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Résumé en français

1 Introduction

Les tâches relevant du processus de compilation tendent à se complexifier et à se multiplier.
D’un simple rôle de traducteur de texte en langage de programmation évolué à un code binaire
exécutable par une machine garantissant les exigences fonctionnelles, il est désormais demandé
au compilateur de remplir plusieurs objectifs non-fonctionnels, soit exclusivement ou simultané-
ment. Le code binaire produit devra par exemple :

• provoquer une durée d’exécution la plus courte possible ;

• respecter des contraintes temps-réel de temps d’exécution et d’ordonnancement ;

• minimiser sa consommation électrique ;

• minimiser sa consommation mémoire ;

• avoir un comportement prévisible à l’exécution.

De plus, tous ces objectifs sont souvent contradictoires ou possèdent de fortes interactions
qui risquent d’annuler, voire de détériorer, leurs effets. Il est par exemple clair que l’objectif
de rapidité d’exécution peut être en contradiction avec l’objectif de consommation électrique
minimale, ou avec l’objectif de comportement prévisible. Les moyens employés pour les atteindre
peuvent être variés et leur choix peut être déterminant quant à ces contradictions.

Tous ces aspects relèvent d’une maîtrise globale du comportement du couple matériel/logiciel.
Un logiciel, même conçu, analysé, prouvé ou simulé par les moyens les plus avancés, aura presque
toujours un comportement inattendu lorsqu’il sera confronté au matériel servant à l’exécuter.
Ainsi, les approches dites statiques d’analyse et de transformation de programmes sont limitées
par l’ignorance des effets de cette confrontation. Il en est de même si l’on se place du côté du
matériel, parfois conçu sans réalisme par rapport aux logiciels susceptibles d’y être exécutés.
Mais nous nous plaçons dans cette thèse du côté du logiciel, confronté à un matériel figé.

Une réponse à cette problématique de maîtrise du comportement consiste à opposer, ou à
compléter, les approches statiques avec des approches dites dynamiques, c’est-à-dire où l’analyse
et la transformation de programmes s’opèrent en cours d’exécution. L’analyseur ou l’optimiseur,
que l’on peut appeler d’une manière plus générale compilateur, dispose alors des informations
non fonctionnelles uniquement accessibles à l’exécution, liées à la confrontation logiciel/matériel,
mais également à l’évolution fonctionnelle non prévisible du traitement.

Mais l’introduction d’un tel processus dynamique de compilation, en plus du logiciel lui-
même, pose des problèmes difficiles de conception afin que ce processus ne soit pas lui-même
en contradiction avec les objectifs recherchés. Il est par exemple évident que l’ajout de code
de compilation s’exécutant en même temps que le programme cible pose un problème de temps
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6 Résumé en français

d’exécution plus important, si l’objectif est la minimisation de ce temps d’exécution. Il en est de
même pour tous les autres objectifs cités plus haut. Pourtant, les nombreux travaux du domaine
de la compilation dynamique, dont ceux présentés dans ce manuscrit, montrent qu’il est tout à
fait possible d’atteindre ces objectifs en compensant largement les effets négatifs par les effets
positifs du processus dynamique. Par exemple, le surplus de consommation mémoire du à ce
processus pourra être négligeable par rapport à la réduction de consommation obtenue grâce à
lui.

Cette thèse se place dans ce cadre de développement d’approches dynamiques permettant une
maîtrise du comportement. Plus particulièrement, les travaux présentés ici recouvrent l’objectif
principal de minimisation des temps d’exécution sur une architecture mono ou multi-processeurs,
par anticipation des accès mémoire des programmes via le préchargement des données utiles, et ce
de manière entièrement transparente à l’utilisateur. Les processus développés comprennent une
phase d’analyse dynamique du comportement, où les latences des accès mémoires sont mesurées,
une phase de transformations dynamiques optimisantes si celles-ci ont été jugées utiles, où des
instructions de préchargement de données sont insérées dans le code binaire, une phase d’analyse
dynamique des effets de ces optimisations, et une phase d’annulation de transformations si celles-
ci ont été observées comme inefficaces. De plus, toutes ces phases s’appliquent individuellement
à chaque accès mémoire, et éventuellement de manière répétée lorsque ces accès présentent des
comportements variables au cours de l’exécution du logiciel cible.

Nous montrons qu’il est possible de concevoir un tel système dynamique d’une relative com-
plexité et entièrement logiciel, c’est-à-dire qui ne repose sur aucune fonctionnalité spécifique de
la machine d’exécution, qui est efficace pour de nombreux programmes et très peu pénalisant
pour les autres. A notre connaissance, notre travail constitue une première proposition d’un
système dynamique d’optimisation entièrement logiciel qui ne se base pas sur une interprétation
du code binaire.

2 Un optimiseur dynamique et automatique à faible coût

Le chapitre 2 commence par présenter un optimiseur dynamique qui instrumente et optimise
un programme lors de son exécution. Il y parvient en modifiant directement le code binaire en
fonction du comportement mémoire du programme. En calculant le coût moyen d’un chargement
instrumenté, le système décide ou non de l’optimiser ou de le désinstrumenter. Dans ce dernier
cas, le programme exécute alors le chargement sans instrumentation, ne ralentissant donc plus
le programme.

L’optimisation que le système utilise est un prédicteur de pas qui émet des préchargements.
Un tel prédicteur calcule le pas mémoire entre deux accès consécutifs et le multiplie par un
facteur, appelé distance de préchargement, afin de prédire les prochains éléments. Cette dis-
tance de préchargement représente le nombre d’accès entre l’élément courant et celui prédit. Le
préchargement de données est une solution pour limiter les défauts de cache. Ces derniers se
produisent lorsque le programme a besoin d’une donnée qui n’est pas encore dans un des niveaux
de cache. Le processeur arrête ainsi l’exécution du programme et charge la donnée depuis la
mémoire centrale. Les préchargements permettent de faire des demandes en avance pour que,
lorsque le programme requiert les données, elles soient déjà en cache.

Le travail présenté dans ce chapitre a été publié dans [12] et une version revue est en cours
de soumission [11].
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Figure 1: L’automate fini représentant les états et transitions des chargements

2.1 Sélection de chargement

Lorsqu’un système logiciel veut émettre des préchargements, il doit d’abord choisir les zones de
code qui sont importantes pour un programme et ensuite comprendre le comportement mémoire
afin de prédire correctement. Au lancement d’un programme, le système, parcourt le code et
transforme chaque chargement en un saut inconditionnel vers une version instrumentée. Celle-ci
met à jour un compteur d’exécutions du chargement et accumule le nombre de cycles processeur
utilisés pour l’effectuer. Lorsque le système divise ces deux valeurs, un nombre moyen de cycles,
ou latence moyenne, est obtenu.

Le système vérifie périodiquement l’état des chargements et, selon les différents compteurs
associés, décide d’optimiser ou non les chargements. Afin de pouvoir gérer les différents charge-
ments, un état est associé à chacun d’entre eux. La figure 1 présente un automate qui gére les
différents états possibles.

Les chargements sont initialisés dans l’état Initialisation. Une fois qu’ils ont été instrumentés,
ils se retrouvent dans l’état Étudier. Si le nombre d’exécutions du chargement dépasse un certain
seuil, la latence moyenne du chargement est calculée. Si elle est en-dessous d’une valeur donnée,
le chargement est considéré comme non coûteux. Il est alors désinstrumenté et mis dans l’état
Dormant. Par contre, si elle est au-dessus du seuil, il devient candidat à l’optimisation.

L’optimisation que nous avons implémentée est un prédicteur de pas. Il faut donc calculer la
différence entre deux éléments avant de pouvoir prédire correctement. Premièrement, le pas est
calculé dans l’état Étude de Pas. Dans cet état, le code calcule la différence entre les adresses
de deux accès consécutifs afin d’avoir le pas courant. Ensuite, le chargement est transféré
vers l’état Etude de distance où la distance de préchargement est calculée. Une distance de
préchargement représente le nombre d’accès entre l’accès courant et celui prédit. Si elle est trop
faible, la donnée prédite ne sera pas encore dans le cache de données lorsque le programme en
aura besoin. Par contre, si la valeur est trop importante, la donnée risque d’être écrasée par une
autre qui nécessitait la même ligne de cache.

Nous pouvons remarquer que cette étude est donc empirique. Dans le cas où le comportement
mémoire semble aléatoire, le système va remarquer que le pas choisi ne donne pas de bons
résultats et finira par désinstrumenter le chargement et l’envoyer dans l’état Dormant. D’autre
part, si le comportement mémoire posséde un pas constant, le système le trouvera et pourra
optimiser le chargement.

Lorsqu’un pas et une distance sont choisis, le système envoie le chargement dans l’état



8 Résumé en français
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Figure 2: Architecture générale du système

Précharger. Dans cet état, aucune instrumentation autre que l’instruction de préchargement ne
demeure afin d’optimiser le code au maximum. Par contre, périodiquement, le code est envoyé
vers une version instrumentée, nommée Précharger et Étudier, pour vérifier si l’optimisation est
toujours bénéfique. Ceci est testé en comparant le coût moyen actuel du chargement avec celui
calculé lors de sa présence dans l’état Étudier. Si ce n’est plus le cas, le chargement est renvoyé
dans l’état Dormant.

Afin de savoir quand ré-instrumenter un chargement ou tester l’optimisation mise en place,
des niveaux de confiance ont été implémentés. Le niveau de confiance dormant ncd détermine
le temps où le chargement demeure dans l’état Dormant. Plus il est élevé et plus le chargement
restera sans instrumentation. Ceci permet de ne pas ré-instrumenter trop souvent un chargement
qui n’est jamais coûteux ou pour qui l’optimiseur n’arrive pas à trouver une bonne optimisation.
Partant de la même idée, un niveau de confiance d’optimisation nco permet de ne pas tester trop
souvent un préchargement que le système considère comme vraiment bénéfique au programme.

Finalement, il peut arriver que la latence moyenne du chargement non-instrumenté ait
changé. Dans ce cas, le système doit la ré-évaluer de temps en temps. Ceci est fait en tes-
tant la valeur de nco. Si elle est trop élevée, le chargement associé est renvoyé vers l’état Étudier
et les compteurs sont réinitialisés.

2.2 Système général

Afin de pouvoir gérer et maintenir les états des différents chargements, le système utilise un
deuxième thread (fil d’exécution). La figure 2 présente le système d’un point de vue général. Sur
la gauche se trouve le programme instrumenté de base. En utilisant des sauts inconditionnels
entre le programme et la zone d’instrumentation, le programme incrémente et met à jour des
compteurs dans un tableau que le deuxième thread peut étudier.

Le deuxième thread, représenté par la partie de droite de la figure, se réveille périodiquement
et vérifie le tableau de compteurs. Par exemple, lorsque le nombre d’exécutions d’un chargement
dépasse un certain seuil, le système calcule la latence moyenne de ce chargement. Si elle dépasse
une certaine valeur, le chargement est considéré comme coûteux et l’optimiseur tentera de prédire
les prochains accès afin de minimiser son coût.

Pour effectuer les transitions d’état des chargements, il faut pouvoir modifier le code instru-
menté associé. Or, pour le faire sans provoquer des modifications sémantiques à un programme,
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Figure 3: Le coût du système avec le compilateur gcc. Les histogrammes montrent les temps
d’exécution des programmes avec et sans l’utilisation du système

le système doit prendre quelques précautions. Nous savons qu’un chargement est instrumenté
en utilisant un saut inconditionnel vers la zone instrumentée. Le système commence donc par
remplacer le saut par une instruction illégale. Ceci permet d’arrêter le programme lorsqu’il tente
d’exécuter une des instructions illégales. Lorsqu’un programme exécute une instruction illégale,
un signal est émis qui provoque normalement la fin de son exécution. Un gestionnaire de signal
peut être mis en place pour tenter de réparer le problème. Notre système utilise ce mécanisme
et, lors de cet appel, l’état du chargement et son code instrumenté sont mis à jour avant de
remettre le saut inconditionnel en place et de reprendre l’exécution du programme.

2.3 Coût du système

Il est difficile de pouvoir évaluer précisément le coût d’un système dynamique puisque ceci de-
mande de modifier le comportement interne. En perturbant le système, les résultats obtenus
ne sont plus les mêmes par rapport à une exécution normale. Par contre, cela peut donner une
idée qualitative du coût et c’est dans ce but que nous présentons la figure 3. En supprimant
les instructions de préchargement, le système ne peut plus optimiser le programme mais calcule
toujours la latence moyenne des chargements, trouve un pas et choisit la meilleure distance de
préchargement. Comme le montre la figure, l’exécution de la version de base, sans instrumen-
tation, est presque identique à celle avec l’instrumentation. Le coût moyen du système proposé
est de 5%.

2.4 Performance

La figure 4 présente les résultats obtenus lorsque le système insére des instructions de précharge-
ment sur différents programmes provenant de bancs d’essai connus. Cette figure compare
les performances obtenues entre le compilateur gcc et le compilateur icc utilisant le niveau
d’optimisation O3. Certains programmes montrent un réel gain de performance comme les pro-
grammes ft, mcf, equake, art et treeadd. Le pire cas est le programme twolf. Ce programme
répond mal à la solution adoptée pour allouer des registres dynamiquement pour l’exécution des
codes instrumentés. De plus, le système est incapable de trouver un chargement qui posséde
un comportement mémoire répondant favorablement à l’optimisation proposée. Donc, pour ce
programme, le système est incapable de l’accélérer et le coût initial est trop important.
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Figure 4: Les accélérations obtenues en pourcentage par notre système sur des codes générés
par les compilateurs gcc et icc

2.5 Conclusion

Le système présenté permet d’instrumenter dynamiquement, avec seulement 5% de coût en
moyenne, des programmes cibles. En modifiant le code binaire pour étudier et optimiser les
accès mémoire, il est capable d’accélérer certains programmes testés de 2% à 143%.

Le reste du chapitre 2 présente les détails d’implémentation du système et propose une étude
sur la viabilité d’une telle méthode sur une vingtaine de programmes issus de bancs d’essai. Par
exemple, le système peut être étendu pour n’instrumenter que les chargements souvent utilisés
et ce chapitre propose une solution dans la section 2.2.3 page 61.

3 Esodyp

Le système que nous venons de présenter montre qu’il est possible, sans connaissances préal-
ables du programme cible, de modifier dynamiquement le code binaire d’un programme afin de
l’accélérer. L’étude du comportement mémoire étant un facteur important pour la sélection des
chargements, la suite de cette thèse présente la création d’un modèle Markovien permettant de
mieux comprendre et prédire des accès mémoire.

Le modèle Markovien dont nous avons besoin doit pouvoir se construire rapidement et aussi
pouvoir se mettre continuellement à jour. Puisque la construction d’un tel modèle est rela-
tivement coûteuse, il est devenu opportun de diviser le modèle en deux. D’abord, les premiers
éléments de la séquence contribuent à la construction du modèle. Puis le modèle est figé et est
utilisé tant que les prédictions qui lui sont dues sont correctes.

Le travail présenté dans ce chapitre a été publié dans [9].

3.1 La définition

Un modèle Markovien se base sur des accès précédents afin de calculer les futurs accès. La
définition mathématique peut revenir à la formule suivante :

Pr(Xn+1 = x|Xn = xn, ..., X1 = x1) = Pr(Xn+1 = x|Xn = xn)

Cette formule montre la définition du calcul de probabilité Markovien. Si on considère les
accès mémoire comme étant une suite numérique, la probabilité que le (n + 1)ème élément soit
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Figure 5: Représentation sous forme de table optimisée, chaque ligne posséde l’élément courant
et le prochain élément aperçu dans la séquence

x ne dépend que du nème terme. Cela se traduit par le fait qu’il suffit de connaître le dernier
accès pour calculer la probabilité du suivant.

Par contre, il est possible que, pour avoir un modèle plus précis, il soit nécessaire de calculer
les prédictions en prenant en compte plusieurs éléments précédents. La formule généralisée est
donc :

Pr(Xn+1 = x|Xn = xn, ..., X1 = x1) = Pr(Xn+1 = x|Xn = xn, Xn−1 = xn−1, ..., Xn−m+1 = xn−m+1)

En effet, la valeur de la probabilité du (n + 1)ème terme dépend à présent des termes
xn, xn−1, ..., xn−m. On appelle m l’ordre du modèle et il représente le nombre d’éléments du
passé utilisés pour calculer le prochain élément.

