updates partitioning
in order to follow the evolution of the physics. Then we intend to compare the
scalability of our solver for distributed memory machines with the codes which
target shared memory machines.
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13. E. Sonnendrücker, F. Filbet, A. Friedman, E. Oudet, and J.L. Vay. Vlasov simu-
lation of beams with a moving grid. Comput. Phys. Commun, 164:390, 2004.
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