3.2 Structures de données

Il existe différentes solutions pour représenter un modèle Markovien d’un point de vue informa-
tique. Nous présentons dans ce chapitre deux possibilités : un tableau ou un graphe. Le modèle
que nous voulons implémenter doit pouvoir se construire suite à une série d’accès mémoire et
ensuite produire des prédictions. A chaque appel, il faut donc que le modèle soit mis à jour. Il
est évident qu’une simple représentation sous forme de tableau demanderait trop de temps lors
de la recherche de la ligne correspondant au comportement mémoire actuel.

La figure 5 montre une technique afin d’accélérer le procédé de recherche. Les deux tableaux
représentent la création d’un modèle d’ordre 2. Cela veut dire que les deux derniers éléments
sont utilisés pour le calcul des prédictions. Chaque table contient deux colonnes : une pour les
éléments précédents et une pour la prédiction. Dans ce cas, la séquence ABCBDBCBD a été
utilisée. Le modèle est divisé en deux parties, une partie où l’ordre 1 suffit et une table annexe
qui permet de déterminer les cas où les deux derniers éléments sont nécessaires afin de pouvoir
prédire correctement. Par exemple, on remarque que, dans cette séquence, après tout élément A
se trouve un B. Aussi, nous savons qu’après chaque C et chaque D se trouve aussi un B. Donc
dans la table de gauche, nous trouvons ces trois informations.

Par contre, après un élément B se trouve soit un C, soit un D. Afin de distinguer les deux
cas, on doit connaître l’élément qui précédait le B. La table de droite permet de faire cela.
Par exemple, après la séquence CB se trouve toujours un D. Finalement, avec deux tableaux
distincts, on est capable de prédire correctement le comportement de cette séquence.
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Figure 6: Le graphe d’ordre 2 incluant le premier ordre. Les noeuds du premier ordre sont
représentés par des boîtes

A présent, nous voulons pouvoir prédire le plus rapidement possible et une recherche à
travers les tableaux à chaque appel au modèle est trop coûteuse. La solution que nous pourrions
adopter est d’ajouter des liens entre les cellules des tableaux afin de trouver directement la
prochaine cellule que le modèle utilisera si le système prédit correctement. Par exemple, si
le modèle se trouve dans la ligne A du tableau de gauche, il prédira que B est le prochain
élément. Si c’est le cas, nous savons que les deux derniers éléments sont AB et nous avons une
ligne correspondante dans le tableau de droite. Le lien entre ces deux lignes permet donc de
se déplacer directement vers la ligne correspondante du tableau de droite afin de ne plus avoir
besoin de faire de recherches lors du prochain appel si le modèle a prédit correctement. Par
contre, lorsque le modèle se trompe, une recherche coûteuse est toujours nécessaire.

Si nous regardons cette structure de données, nous remarquons qu’elle ressemble presque à
un graphe. Il suffit d’ailleurs de séparer les lignes de chaque tableau pour l’obtenir. Figure 6
montre le graphe obtenu avec la même séquence. Nous remarquons que les liens des tableaux
précédents sont devenus les arcs du graphe. C’est donc avec la représentation de ce graphe que
nous allons implémenter le modèle. Les différents algorithmes de créations et de mises-à-jour du
graphe sont présentés dans le chapitre 3.

3.3 Performances

L’implémentation du modèle Esodyp a mené à l’écriture d’un certain nombre de fonctions qu’un
programmeur peut intégrer dans son code afin de modéliser des comportements mémoire, les
prédire et précharger des données. La figure 7 présente les résultats obtenus lorsque nous
avons testé le modèle sur différents programmes. La figure de gauche présente les performances
obtenues lorsque nous calculons l’accélération par rapport au temps d’exécution global du pro-
gramme.

Puisque ces programmes ont été, par rapport au système présenté dans le chapitre 2, instru-
mentés à la main, une seule fonction est généralement modifiée pour contenir les appels vers le
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Figure 8: L’exécution du système de requêtes d’objets de Jackal

modèle. La figure de droite montre donc l’accélération obtenue par rapport au temps d’exécution
de la fonction modifiée. Finalement, les trois versions représentent différents paramètres utilisés
par le modèle et sont présentés en détail dans le chapitre.

3.4 Conclusion

Le modèle Markovien que nous avons présenté dans ce chapitre permet de créer dynamiquement
un modèle et de s’en servir afin de prédire les futurs accès mémoire. Une comparaison entre
deux représentations structurelles est faite entre un tableau et un graphe. Nous avons choisi la
forme du graphe puisqu’elle représente la meilleure solution en terme d’utilisation mémoire, de
temps de calculs et de recherche d’une prédiction.

En utilisant un certain nombre de fonctions, le programmeur peut insérer dans le code des
appels afin de modéliser les accès et précharger les données pour limiter les défauts de cache.
Enfin, sur plusieurs programmes, nous avons montré qu’il est possible d’obtenir des accélérations.

4 Jackal

La construction et la mise à jour du modèle Esodyp sont relativement coûteuses pour réduire la
latence mémoire sur un processeur moderne. Par contre, dans le domaine de la programmation
distribuée, le coût des messages est plus important. Le temps nécessaire pour accomplir les
calculs nécessaires au bon fonctionnement du modèle est largement compensé.

4.1 Intégration du modèle Esodyp dans Jackal

Le chapitre 4 propose d’intégrer Esodyp dans un système de mémoire distribué nommé Jackal.
La première partie des travaux présentés dans ce chapitre a été publiée dans [64] et un article
présentant la deuxième partie est en cours de soumission [13]. Le système Jackal provient
du département informatique de l’université d’Erlangen-Nuremberg et le travail contenu dans
ce chapitre a été fait en collaboration de Michael Klemm. Le système utilise un compilateur
du même nom pour transformer du code source Java en exécutable binaire. En ajoutant des
vérifications d’accès, le programme teste avant tout accès si la donnée est présente localement. Si
ce n’est pas le cas, un message est envoyé vers le détenteur de l’objet pour en obtenir une copie.
Bien sûr, le programme est arrêté pendant cette attente. La figure 8 montre le déroulement d’un
programme sur un système distribué. Nous voyons que le noeud du haut a besoin des objets o,
p, q et r. Par contre, p, q et r ne sont pas présents localement donc le programme doit envoyer
des demandes au noeud distant à chaque accès.
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Figure 9: L’exécution du système de requêtes d’objets de Jackal utilisant un système de
préchargement

Dans ce contexte, Esodyp a pour but de modéliser les accès mémoire afin de précharger les
données. Si les prédictions sont correctes, le système ne s’arrête plus puisque les données sont
toutes présentes localement. Par contre, l’intégration du modèle dans le système Jackal demande
quelques modifications internes. Nous avons nommé le nouveau système Esodyp+. Jackal utilise
un adressage appelé GOR (Global Object Reference) qui est un couple (indice du noeud, adresse
locale de l’objet). Chaque noeud exécute une partie du programme sur une machine distante
et se voit assigner un indice unique. Avec ce couple, il est donc possible de référencer tous les
objets du programme global.

Une autre modification au modèle Esodyp consiste à faire produire au système de multiples
prédictions à la fois. Esodyp est conçu pour prédire un seul élément à chaque appel. Dans un
système distribué, afin de réduire le nombre de messages, il faut donc pouvoir prédire plusieurs
éléments à la fois et envoyer ces demandes en un seul message. On peut voir le déroulement
du nouveau système distribué utilisant Esodyp+ dans la figure 9. Lorsque le noeud du haut
s’arrête lors du défaut de cache pour l’objet p, le prédicteur envoie une requête pour q, r et s
simultanément, bien que s ne soit pas utilisé par le programme dans cet exemple (c’est donc
une prédiction invalide). Lorsque le programme reçoit ces données, il peut continuer l’exécution
sans interruption.

Le système Esodyp+ est comparé à deux autres prédicteurs : un prédicteur de pas nommé
Stride à faible coût mais qui ne gére pas correctement les comportements complexes; et un
prédicteur nommé Delphi qui utilise une table de hachage et les trois derniers éléments afin de
calculer la clé de hachage. Quatre programmes parallèles ont été testés. Nous avons montré que
le modèle Esodyp+ était capable généralement d’avoir la meilleure précision tout en gardant un
faible coût de calcul.

4.2 Optimisation automatique dans le système Jackal

Esodyp+ a été intégré dans Jackal mais un défaut persiste toujours : pour que le système
prenne en compte les prédictions, le programmeur doit ajouter manuellement les appels au
modèle Esodyp+. Ceci veut dire qu’il doit avoir une connaissance approndie du programme
cible afin d’instrumenter le code correctement.

La deuxième partie de ce chapitre présente un système dynamique qui évite cela en modifiant
directement le système Jackal. Ce changement modifie la façon dont Jackal gére les vérifications
des accès mémoire. Jackal sépare les accès mémoire en quatre catégories pour des raisons de
performances. Tout d’abord, il différencie les accès en lecture et ceux qui modifient aussi la
donnée. Ensuite, la gestion d’un objet et celle d’un élément dans un tableau sont différentes.
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Figure 11: Automate fini représentant les transitions entre états des vérifications d’accès

Pour chaque vérification d’accès, dépendant de son type, un appel distinct est effectué.

La figure 10 montre les appels entre le programme cible, le système Jackal et le prédicteur
Esodyp+. D’abord, lorsque le programme effectue une vérification d’accès, il passe par un
appel qui transforme l’adressage Jackal sous forme de GOR à un adressage intermédiaire appelé
SGlobalAdd que le modèle Esodyp+ pourra utiliser. Ensuite, il appelle le modèle Esodyp+ qui
est en train de construire le graphe ou de mettre à jour le modèle et prédire. Si une prédiction
est émise, Esodyp+ appelle la fonction du système Jackal qui vérifie si la donnée prédite est
locale ou non. Si elle est déjà locale, ce n’est pas la peine de provoquer un préchargement. Par
contre, dans le cas contraire, un appel à la fonction Markov_PredictN est effectué pour demander
à Esodyp+ un certain nombre de prédictions. Cette liste d’éléments est ensuite envoyée aux
noeuds concernés qui renverront en retour les objets prédits.

La dernière modification que nous avons faite au système Esodyp+ concerne la gestion dy-
namique de la distance de préchargement. Elle permet d’adapter le nombre d’éléments prédits
pour réduire encore plus le nombre de messages envoyés. Par contre, plus la distance est grande,
plus le nombre de mauvaises prédictions est possible. Selon le nombre d’objets qui sont renvoyés
par le noeud distant, le nombre d’objets prédits est mis à jour.

Enfin, le système général utilise un automate fini pour gérer l’instrumentation des différentes
vérifications d’accès. La figure 11 montre les transitions entre les états. Le système commence
dans l’état Étudier afin de sélectionner les accès coûteux. Une fois qu’un accès a été exécuté
un certain nombre de fois, l’accès est envoyé vers l’état Création de modèle. Dans cet état, un
modèle Esodyp est créé pour le comportement mémoire de l’accès et, si le modèle est capable de
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Temps (en secondes) Messages (en milliers)
Nodes w/o Esodyp+ DyCo Dyn. N w/o Esodyp+ DyCo Dyn. N

SOR

2 34.8 34.7 35.0 34.5 28.2 11.5 14.6 11.9
4 18.6 17.5 19.2 18.0 84.1 34.0 44.1 34.7
6 13.2 12.2 13.5 12.8 141.8 62.6 74.3 56.7

8 11.0 10.0 11.4 10.4 199.2 85.2 104.6 80.4

Water

2 122.7 110.3 106.0 93.7 1713.5 1088.9 1114.6 871.6

4 73.3 58.4 65.8 56.3 2941.5 1760.4 1843.3 1401.8

6 68.0 55.6 58.0 49.0 3680.7 2183.6 2180.0 1692.6

8 64.5 54.5 56.4 45.7 4299.6 2497.7 2612.9 1984.3

Blur2D

2 10.3 3.5 7.4 7.8 227.1 68.3 143.2 138.6
4 6.9 4.0 4.3 3.2 394.5 182.0 159.4 87.6

6 8.2 5.2 4.3 3.8 494.8 287.9 181.6 142.0

8 10.0 7.9 5.2 4.2 589.2 403.6 228.7 170.2

Ray

2 41.9 41.4 41.8 42.9 9.2 6.6 8.5 8.4
4 21.4 20.9 21.6 21.2 27.6 19.5 25.7 25.0
6 14.9 15.1 15.1 14.8 46.2 32.7 43.4 42.0
8 12.5 12.0 12.5 12.0 64.8 46.0 60.3 58.9

Table 1: Temps d’exécutions et nombre de messages (le meilleur est en gras).

prédire correctement, l’accès est envoyé vers l’état Précharger. Dans cet état, les accès appellent
un même modèle qui provoquera des demandes de prédictions. Si ce modèle provoque trop
d’erreurs de prédictions, les accès sont renvoyés vers l’état Étudier. Enfin, si le modèle créé dans
l’état Création de modèle n’est pas convenable, l’accès est envoyé vers l’état Dormant et est
désinstrumenté. Il sera réinstrumenté plus tard pour revérifier son comportement mémoire.

4.3 Performances

La table 1 montre les résultats obtenus. Les quatres programmes ont été exécutés utilisant 2
à 8 noeuds. Ensuite, les versions sans instrumentation (w/o), avec l’instrumentation du pro-
grammeur présenté dans la sous-section précédente (Esodyp+), sans modification dynamique du
nombre de messages (Dyco) et celle avec la modification dynamique (Dyn) sont comparées. Les
versions Esodyp+ et Dyco prédisaient 10 messages en avance.

Bien que le chapitre 4 donne plus de détails sur ces résultats, nous donnerons un résumé
rapide. Pour le programme SOR, le nombre de messages est assez faible et la différence entre
les différentes versions ne sont pas importantes pour 2 ou 4 noeuds. Pour une exécution sur
8 noeuds, la version Esodyp réduit le nombre de messages de 57% par rapport aux 60% de la
version dynamique. Par contre, le système dynamique est un peu plus coûteux en terme de
temps d’exécution puisqu’il faut instrumenter le programme et gérer les différentes vérifications
d’accès.

Pour le programme Water, le système dynamique est nettement meilleur que les autres
solutions et arrive à réduire le temps d’exécutions de 29% sur 4 noeuds et permet une réduction
de presque 55% du nombre de messages. Le programme Blur2D profite du mécanisme dynamique
pour limiter le nombre de prédictions faites en même temps, ce qui permet de limiter le nombre
de mauvaises prédictions. Enfin, le programme Ray n’a pas assez de messages pour que le système
dynamique puisse vraiment se mettre en place. En conséquence, le système ne compense pas son
coût en terme de temps d’exécution mais aussi en nombre de messages par rapport à la version
instrumentée (Esodyp+) qui sait tout de suite quelle zone de code optimiser.
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laquelle il se trouve et ensuite exécute un des modules d’instrumentation avant de revenir

5 Abstraction de code et intégration du modèle Esdoyp

Le chapitre précédent présente l’intégration d’Esodyp dans le domaine des systèmes distribués.
Nous avons montré qu’il est possible d’utiliser Esodyp comme un filtre pour décider quels accès
optimiser. Le chapitre 5 reprend le travail présenté dans le chapitre 2 et y intégre Esodyp.
Au final, le système proposé modifie dynamiquement le code binaire d’un programme afin de
précharger les chargement coûteux du programme. Un article présentant les travaux contenus
dans ce chapitre est en cours de soumission [10].

5.1 Abstraction du code d’instrumentation

Malheureusement, l’intégration d’Esodyp demande des modifications du système précédent.
Puisque le système nécessite à présent de faire une instrumentation plus complexe, cela veut
dire que l’espace mémoire alloué pour chaque chargement doit être agrandi. Par contre, cela
n’est pas envisageable lorsque le nombre de chargements devient important. Au lieu de cela,
deux couches intermédiaires entre le code de base du programme et le code d’instrumentation
ont été ajoutées afin de permettre d’intégrer le modèle Esodyp.

La figure 12 montre la nouvelle infrastructure du système. Elle est découpée verticalement en
quatre parties. Par rapport au système précédent, un état est toujours associé aux chargements
et l’automate est présenté par la suite. Nous appellons module le code associé à chaque état de
l’automate.

Le code du programme se trouve sur la gauche de la figure et les chargements ont été
remplacés au début de l’exécution par des sauts inconditionels.

Le code spécifique aux chargements est ensuite exécuté. Une petite zone mémoire est
dédiée à chaque chargement, charge l’adresse de la structure associée et fait un saut vers une
zone de code spécifique à la fonction.
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Figure 13: L’automate fini représentant les états et les transitions des chargements

Le code spécifique aux fonctions est un code qui commence par la sauvegarde de certains
registres. Ensuite, utilisant les informations contenues dans la structure du chargement, l’état
courant du chargement et l’adresse du code d’instrumentation associée sont récupérés. Enfin,
un saut inconditionnel est fait vers ce module.

Les modules sont représentés par la partie droite de la figure. C’est par exemple dans ces
codes que les calculs de latences sont effectués. Le calcul de la distance de préchargement est
effectué dans le module Coût.

5.2 Les états des chargements

Les différents modules sont représentés dans la partie droite de la figure 12 et chacun représente
le code d’un état que peut prendre un chargement. La figure 13 présente l’automate gérant
les transitions entre les états. Puisque le code d’instrumentation est plus complexe, beaucoup
d’opérations sont internalisées par rapport au système présenté dans au chapitre 2.

Les chargements commencent donc dans l’état Étudier. Lorsqu’ils sont exécutés un certain
nombre de fois, la latence moyenne est calculée et, si elle est assez importante, le chargement
est envoyé vers l’état AccèsMem. Comme dans le système précédent, si ce n’est pas le cas,
le chargement est désinstrumenté pour limiter le coût du système global et son état devient
Dormant. Par contre, une amélioration a été apportée au système : la plupart des changements
d’état ne nécessitent plus aucune réécriture du code binaire. En effet, les états sont définis par
un identifiant unique qui est chargé dans le niveau d’abstraction de la fonction. Cet identifiant
donne l’indice de l’état et permet de décider quel module exécuter. De ce fait, ce changement
d’état se fait en modifiant simplement l’identifiant.

Dans l’état AccèsMem, le chargement remplit un tampon avec les adresses chargées. Lorsque
ce tampon est plein, le système choisit l’élément le plus présent et crée un modèle Markovien
avec Esodyp afin d’étudier son comportement mémoire. S’il est composé de pas constants ou s’il
contient un cycle de pas, il va vers l’état Distance de préchargement où il teste diverses distances.
Sinon, il est envoyé vers l’état dormant et est désinstrumenté. Lorsqu’une distance est trouvée,
il est enfin optimisé. Par contre, dans le cas contraire, il est désinstrumenté.

Dans le système précédent, chaque test d’une nouvelle distance de préchargement demandait
l’intervention du deuxième thread.

Enfin, pour déoptimiser ou réinstrumenter les chargements dormants, le système utilise en-
core un deuxième thread qui modifie le code binaire. Par contre, tous les autres changements
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Figure 14: Accelerations obtenues pour les programmes générés par les compilateurs gcc et icc

d’états sont gérés en interne ce qui permet de ne plus attendre le réveil de ce deuxième thread.
Ceci permet non seulement de rendre le système plus exact mais réduit sensiblement son coût.

5.3 Performances

La figure 14 présente les résultats obtenus avec ce système. Elle compare les résultats entre les
deux compilateurs gcc et icc. Le coût du système a été évalué à 3% et les accélérations sont
comprises entre 2% et 163%.

5.4 Conclusion

En conclusion de cette partie, le système que nous avons créé permet d’intégrer Esodyp dans un
système dynamique et transparent. Utilisant le modèle afin de pouvoir décider quels chargements
optimiser, le coût total du système est réduit au maximum. De plus, seuls les éléments propices
à l’optimisation sont étudiés plus en détail.

Ce chapitre présente également une solution permettant une abstraction du code en ajoutant
deux niveaux entre le code instrumenté et le code du programme cible. Ces abstractions perme-
ttent une écriture plus facile de l’instrumentation et, surtout, un code bien plus complexe peut
être écrit car il est partagé par tous les chargements. Dans le cas contraire, il aurait fallu allouer
plus d’espace par chargement, ce qui devient vite impossible du point de vue de l’allocation
mémoire.

6 Conclusion et perspectives

6.1 Conclusion

Cette thèse présente des approches originales pour résoudre les problèmes de défauts de cache
de données. Les systèmes dynamiques sont capables d’étudier, modéliser et optimiser des pro-
grammes cibles avec un coût réduit. Par contre, la plupart des systèmes se basent sur les blocs
de base du code au lieu de se placer au niveau de l’instruction. Ceci ne permet donc pas de
gérer chaque chargement indépendamment.
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La première partie de cette thèse présente un système dynamique qui modifie directement
le code binaire afin d’insérer des instructions de préchargement dans le programme. Chaque
chargement du programme est associé à un état dans un automate fini. En utilisant un deuxième
thread pour gérer les changements d’état, le système est capable de gérer les chargements et
désinstrumenter ceux qui ne répondent pas favorablement à l’optimisation proposée. Sur un
ensemble de programmes, ce système est capable de les accélérer de 2% à 143%.

Par contre, ce système présente quelques défauts. Premièrement, la sélection des chargements
à optimiser est faite de façon naïve puisqu’il ne modélise pas le comportement mémoire avant
de tenter une optimisation. Ce n’est seulement lorsque l’optimisation teste chaque distance de
préchargement et ne réduit pas la latence du chargement que le système en déduit son incapacité
à l’améliorer. Deuxièmement, puisque c’est le second thread qui gére les transitions d’état, il faut
attendre le réveil de ce thread avant qu’un chargement change d’état. Enfin, à chaque transition,
une modification du code binaire est nécessaire pour prendre en compte ce nouvel état.

Le premier point négatif, c’est-à-dire le fait que le système n’étudie pas le comportement mé-
moire des chargements, est abordé lors de l’implémentation d’un modèle Markovien. Nommé
Esodyp, il se base sur une représentation sous forme de graphe pour comprendre le comportement
mémoire actuel du programme en utilisant les précédents accès pour émettre des prédictions.
Implémenté sous forme de bibliothèque de fonctions, le modèle peut être intégré par un pro-
grammeur pour accélérer les programmes.

Ce modèle a été étendu, et nommé Esodyp+, pour une intégration dans un système dis-
tribué nommé Jackal. Cette extension a permis d’analyser les messages envoyés entre les noeuds
distants et prédire quels seraient les objets nécessaires aux phases de calcul du programme.
Par exemple, Esodyp ne permettait que de prédire un élément à la fois. Or, dans un système
distribué, il faut pouvoir prédire plusieurs éléments en même temps afin de réduire le nom-
bre de messages global. En comparant le système à deux autres prédicteurs, il a été montré
qu’Esodyp+ permettait de faire des prédictions précises et à faible coût par rapport aux deux
autres prédicteurs.

Mais ceci demande toujours une connaissance du programme à optimiser puisqu’il faut inté-
grer des appels vers le modèle. Une modification dans le système Jackal a permis de transformer
les vérifications d’accès afin de permettre à Esodyp d’être automatiquement appelé par le sys-
tème sans l’intervention du programmeur. En utilisant un automate fini pour gérer les accès
aux données et en utilisant une modification dynamique pour la distance de préchargement, le
système final obtient généralement de meilleurs résultats que le système intégré par le program-
meur.

Finalement, cette thèse présente une solution pour intégrer le modèle Esodyp dans un système
d’optimisation dynamique. Ceci demandait de modifier l’infrastructure interne du système et
deux couches d’abstraction sont apparues. Cette abstraction a permis d’intégrer des instru-
mentations plus complexes, allégeant le travail du deuxième thread. Par exemple, le changement
d’état n’est plus intégralement géré par ce dernier puisque l’exécution du code d’instrumentation
utilise un indice d’état qui définit quel code utiliser.

Cette abstraction permet aussi de réduire considérablement la mémoire globale utilisée par
le système dynamique et permet d’intégrer Esodyp pour modéliser, lors de l’exécution, les com-
portements mémoires des chargements côuteux. Si le modèle décide d’optimiser le chargement,
différents pas sont testés comme pour le système précédent. Par contre, puisque le système
permet une instrumentation plus complexe, il est possible de tester plus de distances à un coût
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plus faible.
Ces optimisations ont finalement permis de rendre le système général plus complexe, plus

précis et plus léger. Le coût moyen du système a été évalué à 5% de l’exécution des programmes
et a permis d’en accélérer certains de 2% à 163%.

6.2 Perspectives

Cette thèse a aussi permis d’entrevoir la possiblité de différentes extensions. Ceci a été remarqué
lors de l’intégration du modèle Esodyp dans le système Jackal. Le même automate fini ne pouvait
pas être utilisé pour des raisons techniques et cela a demandé de modifier le comportement du
système. Par exemple, un deuxième thread était difficilement possible dans ce contexte et, à la
place, l’état Dormant posséde un test interne qui vérifie s’il est temps d’étudier à nouveau le
comportement de l’accès.

Puisque les systèmes proposées sont entièrement logiciels, nous travaillons sur des versions
pour les architectures x86 et embarquées. Un système d’optimisation sur une architecture embar-
quée pose des problèmes réels d’allocation mémoire. Le système d’abstraction de code présente
par exemple de réelles applications dans ce contexte.

Une autre voie est l’abstraction du noyau du système. Ceci permettrait d’avoir le même
code de base qui peut directement être placé sur différentes architectures. Pin [76] propose à ses
utilisateurs d’écrire des PinTools qui fonctionnent sur n’importe quelle architecture prévue par
Pin. Une telle séparation est intéressante mais demande probablement un langage intermédiaire
qui serait compilé à l’exécution du système.

Finalement, le code du modèle Esodyp a été écrit dans le langage C. Il est donc possi-
ble d’utiliser un autre modèle mathématique pour sélectionner les chargements, comprendre
et prédire les comportements mémoire d’un programme. Nous travaillons sur une abstraction
supplémentaire qui permettra d’intégrer directement du code de haut-niveau que l’utilisateur
pourra écrire. Ceci permettra d’écrire une vraie plateforme logicielle d’optimisation. Certes,
les plateformes comme Pin, DynInst [18] et DTrace [19] existent, mais elles sont généralement
orientées vers l’instrumentation uniquement et se base sur les blocs d’instructions. Il est difficile
de trouver un système qui permet à l’utilisateur de définir parfaitement ce qu’il veut accomplir
d’un point de vue de l’optimisation mémoire et qui gére chaque chargement séparément.



Introduction

Tasks handled by compilers tend to be more numerous and complex. From a simple text transla-
tor of a high-level programming language to a binary executable code guaranteeing the functional
requirements, the compiler is now asked to handle various non-functional goals either exclusively
or simultaneously. For example, the generated binary code has to:

• result in an execution time being as low as possible;

• be respectful of real-time constraints such as maximum execution time or fixed scheduling;

• minimize electrical power consumption;

• minimize memory consumption;

• result in a predictable execution behavior.

Moreover, all these objectives are often inconsistent or have strong interferences that may
cancel, or even worsen, their impact. For example, the objective of execution time minimization
is obviously in opposition with power consumption minimization, or with predictable behavior.
Also the techniques used to reach them can be various and their choices can determine the
impact of these contradictions.

All these aspects require a full understanding and full control of the behavior the software
has when run on hardware. A piece of software, even if it has been built, analyzed, proved or
simulated using the most advanced tools, will almost always have an unexpected behavior when
confronted to the hardware that is executing it. Thus so-called static analysis and transformation
approaches are limited by the ignorance of the impact of this confrontation. This is also true
for the hardware side, since hardware is sometimes built without any knowledge of the software
that might be run on it. But in this thesis, we remain on the software side, confronted to a fixed
hardware platform.

An answer to this control over the behavior issue consists in opposing, or in assisting, static
approaches with so-called dynamic approaches, i.e., approaches where program analysis and
transformation occur during the execution. The analyzer or optimizer, that we can call more
generally compiler, can access non-functional information only available at runtime, resulting
from the confrontation between the software and the hardware, but also related to some non
predictable functional evolution of the computation.

However, adding such a dynamic compiling process to the target software yields difficult
conception issues in order for this process not to be in direct contradiction with the performance
goals the programmer had established. For example, it is obvious that adding some compiling
code that runs simultaneously with the target program yields an issue about increasing execution
time if the objective is execution time minimization. It is the same for all the objectives cited
above. However, many works dealing with dynamic compilation, as those presented in this
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manuscript, show that it is quite possible to reach these objectives by widely counterbalancing
the negative impacts by the positive ones. For example, the additional memory consumed by
the dynamic process can be negligible compared to the reduced memory consumption obtained
due to it.

This thesis concerns the area of developing dynamic approaches for program behavior con-
trol. More particularly, the main topic of the works presented here concerns execution time
minimization on a uni or multi-processor architecture, through memory access anticipation by
data prefetching, and in a way that is transparent to the user. The developed processes include
a dynamic behavior analysis phase, where memory access latencies are measured, a dynamic op-
timizing transformation phase if these transformations have been selected as useful, and where
prefetch instructions are inserted into the binary code, a phase of dynamic analysis of the op-
timization efficiency, and finally a phase of transformation cancellation if the transformations
have been observed as inefficient. Moreover, all these phases are applied individually to each
memory access, and eventually several times when memory accesses show variable behaviors
during the run of the target software.

We show that it is possible to conceive such a dynamic system which has a relative com-
plexity and which is entirely software, i.e., which does not make use of any hardware functional
specificity, which is efficient for many programs and which is not penalizing for the others. At
our knowledge, our work is a first proposal of an entirely software dynamic system which does
not use any code interpretation mechanism.

Chapter 1 presents the state-of-the-art concerning profiling mechanisms, prefetching tech-
niques and dynamic instrumentation and optimization frameworks. In order to be efficient,
dynamic instrumentation or optimization frameworks need to lower their overhead at a maxi-
mum. This is performed by profiling mechanisms that select the costly code regions and inform
the frameworks. One solution to accelerate programs is to reduce data cache misses. A common
technique to achieve this is to prefetch the data. A prefetch requests the predicted data before a
program requires it. This prevents a data cache miss. Dynamic instrumentation or optimization
systems require such techniques in order to reduce their overhead. This chapter presents various
works concerning all of the above topics.

Chapter 2 presents a lightweight dynamic system that is able to modify the binary code
at run-time. The system selects costly loads and tries to prefetch the data using a stride-
based predictor. A stride-based predictor calculates the difference of addresses between two
data accesses. This is efficient in the case of a constant memory traversal behavior. Each load
is associated to a state in a finite state machine. A second thread is created to monitor the
loads and update the state of each load. The chapter then presents the behavior of the system
when applied on various benchmark programs and the implementation involved is detailed. The
system is implemented on the Itanium-2 processor and has a low overhead of 5% while the
speed-up on certain programs ranges from 2% to 143%.

However, the selection scheme of chapter 2 is not very effective since it does not try to
understand the behavior of the memory accesses it tries to optimize. Instead, it simply tries to
optimize a load and stops if it is not effective. Chapter 3 presents a Markovian model named
Esodyp that is constructed and updated at run-time. This means that it must have the lowest
overhead possible while maintaining a good accuracy. Furthermore, the system must be able
to calculate the predictions quickly and depending on a variable number of past elements. It is
shown that, a programmer can insert calls to Esodyp to achieve significant speed-ups on certain
benchmark programs.
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The creation of the Esodyp model lead to its integration into the Distributed Shared Memory
(DSM) system named Jackal. The system compiles Java code into native binary codes and uses
access checks to verify if the data is locally available. If not, the local node sends a request
message and waits for its answer. Esodyp was extended into Esodyp+ in order to handle bulk
predictions and the address representation of Jackal. Esodyp+ was then compared with two
other predictors and it is shown that it performs well while maintaining a low overhead. Second,
instead of adding calls to Esodyp+ in the benchmark programs, the chapter shows how the
Jackal system can be modified to integrate a dynamic optimization system that handles the
code transparently without the help of the programmer.

Chapter 5 then shows how to integrate Esodyp into a dynamic optimizer for the Itanium-2
processor. However, the system presented in chapter 2 is not directly extended since certain
implementation reasons require internal changes. Using an abstraction level, the memory of the
system is reduced while integrating more complex instrumentation. In the previous system, a
second thread is used to change the states of each load. However, in this chapter, the system
handles these changes internally, reducing the tasks of the second thread to a minimum. The end-
result is a dynamic framework that is more precise while using more complex instrumentation
techniques. Also, Esodyp is integrated to decide whether to optimize or not a particular load.
The overhead of the new system is evaluated at 3% and the optimization accelerates programs
ranging from 2% to 163%.

Finally, a conclusion and perspectives are presented.
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Chapter 1

State-of-the-art

This chapter presents the state-of-the-art concerning profiling mechanisms, prefetch-
ing techniques and dynamic instrumentation and optimization frameworks. Profiling
mechanisms give the optimizer, whether a compiler or a dynamic framework, the infor-
mation needed to apply the correct optimizations. For example, this chapter presents
prefetching techniques that can be used in order to request data in advance, limiting
the number of processor stalls. Finally, we present dynamic frameworks that are able
to profile and optimize programs during run-time without any prior knowledge of the
target program.

1.1 Introduction

This thesis presents different techniques to profile, understand and optimize memory operations.
Data loads for instance have been a common interest for many researchers since they are generally
considered as being the bottle-neck of modern architectures. Since the gap between speeds of
processors and memory accesses is growing every year, techniques must be found to limit the
incurring stalls. This chapter presents a brief overview of the different possibilities in three
major domains.

First, before being able to optimize a program, of the target program needs to be under-
stood. This is called profiling and different techniques exist. Hardware profilers use architectural
components in order to gather the necessary information. If time is not a factor, compilers can
insert calls and special code into the program to provide the information by executing a modified
and slower version of the program. If the code cannot be recompiled or if there are run-time
constraints on the program, dynamic instrumentation frameworks can attach themselves to a
running program and modify the code before detaching themselves. Finally, dynamic profilers
exist and often rely on sampling techniques to lower the overhead. This last group of profilers
are useful since they are perfectly adapted to combining a profiler with a dynamic optimizer.

Second, once the profiles have been processed, an optimization system must be defined.
Prefetching techniques are well-known to handle data cache stalls. By loading the data ahead
of time and if done correctly, the processor constantly has the information it needs to continue
the execution of the program. We divided the prefetchers in three groups: stride, correlated
and thread predictors. A stride predictor uses the recurring distance between two consecutive
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accesses in order to prefetch the data. This requires that the stride of the different load addresses
remains identical. On the other hand, correlated prefetchers use more complex models handling
many past events to understand the current memory behavior of loads. This second group has
a higher CPU overhead since the creation and use of the model is more complex but these
models are able to handle a bigger number of loads in a program. Finally, thread predictors are
integrated into the execution stream and run concurrently with the program. However, they
execute a simplified version of the code and, by reducing the computation code, this second
thread executes faster than the base program. This means that the predictor directly accesses
the data before the main thread, thus reducing the data cache misses.

Finally, we give a brief overview of the existing dynamic frameworks. These frameworks
generally contain dynamic profilers and dynamic predictors in order to achieve speedups or limit
their costs. Again, we can divide this group into two subgroups. The dynamic instrumentation
frameworks offer the users a possibility to understand at run-time the execution and general
behavior of different programs. The dynamic optimization systems are generally specialized in
carrying out a specific task to optimize programs.

Though this state-of-the-art is not exhaustive, it should give the reader a general idea of the
prior main contributions in each particular specialty.

1.2 Profiling

Different programming paradigms exist. Whether the program is interpreted or compiled, both
interpreters and compilers optimize the code in order to achieve the best performance for the tar-
get program. This performance can be, for example, the amount of energy required, the quantity
of memory used or the execution time. However, optimization schemes are numerous and decid-
ing which to use and how is a complex problem. Certain optimizations can simply be achieved
by analyzing the code (static optimizations), but others can only be done by understanding the
behavior of the program during the execution, (dynamic optimizations).

In order to analyze the behavior of an executing program, the code is instrumented and
different profiling goals are used. Prefetchers need to know what loads are considered delinquent.
A delinquent load is a load that often leads to a cache miss. Code-layout optimizers need to
detect frequently used code regions, also called hot traces. Depending on the information needed,
profilers instrument regions of code, redirect function calls to maintain control and/or directly
modify the binary code at runtime to achieve their goals.

We can classify the different profiling techniques in 4 groups:

• Hardware profilers that use existing components, extend them or even create new hardware
elements;

• Compiler assisted profilers or post-compiler off-line techniques that use information pro-
vided by the compiler to achieve their profiles or modify the binary before execution to
correctly instrument the program;

• Dynamic instrumentation frameworks that attach themselves to the program and modify
it dynamically;

• Dynamic profilers used for dynamic optimizations which are lighter and incur less overhead
than the previous group.

Hardware profilers are, by definition, dependent of or even integrated into the underlying ar-
chitecture. For optimizing frameworks, they are useful since they generate a very low overhead.



1.2 Profiling 29

Modern processors contain generally many hardware performance counters that count, moni-
tor and check various events such as instruction/data cache misses, specific cache misses, bus
information or Translation Lookaside Buffer (TLB) misses. The advantage of using hardware
profiling schemes is the fact that the optimizer can concentrate on accelerating the program with-
out having to instrument the code itself. However, this also means that optimizing frameworks
cannot be used on other architectures as easily as totally software solutions.

Compilers, before generating code, generally use an intermediate representation in the form
of a tree or a graph to represent the code and perform different optimizations. If integrated into
the compiler, a profiler can modify the graph before code generation by inserting instrumentation
and/or directly modifying the target program. The profiles are then studied by off-line techniques
that generally extract as much information as possible and use complex or time consuming
algorithms that could not be used during the execution of a program to define the behavior of a
program and how to optimize it. For example, a loop recognition algorithm for memory access
traces is presented in [25].

Post-compiler techniques directly modify the binary executable after the compiler has gen-
erated the code and before execution. These techniques sometimes rely on recreating the inter-
mediate representation (IR). With the IR, it is possible to inline functions from different files,
optimize certain code-layouts or modify global data structures in ways that were not possible
when the compiler was generating each source file. However, modern compilers can also gen-
erate intermediate files in order to address these issues, Icc has for example an interprocedural
optimization option. A problem is the register allocation scheme since it is done during the com-
pilation phase. Post-link methods must rely on liveliness analysis to find free registers, allocate
more registers if possible, use hardware solutions or find other techniques in order not to require
extra registers.

Finally, dynamic solutions have low overheads which make them perfect solutions for dynamic
optimization schemes. Though dynamic solutions with a high overhead exist, they are either
used for off-line profiling or they do not profile the program during the whole execution. They use
methods similar to post-compiler techniques but at run-time. Finally, dynamic solutions are able
to pause, modify and resume the execution of the target program. Attached to optimization
schemes, lightweight solutions are able to dynamically decide the modifications needed for a
particular program.

The rest of this section presents each class of profilers in a more detailed manner.

1.2.1 Hardware Profiling

Hardware profiling consists in using the processor to extract hot-traces, delinquent loads or
other information useful for optimizers. The hardware solutions can be hardware performance
monitoring (HPM) using internal counters, extensions to current hardware components or even
new elements that can be added to the processor. This subsection presents a few hardware
profiling techniques.

When profiling tools are implemented for specific processors, they tend to use all the available
hardware information. For example, the Itanium processor [53] contains hundreds of performance
counters that can easily be used by a profiler [96, 73, 78]. Other proposed techniques extend the
current architecture by adding a few simple components to the existing hardware [114, 28, 33, 63].
For example, a simple dirty bit or a cache flush mechanism can be added to the hardware to
handle new algorithms. In [28], Conte et al. extend the branch predictor included in the
processor with these mechanisms. A program is compiled containing a special identifier (e.g., a
Unix Magic Number) signaling it contains a profiling table in the executable. At startup, the
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profiling table is loaded in memory along with the binary executable. The processor is then
periodically sampled by the operating system in order to update an arc-based profile of the
different executed branches. Finally, at the end of the execution, the updated table is rewritten
in the executable for storage. Profiles from different executions are built at a very low cost and
used to recompile the code accordingly. The advantage of such a system lies in the low overhead
of the system. Since there is almost no slowdown, users can use the profiled version of the
program without any of the problems that can arise with the difference in execution time. The
common compile-profile-recompile paradigm is thus replaced by a compile-use-recompile solution
which can be done without the knowledge of the user.

More elaborate schemes add completely new hardware components into the processor [114,
33, 82, 119, 120]. For example, Merten et al. [82] add a hot spot detector, branch behavior
monitoring and a general system management system to detect and handle hot traces. Figure
1.1 shows the hot spot detector used by this method. It contains a Branch Behavior Buffer to
store the branch addresses, execution counters, taken counters and whether or not the branch is
a hot spot candidate, also called the candidate flag. Figure 1.2 shows how the candidate flag is
set to 1 when the execution counter reaches a determined threshold. By using a logical binary
or with the candidate flag and the bk bit of the execution counter, the candidate flag is set to 1
when that execution bit is set to 1. Then, using a the binary operation or with the candidate
flag, the value remains at 1. Once a candidate branch is found, the system starts a hot spot
detection phase in order to determine if the candidate branch accounts for at least a certain
percentage of the total branches executed. If this is true, the method sends an interruption to
the operating system, letting it handle and decide how to optimize or modify the corresponding
code of the program. Finally, since the branch buffer table has a limited size, multiple branches
can be sent to the same line. These conflicts are resolved using two different timers. First, a
refresh timer is used to periodically remove any non candidate branches from the table, allowing
the profiling of current branches. Second, a reset timer periodically clears the whole table. This
allows branches conflicting with candidate branches to be profiled. Though, hybrid systems
are common, the interaction of the hardware profiling system with the operating system is not
always needed. If the proposed technique can handle distinct simultaneous program executions
efficiently, it can be a good idea to centralize the software side of the scheme and integrate it into
the operating system. However, one can argue that it is preferable to have a separate software
framework directly attached to the hardware in order to keep the whole system independent of
the operating system.

Another solution called Trident [119] uses a hybrid approach to limit the overhead of the
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framework. Using hardware components to detect hot traces, the system is able to keep a very
low overhead since there is no need to handle this in software. Once a hot trace is detected,
a hardware event Hot trace is created that will later be consumed by a helper thread. Once
consumed, an optimized version of the trace is created and added into the code cache. In
addition to optimizing the code, a hot value profiler is added to the code. This enables the
hardware to monitor and detect frequently occurring values from load instructions. If such a
load exists, a second type of event Hot Value is generated. When this event is consumed, the
code of the trace is further optimized, using more aggressive techniques such as dynamic value
specialization. This means that the same trace can be optimized twice and, using a garbage
collector, the old traces are periodically removed from the code cache.

Zilles and Sohi [123] showed that using a co-processor to handle the profiling is also a solution.
Figure 1.3 shows the proposal. While the host CPU is fetching, decoding and executing the
program, the profiling co-processor receives samples of the available information. A filter is used
at the decode stage to limit the quantity of information that would need to transit between
both processors. At the execution phase, the information is collected and then sent to a sample
buffer in the co-processor. The information is then sent to a decoder/extractor module. As
the profiling program studies the profiles, the buffer is emptied and the data is sent to the
different available memory arrays. The co-processor contains three different memory arrays:
the microcode array for the co-processor program storage, the associative array for efficient
matching between different profile entries using a hash-table and the data array for general data
storage. Different registers are also available in the co-processor: constant registers set at the
initialization of the program, value registers used to handle the profiled entries and optimized
index registers. An index register has a configurable width that is set at program load time and
can be used as a saturating counter or a circular buffer index. Finally, when the co-processor
has enough information, it can transfer it using a host access bus. This last technique gives
an application a chance to specialize the hardware profiling scheme. Finally, in multicore and
manycore architectures, such a programmable hardware profiling core would be an interesting
feature.

The low overhead incurred by hardware profilers gives them a clear advantage on the different
software techniques. Since they can be directly attached to the processor and can directly
monitor the different events and behavior of a program, they can retrieve most of the information
at a very low cost. However, the cost of adding a profiler into a chip is expensive and generally
hardware profilers use hash tables and sampling techniques in order to keep the memory needed
for the profile at a minimum. This compromise can be a serious problem if the optimizers need
very precise information in order to modify the target programs correctly. The rest of this
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chapter present the different software techniques available.

1.2.2 Compiler aided profiling

Probably the most renowned compiler-aided profiler is Gprof [44] which is an extension of the
Unix program prof introduced in 1979. prof gave users a solution to determine the most time
consuming function but did not give the call graph of the program. In 1982, gprof added that
functionality. By using a compiler option, the compiled code included calls to the profiler at the
beginning of each function.

These calls render possible the construction of the call graph. Since the profiler is aware of
what function is called and where the instruction of the call is located, it can create the arc
between the caller and the callee. The second information gprof retrieves is the time spent
in each function. This is done by sampling the value of the program counter periodically and
inferring execution time from the distribution of the samples within the program. At the end of
the program, the profiler can provide a histogram of the location of the program at each polling
period. Once the program is executed, a profile output file is written. The call graph arcs are
condensed and the program counter histogram is written. An associated program then parses
this file to output the call graph and the approximated time spent in each function.

Call graphs and function execution time are not always sufficient to decide what optimization
should be used. Memory access regularities provide additional information and, if profiled
correctly, these accesses can be efficiently handled for example with stride-based predictors.
Wu et al. [116] use a compiler to add instrumentation around allocation, de-allocation, load
and store instructions. However, the quantity of information can become overwhelming and
compression techniques must be used. Using a horizontal and vertical decomposition of the
stream of information and using the Sequitur grammar [87, 86] to compress the profile, the
system is able to achieve a better compression than conventional compression using the raw data
and the Sequitur grammar. In this work, two memory profilers are presented: a lossless profiler
and a lossy profiler. The lossless compression is 22% more compact compared to conventional
Sequitur compression, whereas the second profiler is able to compress at a 3 order of magnitude
with a slowdown averaging a factor of 11.5 times the native execution time.

Another technique to limit the size of the profile output is to instrument only a subset of
loads. For example, finding regular stride patterns is important when considering prefetching as
a technique to optimize. Prefetching consists in requesting data that will probably be needed
in the future by the program. One compiler-aided technique, presented by Wu [117], consists
in profiling a set of loads of the program. Since profiling every load throughout the execution
would incur a too high overhead, loads are called equivalent if they are inside the same loop,
in control equivalent blocks and their addresses are different only by compile-time constants.
The system also handles out-loop loads if they show a strong single stride behavior. Using a
sampling method that does not continuously profile the loads of a program, the system is able
to reduce the overhead. Once the execution is finished, the compiler analyzes the profile output
file to determine what loads should be optimized.

Once the compiler has processed the profile, it can make decisions and prepare the new
optimized code. Kim et al. [62] present a more elaborate scheme using Markovian predictors.
Once the profiles are examined, Markovian predictors are created and then dynamically loaded
into the prefetching unit of the CPU at the appropriate point during the runtime to drive
the prefetching. This is more a hybrid solution since the profiling and calculations are done
in software, whereas the hardware handles the predictions and prefetching. Another solution,
presented by Rabbah et al. [92], consists in extracting the memory access sequence and, using
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a cache simulator such as Dinero IV [37], detect delinquent loads and then attempt to optimize
them during a second compilation phase.

Compiler-aided techniques are practical when relatively simple optimization schemes are to
be integrated into the program. Another direct application are programs that have a constant
behavior and do not directly depend on different input parameters. However, when multiple
optimization schemes are possible and when the mere order of the optimization phases can
modify and influence the outcome of the process, compiler-aided techniques are not general
enough. Iterative compilation is the logical next step to this technique. By iterating through
the compiler and execution of the program, the system can find the best optimization possible
for a target program. The next section briefly presents this field.

1.2.3 Iterative compilation

Iterative compilation can be considered as an extension of the compile - profile - recompile
paradigm. Instead of a single profile version of the code, the technique resorts to multiple
testing to find the right optimization sequence or optimization parameters [108, 2, 66, 91, 15].

Interactive compilation systems [45, 88, 66] can be seen as iterative compilation techniques.
VISTA [66] (VPO Interactive System for Tuning Applications) is an iterative compilation system
that gives developers an opportunity to decide which optimization sequence should be used
for their programs. Also, optimization passes can be programmed by the user. Using basic
programming structures such as if or while, a user is able to create an algorithm deciding what
sequence of optimizations passes should be used. Finally, an exhaustive search or a genetic
algorithm can be used to find the best sequence using different optimization passes.

Even when concentrating on a specific optimization domain, the number of possibilities is
huge. For example, when considering loop nests, classical optimizations range from loop reversal,
skewing, fusion to loop peeling. When optimizing these loops, the optimization sequence and
parameters of each technique can modify the output program. However, iterative compilation
can be a solution to test each possibility or at least a representative set in order to find the
best version. For example, Agakov et al. [2] show how the polyhedral model, a mathematical
framework, can be used to traverse the whole set of distinct, legal affine one-dimensional sched-
ules for a program. This means that every legal combination of optimizations that leads to a
new version of the program is tested. Of course, this depends of the program, the data input,
the compiler and the architecture. The authors define a legal transformation of a program as a
modification of the sequence of instructions while maintaining the semantics of the program.

Another factor to consider is the time spent finding the right optimization sequence. Though
the best optimization pass sequence with the correct parameters can be found, the number of
trials can be overwhelming. Fursin et al. [43] present a solution that accelerates the process.
Programs often exhibit stable phases during a single run. A stable phase can be defined as a
period in the execution where the behavior is constant, during a single run [70, 23]. During
phase intervals with the same performance, the system tests, at most, 16 different optimization
schemes and can decide what is the best optimization. Also, these schemes are only applied on
the most time consuming sections of code. This means that to automate the system, a previous
profiler would be needed to determine what code regions need to be optimized.

Though iterative compilation and compiler-aided profiling have a lot of things in common
the process is not the totally the same. Compiler-aided profiling tries to retrieve a maximum
of information since only one or a few runs will define how to optimize the program. Iterative
compilation allows multiple runs to test each parameter and even run the program without
profiles in order to check the duration of an execution without instrumentation.
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1.2.4 Post-compiler Profiling

Though compiler-aided and iterative compilation techniques differ, they have one common point:
the compiler. Both methods use the compiler to perform their tasks compared to post-compiler
techniques. This latter solution instruments the binary after the compilation and adds code
before the execution.

Profiling tools provide information such as memory accesses, data or instruction cache misses,
branch information. Some programmers need specific information for specific programs. Instead
of rewriting binary instrumentation tools, frameworks have been created to facilitate the work
of the programmers [69, 93, 105]. For example, a tool called PP [6] instruments SPARC binary
executables. PP is built on EEL (Executable Editing Library) [69], which is a C++ library
used to edit binary executables. EEL provides an abstraction that allows its user to ignore
the executable file format, binary instruction sets or the consequences of deleting, modifying or
inserting code. A tool such as PP can examine and modify functions in any order and EEL
handles internally the binary code generation of the new executable. Finally, EEL offers two
further abstractions: control-flow graphs (CFGs) and instructions. To instrument the code, the
tool uses the CFG as a map of the routine and can modify basic blocks, add code segments to
blocks and edges or even delete instructions.

The authors show that path profiling can limit the quantity of instrumentation needed and
lower the overhead incurred compared to other profiling techniques. The profiling system divides
the control flow into different directed acyclic graphs (DAGs). Each DAG is associated to an
array that contains a counter for each path existing in the DAG. A free register is set to 0 at
the entry of the DAG and incremented or set at certain edges between the basic blocks of the
DAG. When leaving the DAG to continue the execution of the program, the register value is
used as an index in the counter table. By incrementing this value, the profiler knows at the end
of the program which path was the most frequently used. This means that the system has two
important properties: to be able to assign a unique number for each path and determine what
path was executed when considering a path number.

Whole Program Paths [68] is an extension to this work. Instead of capturing path profiling
algorithms, this systems gives a complete record of the entire control flow of the program. As
before, the code is divided into DAGs but the different paths are linked together to give a full
view of the execution. To limit the size of the profile output, the system uses the Sequitur
[87, 86] grammar to compress the transforms the stream of acyclic paths into a context-free
grammar.

Post-link optimizers [104, 100, 78] modify the compiled code before execution in order to
instrument, profile and optimize programs without the help of a compiler and, compared to
fully dynamic schemes, without the need of handling overhead considerations. However, the
problems and solutions are often similar, though post-link solution are able to calculate more
complex models and insert the corresponding code in the binary. On the other hand, these
solutions are not always able to de-optimize in case their optimizations are hurting performance.
This means that post-link solutions tend to be less aggressive than full dynamic solutions or rely
on profile output files.

For example, ISpike [78] uses a Itanium post-link profiler. Like most Itanium dynamic
optimizers, ISpike is based on the perfmon API [83]. To perform its optimizations, ISpike uses
six profile types: I-cache misses, I-TLB misses, D-cache misses, D-TLB misses, load-miss strides
and branches that are provided by the hardware performance monitors. Once the profiles are
extracted and studied, ISpike performs different optimizations. For example, it modifies code
layout to limit the number of I-cache misses, prefetches instructions to limit the misses at branch
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Listing 1.1: Example of a DTrace script

s y s c a l l : : read : entry
{

s e l f −>t = timestamp ;
}

s y s c a l l : : read : return

/ s e l f −>t/
{

p r i n t f ( "%d/%d␣ spent ␣%d␣ nsec s ␣ in ␣ read \n" ,
pid , t id , timestamp − s e l f −>t ) ;

}

instruction. But it also performs data relocation for statically allocated data and inserts prefetch
instructions for stride-based memory loads.

1.2.5 Dynamic instrumentation frameworks

Dynamic instrumentation frameworks give a user the possibility to instrument programs during
runtime [18, 19, 85, 76]. Some attach themselves to running programs, generally using the
ptrace system call. These solutions also allow users to define how to instrument the programs
by coding little pieces of code in customized languages or sometimes directly in C/C++. In
this subsection, three systems DTrace [19], Valgrind [85] and Pin [76], which are more dynamic
instrumentation tools than profilers, are presented. Since dynamically instrumenting binaries is
often accomplished for profiling, we briefly present them here.

DTrace [19] is dynamic instrumentation system able to instrument both user-level and kernel-
level software. DTrace is a framework that enables users to receive information dynamically.
Using a C-like language called D, a user can, for example, request information on the use of
the malloc function for a particular process. The information a user can retrieve is obtained
by various probes provided by the framework. A probe is a location in the code or a particular
activity the program performs that DTrace can bind a request to execute a set of actions. For
example, these actions can record the stack, retrieve a timestamp or copy the arguments passed
to a function. Once the request is issued, the framework dynamically modifies the process to
install the needed probes and retrieves the requested information. Since instrumentation takes
place only when there is a user requesting information, DTrace is able to instrument any program
on demand without having to stop the execution and restart the program.

Listing 1.1 shows an example of a DTrace script that uses a thread-local variable to calculate
the time spent in the system call read. The thread local variable self → t is instantiated when
a thread requests usage of the syscall :: read : entry probe. At the beginning of each call to
the function read, the current timestamp is collected. At the return of the function, the current
timestamp is retrieved. The time spent in the read function is calculated by performing a simple
subtraction.

The second dynamic instrumentation system presented in this brief overview is Valgrind [85].
Valgrind is a dynamic binary instrumentation (DBA) framework. Valgrind, compared to DTrace,
is defined as a core program that a user can complete to create a tool. The tool then executes
the target program and instruments the target code one block at a time, in a just-in-time,
execution-driven fashion. The binary code is disassembled and translated into an intermediate
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Listing 1.2: Example of a Pin tool

#include <iostream>
#include "pin . h"
UINT64 icount = 0 ;
void docount ( ) { i count++; } // ana l y s i s rou t ine

void I n s t r u c t i o n ( INS ins , void ∗v ) // ins t rumenta t ion rou t ine
{

INS_InsertCal l ( ins , IPOINT_BEFORE, (AFUNPTR) docount , IARG_END) ;
}

void Fin i ( INT32 code , void ∗v )
{ std : : c e r r << "Count␣" << icount << endl ; }

int main ( int argc , char ∗ argv [ ] )
{

PIN_Init ( argc , argv ) ;
INS_AddInstrumentFunction ( In s t ruc t i on , 0 ) ;
PIN_AddFiniFunction ( Fini , 0 ) ;
PIN_StartProgram ( ) ;
return 0 ;

}

representation (IR) for the analysis of the tool. Once the tool decides how to instrument the
block, the IR is modified and the binary is rewritten taking into account the changes. Val-
grind, like Pin [76], Dynamo [5] and Deli [35], does not execute original code but rewrites
non-instrumented versions of the code and/or emulates portions of it.

Pin [76] has become one of the references for dynamic profiling. Currently supported by various
architectures (X-Scale, IA-32, IA-32E and Itanium processors), Pin gives users a possibility to
instrument and profile codes using C/C++ language written tools. Listing 1.2 shows a pin-
tool example that counts the number of executed instructions in the program. As we can see,
the tool has to initialize the Pin framework. It also adds a pointer into the framework to an
instrumentation function that inserts a call to the function docount before each instruction.
Finally, it asks Pin to call the function Fini before the end of the program. If we consider
function docount, it simply increments the global variable icount and function Fini displays it.

These three dynamic instrumentation frameworks show that many techniques and variations
are possible. The advantage of these techniques compared to the ones previously presented is
the potential and freedom given to the user. By allowing a user to write the code in a high-level
language, he can develop specific tools for each program or write generic tools for a given set
of programs. This freedom gives the user the possibility to completely understand, profile and
modify the code at run-time.

1.2.6 Dynamic Software Profiling

Dynamic software profiling, compared to heavyweight or off-line profiling, adds a decisive fac-
tor: execution time. Therefore, dynamic profiling needs to incur the lowest overhead possible.
Lightweight profilers are different than their heavyweight counterparts. First, they are generally
simpler in complexity and generally use a sampling method to limit the time spent instrument-
ing the code. Second, they are not off-line methods and are generally attached to a specific
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optimization scheme. Finally, certain solutions are totally dynamic, meaning that no prior in-
strumentation is needed and some solutions use a post-compilation instrumentation technique
to insert the instrumentation into the code. The rest of this section presents different dynamic
profiling schemes.

The Morph system [118] generates two files during the compilation phase. One file is the
binary executable and the second one is an intermediate representation of the program that
is used during the optimization phase. Using the operating system as a means to sample the
behavior of programs and generate multiple profiles, Morph is able to gather profiles that can be
used to specialize the code with relatively low overhead. In a second phase, when CPU activity
is low, the profiles are analyzed and specialized code is created and integrated into the programs.

Other solutions are purely dynamic, meaning that the profiler and optimizer are loaded
into memory with the program and retain no information about the behavior of the program
afterwards [5, 16, 4, 49, 22, 35]. These solutions rely on quickly deciding whether to optimize a
region of code or not and being able to assess their modifications.

Hirzel and Chilimbi [49, 22] extended the work of Arnold and Ryder [4]. The solution
presented by Hirzel and Chilimbi used Vulcan [104] to modify binary executables. The code
was modified in order to duplicate the functions present in the executable. One version of the
function contains the instrumentation code to provide memory streams to the optimizer which
incurs a high overhead. A second version contains only a few checks to be able to periodically
return to the instrumented version. This function switching system is an efficient software
solution to calculate stream samples instead of whole streams.

Dynamo [5] and DynamoRIO [16] interpret the code and dynamically create optimized ver-
sions of frequently used code fragments. A code fragment is defined as a one-entry, multiple-exit
instruction sequence. Figure 1.4 shows the dynamo framework. The code is first interpreted
until a branch instruction is found. By interpreting the code, Dynamo is able to control the
execution of the program. If the branch target corresponds to an entry in the fragment cache,
the program is redirected to that fragment. Otherwise, a counter associated to the branch target
is incremented. Since the fragments contain only one entry-point, adding a counting mechanism
to the branch instructions is sufficient to determine frequently used fragments. Dynamo does
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not use a second thread to maintain control and, at the end of a fragment, the execution returns
to interpreter. Since the exit of a fragment leads to another entry point, the system could test to
see if the corresponding fragment exists in the cache. However, if the current fragment branches
to another portion of optimized code, it is useless to switch to the interpreter and back to the
fragment cache. In order to limit the context switch between optimized fragments, they are
dynamically linked together when a fragment is created. This means that, if the code remains
in this cache, the code is no longer interpreted and the program can be executed at full speed.
Since the code is even optimized, speed-ups are achieved. If the exit destination does not exist
in the cache, the system directly increments the associated counter.

Ubiquitous Memory Instrospection (or UMI) [121] extends the DynamoRIO framework. The
system uses sampling to profile the hot traces. Once DynamoRIO framework has selected hot
traces, UMI samples the code and uses a fast cache simulator to determine delinquent loads. To
profile correctly the trace, UMI first creates a clone of the trace. This clone enables the system
to decide when to profile the trace. By filtering out certain memory operations and keeping
potential delinquent loads, the framework is able to lower its overhead. Finally, instrumentation
code is added at the end of the trace in order to decide when to profile the trace and when
to execute it natively. Using recorded memory references and a cache simulator, the system
is able to determine what loads are causing cache misses and UMI can try to optimize them.
The overhead of the DynamoRIO system is averaged at 13%, the added UMI overhead raises
this number to 14%. Once the delinquent loads are selected, UMI uses a stride prefetcher to
accelerate the benchmark programs. To achieve this, the stride used by the different loads are
determined by the profiler.

Deli [35], compared to Dynamo, is more a dynamic instrumentation framework than a simple
dynamic optimizer or profiler. Using a specific API, a user can modify the default behavior of
the DELI system. For example, a user can modify each instruction before it is executed since
the system emulates the code before generating code fragments that are saved in a fragment
cache. The user can also invalidate fragments or set callback functions. The callback functions
are called at different events during the execution. Users can then directly modify the default
behavior of the DELI framework to suit their needs.

Another dynamic optimizer is the Adore (ADaptive Object code RE-optimization) system
[73]. Adore uses a second thread to decide what to optimize and perform the code modifications.
Implemented on the Itanium processor, the system uses the hardware performance counters to
find hot-traces. Using a hybrid phase detector to only optimize the code when the program is
in a stable phase, Adore is able to optimize while maintaining a low-overhead. A stable phase
is determined when the program remains in the same code region (using the Program Counter
register), has a constant number of cache misses and number of cycles per instruction. More
recent work, for example from Das et al. [32], defines this as a global stable phase detector
and determines that calculating a stable phase for each code region gives better results. Since
Dynamo interprets the code, it needs to optimize and send code fragments into the cache as fast
as possible. Compared to the Dynamo framework, the overhead incurred by Adore is lighter
and this means that less code needs to be optimized.

The profiling systems of these dynamic systems all have one thing in common: they are
lightweight. In order to achieve the lowest overhead possible, sampling techniques, fragment
caching, dynamic inlining and other optimizations are used. Once the overhead of the system
is low enough, optimization techniques can be linked to the profiler. One of the most common
data optimizations is data prefetching. The next section presents an overview of the different
prefetching techniques that have been studied and implemented.
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Caches Information Itanium Itanium II

L1 Instruction
Total size 16 Kbytes 16 Kbytes
Line size 32 bytes 64 bytes

(Internal) Latency 2 cycles 1 cycle

L1 Data
Size 16 Kbytes 16 Kbytes

Line size 32 bytes 64 bytes
(Internal) Latency 2 cycles 1 cycle

L2 Data
Size 96 Kbytes 256 Kbytes

Line size 64 bytes 128 bytes
(Internal) Latency 6, 9+ cycles 5, 7 or 9+ cycles

L3 Data
Size 2 - 4 Mbytes 6 Mbytes

Line size 64 bytes 128 bytes
(External) Latency 21+ cycles 12+ cycles

Table 1.1: Cache level comparison between the Itanium and the Itanium-II processors

1.3 Prefetching

When a program is executed, it accesses data from memory. With the improvements in processor
clock speeds, the importance of reducing memory stalls is becoming more and more important.
To minimize the number of accesses in memory, modern processors copy the data into small
caches in the processor. The number of caches available depends of the processor. Modern
processors contain at least one small internal cache, considered as the first level and divided into
two groups: instruction and data caches. The instruction cache contains the currently executed
program instructions. Since most programs contain loops or recursive functions, the processor
can execute the code without having to fetch the next instruction from memory. The internal
data cache is the smallest but fastest data cache of the processor, except if we consider the
different registers of the processor as a data cache. It only contains the current data and relies
on bigger but slower external caches to handle less used data. Table 1.1 compares the different
sizes and latencies for each cache level between the Itanium and Itanium-II processors. As we
can see, the Itanium-II, while offering bigger cache levels, also reduces the average latencies.

When a data request is performed, the processor checks the caches first. The first cache
level has the smallest size but is also the most efficient in terms of number of cycles to fulfill the
check. However, if the data is not present, the processor looks for the data at the second level
and so on. If the data is not available in the different cache levels, a cache-miss occurs and the
processor retrieves the data from memory. During the retrieval and depending on the content of
the cache levels and the replacement policy, the cache levels can also copy the data for a future
reuse.

Prefetching consists in requesting data before the program accesses it. This ensures the pres-
ence in cache when the data is needed. To determine what loads are considered delinquent and
what data should be prefetched, optimizers use profilers such as those presented in the section
1.2. This section presents the different techniques used to prefetch data once the delinquent
loads have been detected.

Prefetching data generally consists in using a hardware component or using an instruction
from the processor. Three factors are important when considering prefetching data: prefetch
distance, prediction accuracy, outstanding prefetches. The prefetch distance and prediction accu-
racy generally depends on the information provided by the profiler. The outstanding prefetches
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is the number of prefetches that are not yet finished. Generally, a processor starts ignoring
prefetch requests when the number of outstanding prefetches is too important.

The rest of this section presents different prefetching schemes. The reader may refer to
[38, 109] for a survey of data prefetch algorithms. Generally, prefetchers can be described as
stride, correlated or thread prefetchers. Stride prefetchers are the simplest prefetchers since
very little information is required and they can start prefetching very early. They are useful for
programs with regular stride memory accesses. They are easy to implement and the overhead
incurred is low. For example, in the case of regular loops with regular array data accesses, a
stride prefetcher is sufficient to achieve a speed up and optimize correctly the target program.

Correlating prefetching techniques are useful to programs with linked-list data structures or
more irregular data structures. By calculating correlations between data memory addresses and
even between different load instructions, the predictors are able to predict more accurately and
handle cases where even a complex stride predictor is not efficient.

Finally, thread prefetching can be considered as a third class of prefetchers. Without studying
the memory behavior of a hot trace, thread prefetchers strip nested loop code of calculations that
do not contribute to the calculation of the next load address. By doing this and by executing
on a second core (or processor), the prefetching thread is able to calculate in advance the data
that the program will be using.

1.3.1 Stride Prefetching

When handling static data structures, the compiler can often insert prefetch instructions into
the generated code [84, 57]. However, when considering complex traversals or dynamically
allocated structures, the compiler cannot determine the actual memory access behavior of the
program. Sometimes, the memory behavior can be represented by a simple stride, meaning
that the difference between two consecutive addresses remains constant. Many optimizers and
prefetchers have been implemented to handle these cases, some being more general than others.
This subsection presents a few of these methods.

Probably the first stride prefetching scheme was the next-sequential predictors that prefetch
the next cache line when a miss occurs [99, 20]. For example, if an access to a the cache line
L results in a cache miss, the predictor prefetches the data that would be copied into the line
L + 1.

As a hardware/software hybrid solution, ISpike [78] uses the hardware profiling system to
detect the delinquent loads and retrieve samples of the memory addresses that are accessed by
that load. Using this information, the system is able to select the loads that will be prefetched
with a particular stride. If there are multiple strides detected for a single load, ISpike prefetches
the most frequent two of them. Other techniques also are implemented on the Itanium proces-
sors or extend the architecture [73, 63]. For example, Kim et al. [63] add a few registers to create
informative loads that provide information to hardware components. These hardware compo-
nents can then be polled and used to define what prefetches should be executed. By creating
two new prefetch instructions, the compiler can insert these special prefetches into the target
programs. Using the information provided by the loads, the prefetch instruction are executed
or not at run-time.

More complex solutions characterize the loads into different groups and handle the prefetching
accordingly. For example, the Adore framework [73] concentrates its optimizations to loops
containing stride based loads. By studying the code surrounding a load, the system characterizes
the loads into three different patterns: direct array loads, indirect array loads and pointer chasing
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add r14 = 4, r14

Loop:

//i++; a[i++] = b;

A. direct array

Loop:

B. indirect array

//c = b[a[k++] − 1];

C. pointer chasing

Loop:

// tail = arcin −> tail;

ld4 r20 = [r16], 4

br.cond Loop
...
add r14 = 4, r14
ld4 r20 = [r14]
st4 [r14] = r20, 4

...

//b = a[i++];

br.cond Loop

add r15 = r25, r20

...

add r15 = −1, r15

...
ld1 r15 = [r15]

br.cond Loop
...
ld8 r34 = [r11]
ld8 r11 = [r11]

...
add r11 = 104, 34

// arcin = tail −> mark;

Figure 1.5: Data reference patterns detected by the Adore system

loads. Direct array loads represent a simple array accesses. Indirect array loads is an array access
using a second array as an index array. Finally, a pointer chasing load is always characterized by
the link-style structure it is attached to. Generally, a next pointer is included in the structure.
More complex structures have multiple next pointers but, for simplicity, we will consider simple
linked-lists. The pointer chasing code first loads the first element and then, iteratively, adds the
offset to point to the next pointer field of the structure.

The instrumentation of the load is determined by its group. Figure 1.5 shows the different
load patterns that the Adore framework handles. Delinquent loads are written using a bold font.
For example, direct array loads contain a fixed addition (or subtraction) to the current address
when calculating the next address. In this example, we notice that the value 4 is added to the
base address three times between two executions of the load. Multiplying this number by a
factor and adding it to the current address gives the system the possibility to prefetch elements
in advance. For indirect array loads, the framework prefetches both data streams. Finally, for
pointer chasing loads, the stride between the last two elements is calculated and multiplied by
a factor. Stoutchinin et al. [106] showed that this works on link-list data structures but is
not efficient for more general graph or tree traversals. More general work on linked-list data
structures has also been done [24, 77] relying on the compiler to insert prefetches to the next
nodes of the list, graph or tree as soon as the current node has been calculated or reallocating the
data structure to render the traversal linear. If done correctly, the memory access behavior can
be predicted using a simple stride. Roth and Sohi [95] present another solution for prefetching
link-lists by adding jump pointers. These pointers, for example, link the current node to its
grandson. This means that, instead of only being able to prefetch the next node, the jump
pointer gives the chance to prefetch nodes further down the linked-list.

Other group categorizations are possible. Wu [117] presents one possibility by defining loads
by their memory access behavior and not by their nature. This solution categorizes loads into 4
different groups:

1. Strong single stride load : the stride of the load is generally the same throughout the
execution;

2. Phased multi-stride load : the stride of the load is not always the same but the different
strides occur one after another and each stride a certain number of times. For example,
12 12 12 32 32 32 32 12 12 12 is considered as being a phased multi-stride load ;



42 Chapter 1 - State-of-the-art

Type of stride Prefetch code

Strong single stride prefetch( P + K * S)

Phased multi-stride stride = P - oldP
oldP = P
prefetch(P+ K* stride)

Weak single stride stride = P - oldP
oldP = P
p = (stride == profiled stride)
p?prefetch(P + K*stride)

General loads No prefetching

Table 1.2: Prefetch code depending on the memory behavior of the load

3. Weak single stride load : the stride of the load is not always the same but one stride is
more frequent than the others;

4. General loads : the remaining loads.

Since a stride prefetching technique is used, the last group is not optimized. However, the
system does not need to optimize each load since the compiler can, by comparing the range
of the different addresses and the configuration of the cache lines, prefetch effectively multiple
loads with a single prefetch instruction. The stride of the load and the prefetch distance are
calculated during the profiling. Instead of using the number of cycles in each iteration, the
calculation relies on dividing the number of the trip count with the fixed threshold. The trip
count is the ratio between the entering frequency to the entry basic block of the loop from inside
the loop and the entering frequency from outside the loop. This can also be considered as an
average number of consecutive iterations of the loop. The trip count threshold is the minimum
value for a loop to be considered for optimization.

Finally, since the framework handles different types of stride-loads, three different prefetching
codes are integrated into the program. Table 1.2 summarizes the different solutions for each load
group. For a strong single stride load, P is the current address, S is the profiled stride and K is
calculated as follows :

K = min(⌈trip_count/TT ⌉, C)

where TT is the trip_count threshold and C is the maximum distance accepted. For a phased
multi-stride load, the optimizer must first know what the current stride is. This calculation is
performed by storing the last address and calculating the current stride. K is calculated the
same way but is rounded to a power of 2 in order to limit the overhead incurred by the prediction
calculation. Finally, for a weak single stride load, a test must be added before prefetching since
the optimizer only prefetches if the current stride is the most frequent one profiled.

Though stride prefetching can be considered as the most simple technique to calculate pre-
dictions, multi-stride predictors exist. For example, a simple stride prefetcher, after having
noticed misses at P, P + 32, P + 64, would predict P + 96, P + 128. But if the sequence of
memory accesses was actually: P, P + 32, P + 64, P + 100, P + 200, P + 300, P + 332, P + 364
and so on, the predictor would not be able to remain accurate. Multi-stride predictors are able
to extract the information needed to modelize this. If we rewrite the sequence in a form of
successive strides, we obtain: 0, 32, 32, 36, 100, 100, 32, 32 and we would predict that the next
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strides would be 36, 100, 100, 32, 32 and so on. Iacobovici et al. [52] use a hardware table to
learn multi-strides and prefetch the data. Though the table is constructed to handle multi-stride
streams, the system also predicts and prefetches single stride streams.

Zhang et al. [120] proposed an extension to their Trident system [119] by adding a self-
repairing prefetching mechanism. The system adds a Delinquent Table (DLT) to the hardware.
The system distinguishes two groups of loads called Stride and Pointer loads. For each Stride
load, the other loads of the hot trace are examined. If another load uses the same live base
register, the loads are grouped and optimized together. Instead of calculating a prefetch distance
for the stride-based loads, the system starts by using a distance of 1 for every load. If the load
is still considered delinquent, the distance is incremented.

Finally, if a delinquent load cannot be prefetched because it is not a stride or a pointer load
or if it remains delinquent after testing different prefetch distances, the load is marked mature
in the DLT using a flag. In this system, a mature load is no longer monitored by the hardware
and the mature flag is never set back to 0. However, if the line containing the information of the
load is replaced by another load, the hardware will monitor the load the next time it is added
to the table. A simple flush of old mature loads could be added to periodically re-monitor the
loads.

More complex stride predictors handle multiple streams at the same time. Al-Sukhni et al.
[3] handle multiple streams and define one Prefetching engine per load. Since the system cannot
allocate as many engines as there are loads in the program, it uses a confidence level system to
recycle the engines with other loads. Using an affinity level to group different loads that show
similar behavior, the system is also able to use the same engine for multiple loads. Finally, a
density level is calculated for each load. This level can be defined as the ratio of loads performed
by a particular load to the total number of loads performed by the program. A high density
means that the load is frequently used compared to the other current loads and should be
handled by an engine. The system uses a finite state machine to handle the confidence level of
each prefetching engine and, when the confidence level is low, this means that the load handled
by the prefetch engine is either poorly prefetched or has a low density and thus can be replaced
by a higher density load.

Stride predictors, though at first simple and inaccurate in more general behaviors, have become
more and more complex. Using multi-strided analysis and including techniques to correctly
calculate the prefetch distance and the current stride, these systems are able to handle a good
number of structure traversals. However, there are more general cases where even the most
complex stride systems are unable to be efficient. In these cases, the stream must be carefully
analyzed and correctly modelized. Correlated prefetching is a possible solution and the next
subsection presents those systems in greater detail.

1.3.2 Correlated Prefetching

Correlated prefetching does not necessarily mean complex data structures and calculations.
Collins et al. [26] present a simple correlated prefetching technique that can be used to remember
pointer loads. A pointer load can be defined as a load of a memory address in the heap from a
memory address in the heap. A pointer cache can be integrated into the processor to associate
heap pointers to the objects in the heap they point to. When the L1 cache is queried, a
simultaneous query is performed and the data can be sent from the pointer cache to the L1
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cache. Though the system updates the pointer cache at each store of the program, a memory
address provided by the pointer cache is still considered as speculative.

Another important aspect is the technique adopted to send the data to the processor.
Prefetchers can directly use the cache of the processor or send the data to separate buffers
that are queried at the same time as the normal caches. Jouppi [56] proposed a stream buffer
that contained the predicted addresses of the considered stream. Once a sequence of addresses
is contained in the buffer, the system then waits for the first element of the sequence before
prefetching the data from the second cache level into the smaller first level. This implementa-
tion needs the current miss to correspond to the first element of a buffer before predictions are
possible. Farkas et al. resolved this problem by adding a check to the other elements of the
buffers. Manku et al. [79] provided another solution that was a mix between stride predictors
and stream buffers. In this latter solution, a stride predictor and a stream predictor are used
together to prefetch the data. In order to limit the number of prefetches, the stride predictor
first checks if the stream buffer already contains the data. If found, the data is pulled out of the
stream buffer and the corresponding stream is flushed. This leaves the subsequent prefetches
to stride predictor. In general, this means that the stream predictor starts predicting until a
frequently used stride is found. Then the stride predictor starts prefetching and the stream
buffer can be used for another load.

Though complex systems are not always present in hardware because of the cost and limi-
tations of the architecture, hardware prefetchers can closely be linked to the profiler. Lai and
Lu [67] present a hardware pointer data prefetcher. The system distinguishes loads performing
linked data structure traversals, called pointer loads, from the other loads, called data loads. For
example, the system uses a table called the Target Register Bitmap (TRB) to detect if a load
is a pointer load. Each register is assigned a unique index to the table. A pointer load register
can be considered as the possibility that the address contained in the register represents another
address. For each instruction, the system updates the table in order to keep track of pointer
loads. For example, moving a pointer load register to another register sets the corresponding
bit of the destination register to 1. This means that the destination register will be considered
as a pointer load register since it is a copy of a pointer load register.

Another hardware component is called the address cache (AC) and keeps a history of past
addresses. By updating the TRB and, once pointer loads are detected, quickly accessing the
AC, the system is able to predict and prefetch the next elements in the data linked structure.

A more complex predictor is the Markovian predictor. Using previous elements to construct
a statistical model, Markov predictors can accurately predict complex memory access behavior.
Joseph and Grunwald [55] presented a hardware solution that consisted in adding a data/in-
struction prefetch buffer and a data/instruction prefetcher. Figure 1.6 shows the augmented
processor design. The system adds two prefetching caches as external components of the chip.
This processor design uses one internal cache level that is augmented by prefetch buffers. The
prefetch buffers are intended to be concurrently accessed with the normal first level caches. This
has the advantage of not modifying the behavior of the program if the predictions are not accu-
rate. Markov models generally start with a training phase and, once the model has stabilized,
the model can be used for prediction. The work presented by Joseph and Grunwald uses a
continuous updating system instead.

Figure 1.7 shows the table management for the proposed system. Each miss reference address
occupies a line in the table. Since the addressable memory is more important than the number
of lines available, conflicts can occur. This means that, at each cache-miss, a test is made
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between the current address miss and the corresponding line entry. If there is a match, 4
predicted addresses become eligible for prefetching. These predictions are sent to the prefetch
request queue with different priorities. High priorities have a good chance of being prefetched,
compared to low priorities that can easily be evicted by better predictions. When the processor
requests data, the prefetching system is also queried and predicted elements are sent to the
prefetch buffers presented in the figure 1.6. Hur and Lin [51] presented a hardware prefetcher,
in which the global system also checks the current workload of the program and modifies the
aggressivity of the prefetcher by issuing more or less prefetches at a given time.

Since Markovian models are relatively complex to build and use, some predictors use a stride-
filtered Markov predictor [98]. The system first uses a stride predictor. If a load is not stride
based, the Markovian predictor is used to predict the next accesses. Furthermore, the system
uses stream buffers to predict in advance different streams of data. Using at the same time the
stride predictor and the Markovian predictor, the system is able to directly take advantage of
both predictors.

The problem with correlated predictors lies in the fact that each element is processed and
finds its way into the prediction table. This generally pollutes the tables with noise and reduces
the accuracy and efficiency of the models. A solution to this problem is to add a filter to the
predictor. For example, Sharma et al. [97] use a technique called Spectral prefetching that
identifies patterns and ignores random elements that can pollute the global stream of memory
accesses. Using this technique, the predictor is then able to prefetch only repeating elements of
the pattern.

The system divides the memory address space into tag concentration zones (TCzones) by
using the lower order bits of the addresses as indexes to the zones. For example, if the lower
bits of an address are equal to 5, the address is in the TCzone 5. This means that the number
of TCzones depends on the number of lower order bits used to partition the address space.

The system uses an analysis phase where the data cache miss sequence is studied and pro-
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cessed. Once enough information is gathered, the analyzer passes the pattern to the correlator.
This starts the second stage named the update stage. The correlator updates its internal array
to contain the current predicted patterns.

The system actually goes from absolute address pattern to differential pattern recognition.
It is possible, for example, that during very large memory structure traversals, there are too
many elements for a predictor to be efficient and accurate. Using strides is a solution to lighten
the model enough in order to detect a pattern. In order to modelize correctly different streams,
the analyzer alternates the processing of the sequence. This gives the system a better chance to
find a pattern, either in absolute form or in differential form.

Correlated prefetchers are more complex than stride prefetchers. However, they are able to
handle general streams and extract the information needed to predict accurately. Because they
are more complex, hash tables or sampling mechanisms are used to prepare the model and let
it adapt. The next section presents thread prefetching that allow a second thread to execute a
simplified version of the code in order to prefetch the data.

1.3.3 Thread prefetching

Stride predictors or more complex predictors all include prefetch instructions in order to accel-
erate a program. Another solution uses a helper thread to eliminate delinquent loads [61, 71,
113, 27, 112]. While the main thread is executing a heavy cache miss code region, a simplified
version of the code is executed by a second thread. If this is done on a multi-threaded processor,
the helper thread can be executed in advance. The data the helper thread uses is stored into
the shared cache in order to reduce the number the cache misses of the main thread.

Using the Intel Pentium 4 processor with Hyper-Threading Technology [48, 81, 29], two
logical processors are available simultaneously. This means that, while the main program is
being executed, a helper thread can attempt to optimize the program. Kim et al. [61] present a
solution using the Pentium 4 processor. Using the VTune program analyzer [30] to collect clock
cycles and L2 cache misses, the system is able to identify delinquent loads. By analyzing the
profiles, the compiler is able to identify delinquent loads included in loops.

Once a loop is designated as containing delinquent loads, the construction code of a helper
thread is inserted. By removing code that is not necessary for the helper thread, the second
thread can be executed faster. To be efficient, the remaining code consists only of the calculation
of the addresses used by the delinquent loads. For example, every store to heap objects or to
global variables are removed.

In addition to the construction of the helper threads, the system uses a lightweight monitoring
system in order to monitor the performance of the helper threads. This dynamic profiling system
enables the optimizer to decide at run-time whether to use the helper thread or not.

The previous system used a modified Intel compiler to insert code that would trigger the
helper thread. Lu and al. [75] present a totally dynamic optimizer using many of the Adore [78]
ideas. First, the system is loaded into memory using the LD_PRELOAD environment variable.
Second, a stable phase and hot spot detector schemes are used before trying to optimize the
code.

The system allocates multiple helper threads and the tasks of each thread are contained in a
dispatch table. This table contains the function pointers to the different tasks and each thread is
given a unique ID entry to the table. This has one major advantage compared to simply giving
the function pointer to the thread: if the optimizer decides a task is hurting performance or if
another task would yield a better speed-up, the pointer can simply be modified to point to a
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new task. Finally, once the threads are created, the system uses prefetches instead of directly
loading the data with the helper thread.

1.4 Dynamic Frameworks

The previous sections have presented the different profiling mechanisms used by various hard-
ware and software systems. Compilers can be asked to generate an instrumented version of a
program. Some use a binary editor to directly instrument the binary post-link in order to modify
the generated code and perform post-link optimizations. Others attach themselves to running
programs, dynamically modify them and then restore the original code or create new optimized
versions of the code once the profiles are retrieved. This last technique can be divided into two
groups:

• The dynamic instrumentation frameworks such as Valgrind, DELI, DTrace and others;

• The lightweight profiling systems that are closely linked to the optimization systems they
are integrated with.

This section presents in a more detailed fashion these dynamic frameworks. Whether they are
instrumentation tools that incur high overheads but provide users with ways to perfectly define
their needs or whether they are low overhead automated optimization frameworks, different
techniques are used to implement them and enable them to handle the target programs correctly.

1.4.1 Startup

The ability to call a function of the optimizer and initialize it is one the first big issues when
implementing a dynamic framework. Some systems modify the binary before the execution to
call an entry-point of their system at the start of the execution [49, 22, 78]. This technique gives
the system a chance to do some modifications of the binary off-line.

Other systems use the environment variable LD_PRELOAD which loads a dynamic shared
library at the startup of a program [73, 74, 16, 121]. This has the advantage of being simple
to install and the target program does not need to be modified in any way. Once the library
is loaded into memory, these techniques generally implement the C-library entry point function
called __libc_start_main. By loading the library and implementing this function, the dynamic
frameworks ensure that their system will be called before the main function of the target pro-
gram. The framework has then a chance to instrument the target program, emulate it and/or
optimize it.

Finally, the Unix Ptrace library gives a dynamic framework the possibility to attach itself
to a running program, instrument it and optimize it. Once the system obtains control over the
target program, it can either keep it to supervise its optimizations, or detach itself later on. For
example, the Pin framework [76] uses this solution to attach itself to the target programs.

1.4.2 Code execution

Once the dynamic framework is running, it needs memory space to store internal counters and
optimized code. Certain systems modify the code by using non-conditional jumps to go from
the original program to the optimized version [49, 22, 73, 16, 5]. Once the optimized code has
been executed, the control flow returns to the original program.
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Other systems emulate the code and, when hot traces are found, the traces are optimized
and sent to a specific code cache [76, 35, 36]. These techniques have certain advantages on the
first technique. First, the control of the program is completely handled since the emulation of
the code keeps the control. There is little or no risk that the control of the application is lost.
Second, using an internal representation of the code when optimizing the code, different front-
ends can be used for different architectures. Resembling modern compiler internal structures,
the front-end is the only piece of software that needs to be modified when porting the framework
to a new architecture.

1.4.3 Code cache management

When rewriting the code and dynamically optimizing it, a memory location must be found to
contain the new code version. If the framework emulates the code, then the code cache contains
the code that is executed without emulation in order to limit the overhead. However, if the
code executes the original code and then optimizes hot traces, it needs to insert code into the
function. There is however a risk that the system overwrites the following function since binary
executables tend to put one function after another in the executable file. The adopted solution
generally consists in allocating a memory block to contain all the recent optimization codes.
Code cache management systems are implemented to replace certain old optimizations by new
systems.

Dynamo [5] flushes the code cache when multiple new optimized traces appear in the code
cache. The system inserts counters at the beginning of each one-entry-multiple-exit instruction
trace. When the associate counter is equal to a fixed threshold, the system optimizes the code
and sends it to the code cache. Dynamo considers that, if a certain amount of new traces appear
in the code cache, a new program phase has been detected. This means that the current traces
in the code cache will no longer be useful and the system flushes the whole cache. Though this
means that certain of the new traces might be flushed as well, they will be reinstrumented later
on. The rationale is that a complete flush is very efficient in terms of overhead and outweighs
the risk of reinstrumenting certain traces. Finally, if the code cache is full, a complete flush is
performed.

A full flush is a practical quick and dirty solution to free cache space for new optimized
traces. However, many traces are reinstrumented and sent back into the code cache using this
technique. More elaborate techniques such as Least Recently Created or Least Recently Accessed
can be used to limit the number of traces that are flushed and then sent back into the code
cache. A comparison of these techniques was analyzed in [47].

Certain frameworks currently allow users to handle and modify the default behavior of the
code cache management. Hazelwood and Cohn [46] extend the Pin framework [76] by providing
more than 25 functions that can gather statistics about the code cache, test and modify the
contents of the code cache. The extension also implements a certain number of callbacks that
a user can define to handle different actions. For example, a user can rewrite the code cache
replacement system.

Finally, an interesting contribution is a thread-shared software code cache [17]. Many code
caches are not thread-safe and the simplest solution is to resort to thread-private code caches.
The biggest problem with a thread-private code cache is scalability since, when using many
threads, the total size of the code caches is too big. The presented solution is built on Dy-
namoRIO [16] and uses different synchronization methods in order to maintain coherency be-
tween the different threads.
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1.5 Conclusion

There are numerous solutions to profile, optimize and accelerate target programs. Depending
on what the user wants and the technical possibilities, different solutions are available. Through
a brief outline of different profilers, this chapter has shown that there exist different levels of
detail or information that a profiler can gather. Of course, this level of information comes with
a cost and compromises must be found depending on the different priorities. Users, without a
need to quickly decide what optimization is useful, can use tools such as Valgrind or Pin, use
the compiler to write an instrumented version of the code or go through an iterative compilation
in order to generate an optimized binary.

Prefetchers are a common solution to optimize programs. These prefetchers can be in-
struction or data prefetchers. We have summarized the prefetching solutions that have been
implemented using hybrid, software and hybrid techniques. Prefetching systems can be charac-
terized in three domains: stride, correlated and thread prefetching. Again, depending on the
goals and of the ressources available to the programmer or the system, compromises must be
made in order to correctly choose between accuracy and efficiency in terms of overhead of the
global prefetcher.

Finally, we presented the main issues when dealing with dynamic optimizers. Different
strategies have been adopted to startup the frameworks, to gather free registers and to handle
their code managements.

The work of this thesis starts by studying the implementation of a lightweight Dynamic
Optimization System. Compared to most dynamic frameworks that consider and instrument
basic blocks of code, the proposed system is load-based and considers each load independently.
The system is totally software and only uses a clock register and a prefetch instruction, elements
that exist on most modern processors. Finally, our system handles each load in a unified manner
compared to other dynamic systems that classify loads in order to use certain optimization
techniques. Though our solution uses the same prefetching technique for each load, it helps to
reduce the complexity of the overall system while still achieving significant speed-ups.

The second contribution of this thesis is the implementation of a Markovian-like model called
Esodyp that is as lightweight as possible. Compared to other Markovian systems, Esodyp can
use N elements of the past in order to calculate the predictions. Furthermore, the solution
issues predictions with almost no calculations using pre-calculated values. Though Esodyp was
implemented to handle memory accesses, an extension called Esodyp+ abstracts the data given
to the model, letting the user decide the internal representation of the data.

Finally, the Esodyp model is integrated into a dynamic optimization framework in order to
decide what loads should be optimized. In order to use a complex model in a dynamic setting,
a code abstraction technique is used. This abstraction reduces the amount of used memory but,
with the help of Esodyp, limits the number of instrumented loads. This final version uses every
element presented in this chapter. It starts by using a lightweight profiling method to decide
what loads are delinquent. Once the loads are selected, the Esodyp predictor is used to check if
a stride-predictor can be used to accelerate the program. This system shows that a data driven
system can achieve speed-ups that are above more general optimization frameworks since the
system was specialized in data cache optimizations.
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Chapter 2

Performance Driven Data Cache Prefetching

in a Dynamic Software Optimization System

The previous chapter showed various systems that profiled, instrumented code and
prefetched data in order to optimize a program. This chapter presents an automatic
and dynamic framework that instruments the binary code in order to detect delinquent
memory accesses. Once a delinquent load is selected, a memory access stride is cal-
culated and a prefetch distance is tested. If the combination of both elements leads
to a lower latency of the load, the system inserts a prefetch instruction. However, in
the case this worsens the latency, the load is de-instrumented and executed without
instrumentation to limit the overhead. Finally, if the load is non-delinquent, it is also
de-instrumented. Later, these loads are re-monitored in order to check if, at that point
in time, the system can optimize them.

2.1 Introduction

In the previous chapter, we have presented software and hardware prefetching systems that
contribute in hiding cache miss latencies [22, 60, 73, 74, 103, 122]. A predictor uses a prefetch
distance to request the data sufficiently in advance to be in the data cache when the processor
requires it. Hence a calculation is needed to decide what distance should be used for each
prefetch instruction in order to maximize the positive impact of the prefetch.

This chapter presents a lightweight profiling strategy which does not use any specific hard-
ware or any processor performance counter. Our dynamic framework is entirely software and
aims to be portable across any modern processor architecture. This means that, though the
core of the framework is dependent on the binary code used by the processor, the overall system
can be easily reused on various architectures. The profiling mechanism considers each load in-
dependently. Moreover, instead of using code interpretation as it is done in many other systems
[5, 35, 76], our approach is based on continuously instrumenting/de-instrumenting the native
code with some monitoring or optimizing instructions. Once the number of executions of a load
has exceeded a certain threshold, the load instruction is no longer instrumented, allowing it to
run without any profiling overhead. If the behavior is relatively constant, then the load is not
checked very often, letting the program execute it without any instrumentation. However, if it is
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more erratic, the profiler checks its latency more often. This solution helps to keep the overhead
of the system low, while keeping a fairly good view of the general behavior of the program.

To illustrate the use of the lightweight profiling system, we implemented a simple stride-based
prefetching system. The general framework is portable assuming there is at least a prefetch
instruction provided by the target architecture. Since every load is monitored periodically, a
prefetch instruction is associated to every load whose latency is above a certain threshold. The
effectiveness of the optimization is ensured by comparing the latency between the prefetched
load latency and the original latency. In order to correctly handle the prefetch distance, the
optimizer dynamically tests different distances and, with the results provided by the profiler,
adjusts it to the best value.

Since the number of existing prefetching systems is important, we will concentrate this intro-
duction to dynamic optimization systems. Specific prefetching algorithms have been evaluated
in numerous works proposing either software or hardware implementations. Also, since many
details have already been given in chapter 1, this section will briefly present a few well known
systems.

Dynamic optimization frameworks such as Dynamo [5] or, more recently, DynamoRIO [16]
are transparent systems since the base program does not need to be compiled with specific
options. They are dynamic native-to-native optimization systems. Dynamo is provided as a
user-mode dynamically linked library. It interprets the base code at runtime searching for hot
traces. Using a low threshold to detect hot traces, Dynamo creates an optimized version of the
trace and patches the code accordingly. The system is divided into an interpreted code that is
not optimized and the hot traces that run natively. To compensate the overhead of the system,
Dynamo moves as much code as possible from interpretation to natively run. In a more recent
work [35], a framework called Deli is used to build client applications that manipulate or observe
running programs. It is shown how a user can define on the fly code modifications at low cost.

UMI [121] is a lightweight dynamic system built on DynamoRIO [16] that can be used to
profile and optimize programs. DynamoRIO’s internal framework discovers hot-traces and sends
them to an internal instruction cache. When DynamoRIO selects a trace, UMI creates a clone
that can profile the different loads contained in the trace. This instrumentation enables UMI to
gather short memory reference profiles to simulate the cache behavior and select the delinquent
loads. Using a sampling period and turning the profiling on and off, UMI keeps the overhead
at an average of 14%, which is only 1% greater than the base of 13% incurred by DynamoRIO.
Finally, UMI integrates a simple stride prefetching solution into the framework to achieve an
11% improvement on the tested benchmarks.

Lu et al. [73, 74] implemented the dynamic optimization system called Adore that inserts
prefetch instructions into the instruction stream. Using Itanium performance counters and the
profiling tool pfmon, the system handles hot traces and detects delinquent loads in loop nests.
Loads are derived into three categories : direct array, indirect array and pointer chasing loads.
By studying the code of the hot trace, Adore decides how to prefetch the required data. In [73],
the optimizer uses a compiler option to reserve the registers needed for the inserted code. In
[74], a modification of the bundles containing the alloc instruction enables the inserted code to
use new registers. The prefetch distance is calculated using the average miss latency of the load
and the number of cycles spent by one iteration.

Pin [76] is an instrumentation system allowing users to write C/C++ programs called Pin-
Tools. Pin keeps control over the application by never executing the original code but by
executing an instrumented version of each one-entry, multiple exit traces. The instrumented
version is built by a JIT compiler that can use predefined callbacks from the PinTool to insert



2.1 Introduction 53

calls or inline code that the user has requested.

Chilimbi and Hirzel’s framework [22] samples the execution of the program to decide what
portions of the code should be optimized. Using Vulcan [104], an executable-editing tool for x86,
the framework creates two versions of each function. While both versions contain the original
code, one of them also contains the instrumentation code and the other only contains some
checks to decide whether to instrument again the function or not. Using a global hibernation
phase, the overhead is lowered to achieve a speed-up on several SPECint2000 programs. Once
a trace is selected and profiled, an analysis is done to find hot data streams. Finally, when
the data streams are detected, a finite state machine is created to prefetch the data. The code
handling this state machine is then injected dynamically into the program.

Trident [119] is an event-driven multithreaded dynamic optimization framework. Using hard-
ware support to identify hot traces and helper threads to guide and perform optimizations, it
generates low overhead. The software side of the framework consumes the hardware generated
events and then decides whether to optimize or not the base program. In [120], Trident is ex-
tended to dynamically decide what prefetch distance has to be used. Using a Delinquent Load
Table, the system monitors loads within a hot trace. It counts the number of executions of each
load, the number of misses and measures the miss latency. As with Adore [73], stride and pointer
loads are distinguished. By continuously monitoring the load latencies, the prefetch distance is
adjusted until the loads are no longer delinquent.

Our system includes many aspects that are inspired by all of the above works. It is totally
transparent by using the linux entry point __libc_start_main. Like Adore, it inserts prefetch
instructions in the instruction flow and, like Trident, it uses a variable prefetch distance. But it
also differs by being entirely software. The system does not use any of the processor performance
counters, hence it is portable to any kind of processor. Moreover it does not handle only loads
in loops, but almost every load in the program. For example, as it is shown in section 2.5 with
benchmark program treeadd, often executed loads as those occurring in recursive functions are
also handled. Moreover they are monitored individually, instead of using a hot trace detection
scheme. Lastly, the system does not categorize loads into stride or pointer loads but handles all
loads in a unified way. Our system can be compared to Chilimbi and Hirzel’s system [22]: we
add checks to detect delinquent loads but our system lets the code run natively compared to
leaving lightweight checks in the code. The hibernation system is also almost identical but our
system handles each load independently whereas Chilimbi and Hirzel’s solution uses a global
hibernation system. However, since our system does not use any interpretation or emulation of
the code, our overhead is lower or similar to these different dynamic frameworks. Finally, our
solution can probably be implemented in the different dynamic frameworks. However, the fact
that they are almost all trace-based renders the implementation of the system load-based more
difficult. A solution would be to ask the framework to reinstrument the trace when a change is
needed but this would have a significant cost.

Table 2.1 summarizes the differences between the presented methods depending on different
aspects of the frameworks. As we can see, the presented systems either use hardware counters or
rely on code interpretation to select the regions of code that are optimized. Every other system
is trace-based except our system that can be adapted to do trace-base selection with a minimal
overhead as it is presented in subsection 2.2.3. However, even when using a finer monitoring
grain, our system keeps a low overhead.

Our framework has been implemented for Itanium-2 machines. It involves several dynamic
instrumentations of the binary code whose overhead is limited to only 5% on average. On a
large set of benchmarks compiled with either gcc -O3 or icc -O3, our system is able to speed
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System/ Profiling Optimization Execution Granularity
Type

Dynamo/RIO Interpretation Trace layout/ Interpretation/ Trace
Software Instrumentation Code optim. Dynamic linking

Deli Interpretation Trace layout/ Interpretation/ Trace
Software Instrumentation Code optim. Dynamic linking

Adore Hardware D-cache related Dynamic Loop -
Hybrid Sampling based optimizations instrumentation Trace

Pin Interpretation Trace layout Interpretation Trace
Software Instrumentation Code optim. Dynamic linking

Trident Hardware D-cache related Hardware + Dyn. Trace
Hybrid Sampling based optimizations instrumentation

Our System Instrumentation D-cache related Dynamic Load
Software optimizations instrumentation Instruction

Table 2.1: Summary of the differences between each solution
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Figure 2.1: Average cycles for a load and the stop instruction in the primal_bea_mpp and
price_out_impl functions in 181.mcf (CPU2000)

up some programs by 2%-143%.

The rest of the chapter is organized into five main sections. The algorithm to achieve a
lightweight profiling system is presented in section 2.2. In section 2.3, the integration of a
stride-based optimization system is explained. Our implementation is presented in section 2.4,
where the general profiling framework is presented and technical issues like dynamic register
allocation and code modifications are addressed. Finally, experimental and performance results
are shown in section 2.5.

The work presented in this chapter was published in [12] and a journal version has been
submitted [11].

2.2 Lightweight Profile System

While the program is running, it is necessary to be able to modify the code in order to profile its
execution at runtime. The profile system gathers the number of times each load is executed and
each average load latency. By gathering this information, the general behavior of the program
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can be understood and different optimization techniques can be chosen. Figure 2.1 shows the
average latency for every load of the primal_bea_mpp and price_out_impl functions in the
CPU2000 mcf program. The figure shows that the two functions are periodically called and
have a high latency. We also notice that the two functions are almost always called at disjoint
execution phases.

When an optimizer needs to know what code traces should be optimized, it relies on a profile
of the program. This profiling can be achieved by compiling and executing an instrumented
version of the program. By performing a first run of the program, information is extracted and,
during a second compilation, specialized optimizations can be integrated. However, in dynamic
optimization systems, this is generally done during the execution of the program. This means
the optimizer must profile the program, detect hot traces and select likely candidates to the
different optimizations schemes at the same time. The main advantages of this latter approach
are the transparency to the user and the continuous adaptability to the variations of the program
behavior. At the same time, the problems with this technique is the overhead incurred by such
a method. Everything that slows down the program must be kept at a minimum since it would
render the optimizations useless.

In this section, we present a dynamic profiling solution that does not require a profiling mech-
anism with two compilation phases. Adore [73] uses Itanium’s hardware performance counters
to achieve this. Using the hardware counters, Adore is able to keep the general overhead low
and, by integrating a data-prefetching system, shows speed-ups on some of the presented bench-
marks. Dynamo [5] and DynamoRIO [16] interpret the native code to detect the hot traces that
will be optimized. These systems either use the hardware to achieve the profiling or emulate the
code to retain control over the application.

Our system tries to be as lightweight as possible but remains entirely software. The profiler
inserts a counting system for each load, considering each load independently. Chilimbi and
Hirzel [22] have a similar solution but, in their solution, the code is always instrumented with at
least a few checks to maintain control over the program execution. Also, the solution adopted by
Chilimbi and Hirzel duplicates each function. Our system directly inserts unconditional jumps
from the original code to the instrumented version. Though the overhead is obviously high when
doing this during the entire execution time, this section shows how to reduce this overhead to
an average of 5%.

2.2.1 Dynamic classification of loads

In order to lower the overhead, the system must not constantly profile the program. Instead, it
must periodically interrupt the instrumentation of the code for the program to execute without
any slow-down. For example, if we consider that a particular load has a constant behavior and
its latency also remains constant, the system can stop the profiling and simply keep an average.

This means that, once the load has been executed a certain number of times, the profiler
calculates an average and restores the original code. Then, it considers that the load remains
at that average. Later, the load is reinstrumented to check if the latency has changed or if it
remains the same. To profile and examine the behavior of the different programs, we defined 4
load latency groups that were adjusted experimentally:

• Under 8 cycles: these loads are non delinquent since they have the lowest latency;

• Between 8 and 15 cycles: these loads are also considered non delinquent but should be
closely monitored since they might become delinquent if the behavior of the program
changes;
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Init DormantMonitored
dl=0

if same group
   dl++
else
   dl=0

Figure 2.2: Profiler finite state machine representing the states and transitions of a load instruc-
tion

• Between 15 and 40 cycles: these loads are considered delinquent;

• Over 40 cycles: these loads are highly delinquent.

This division into four groups gives the profiler a solution to monitor the change of phases
for each load. Figure 2.2 shows the finite state machine that decides the state of each load.
At first, every instrumented load enters the monitored state and is associated a counter dl

initialized at 0. This counter represents the confidence level indicating that the load behavior is
relatively constant. When the number of executions for a particular load exceeds the threshold,
its counter dl is incremented if the new calculated latency average does not result in a group
change. If there is a change, dl is set back to 0. The base poll time is the minimum period of
time during which the counters are not checked. When the load is restored, it remains dormant
during 2dl times the base poll time. This means that, during that period, the load is no longer
instrumented. As a result, loads that have a constant average are rarely instrumented since
the average does not often change. On the other hand, loads that show an erratic load latency
behavior and often change groups are often instrumented since the profiler must keep a close
watch on these loads.

Table 2.2 shows the number of latency changes for some benchmark programs compiled with
the gcc and icc compilers at the O3 level on an Itanium-2 machine. The results are averages
of 3 runs. The second column of the table represents the total number of times a load changed
groups. For example, 29 means that, after the initial group assignation of each load, the system
noticed that, 29 times, a certain load was no longer in the same latency group. As we can see,
the load instructions in programs parser, ammp and mcf often change groups. The third column
shows the number of loads that actually changed from one group to another. For example,
mcf has on average 135.33 loads that changed groups for a total of 416.67 group changes. This
means that on average, each of the 135.33 loads changed 3 times of average latency during the
execution of the program. The last column shows the total number of loads that were at least
executed once before the last poll of the execution. The percentage of loads that change at least
once of latency groups is 9% of the executed loads. Finally, we see that program treeadd has
a different behavior depending on which compiler is used. Using the gcc compiler, the program
executes 74 loads whereas only 19 loads are executed using the icc compiler. This difference
has a direct impact on the other results for this program.

Though table 2.2 shows the total number of latency changes, it is important to consider the
number of times each load changes groups. Figure 2.3 shows the percentage of loads that change
groups once compared to loads that change more than once. This figure shows that on average
only 47% of loads only change groups once. Furthermore, figure 2.4 shows the percentage of
loads that change groups twice, 3 to 5 times or more than 5 times out of the number of loads
having changed groups at least twice. For each of these three groups, the average percentage is
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Figure 2.3: Percentages of loads that changed groups once compared to those that changed more
than once using the gcc compiler
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Figure 2.4: The percentages of loads changing groups twice, 3 to 5 times and more than 5 times
out of the number of loads having changed groups at least twice using the gcc compiler
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Benchmark Latency Loads Executed
changes changing latencies loads

gcc icc gcc icc gcc icc

ft 29 35 23.67 22.67 108.67 74.67
ks 17.67 13 13 8.33 192 177.33

anagram 53.33 3.33 23.67 1.67 270 119
bc 28.67 35.67 18 22.33 889 856.67
mcf 416.67 283.67 135.33 91 396 344

equake 36 30.67 14.33 13.67 380 747.33
art 51.33 47.67 35.33 34 327.33 536

ammp 486 458 221.67 178.33 1595 1123
bzip2 77.67 71.67 35 37 750 866.67
parser 3864.33 2240.67 1457.33 727 5017 2545.67
gzip 45 49.33 27.67 26.67 730 827.67
swim 46 116 26.33 67.33 206 1154
mesa 190.33 135.67 72 54 1703 1883
applu 205.67 53 99 32 994 1146.67
twolf 438 507.33 165 232.33 3464.33 4720.33
lucas 126 2.33 84.33 0.67 469.67 858.67
crafty 1158.33 836 557.33 413.67 4180 3646.33
fma3d 420 203.67 201 114 3855 3451
facerec 52 69 8.67 25.33 81 1840

vpr 279.33 267.67 106 101.67 2913 3388
treeadd 38 1 27.33 1 74 19

Table 2.2: Load latency variations: number of latency group changes throughout the execution,
number of loads that have changed latency groups at least once and number of loads that were
executed at least once.

54%, 38% and 8% respectively. We notice that most benchmarks have a majority of loads that
only change groups twice but programs such as treeadd or vpr have loads that change groups
more often.

At each poll, if the number of executions of a particular load is over the threshold, the
average latency of the load is calculated. If there is a group change, an associated group counter
is incremented. If the counter value is high, this means that, throughout the execution, group
changing loads were often tagged as currently belonging to the associated group. Figure 2.5 shows
the percentage of each group counter. The proportion of non-delinquent loads seems quite low
on the figure. However, most non-delinquent loads remain so throughout the execution of the
program, therefore the associated counter remains low. This is especially true for fortan codes
such as swim, facerec, lucas and applu.

2.2.2 Quality and Overhead of Lightweight Profiling

Though the system does not profile each load during the entire execution, the use of confidence
levels helps in keeping a sufficient quality of the profiling method. If during a poll, a load
changes state, then the system will rapidly check the latency to see if there is another change.
For our experiments, the base poll time was set to 10 milliseconds and the maximum confidence
level was set to 10. Thus if a load reaches the maximum level, its latency is checked every
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Figure 2.5: The percentage of each destination group for loads that changed groups using the
gcc compiler

210 ∗ 10 = 10240ms.

However to reach such a level, the load would have been checked 9 times and would always
have remained in the same state. In the worst case scenario, the load can change its state right
after a poll. It would then last approximately 10 seconds for the system to adapt. Though this
may seem as a long time to adapt, the code would not be instrumented during that period.
This means that, during those 10 seconds, the program is not slowed down. Once the load is
reinstrumented, the new average is calculated and taken into account.

The primary advantage of this instrumenting/de-instrumenting technique is the low overhead
incurred. Since the program is generally running natively, it is rarely slowed down. Figures
2.6 and 2.7 show the overhead for the considered benchmark programs with the gcc and icc

compilers. The execution times for the original program, the base profiling method and the
lightweight profiling system are compared. The original program represents the case where
the benchmark program is executed without any instrumentation. The base profiling method
represents the case where the code is continuously instrumented during the whole execution.
Instrumenting the code continuously results in an overhead of 84% on average. An average of
5% is obtained using the lightweight version which gives the system the chance to optimize the
programs.

An interesting case is program lucas. In the icc case compared to the gcc version, the
overhead is almost negligible. The icc compiler optimizes correctly certain regions of the code
that gcc is not able to do. Since the delinquent and often executed loads that were generated by
gcc were removed, the only loads that remain in the icc version are not often executed loads,
which reduces the overhead of our system.

The second advantage is that the polling speed is specific to each load. Each load is polled



60 Chapter 2 - Lightweight Dynamic Optimization System

2770 2978 3150 3164 32333249

 0

 500

 1000

 1500

 2000

S
ec

on
ds

Original
LightProf

Profiler

ft bc vp
r

an
ag

ra
m

ks m
cf

am
m

p
bz

ip2

pa
rs

er

m
es

a
ap

plu
tw

olf
luc

as

fa
ce

re
c

tre
ea

dd

fm
a3

d
cr

af
ty

gz
ip

sw
imar

t

eq
ua

ke

Figure 2.6: Comparison between the program without any instrumentation (Original), the base
profiling and the lightweight profiling systems with the gcc compiler
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Figure 2.8: Average overhead depending on the lapse of time between two polls on the different
benchmark programs

depending on its dl value. Hence a very constant load latency results in very few checks,
whereas an erratic load latency is often polled to give a precise reading. Most dynamic profilers
rely on profiling one-entry multiple-exit traces. These profilers are not practical when trying to
instrument/de-instrument the code. Generally, the only possible solution to modify an instru-
mented trace is to invalidate it and ask the framework to reinstrument it. Our system handles
each load independently and the profiler can halt the profiling of one load and reinstate it for
another load.

Finally the frequency of the polling system is also dynamically modified. If a load is state
changing, then the polling time is set to the base polling time. However, if no load changes
state, then the polling period is multiplied by 2 until a maximum of 128 times the base polling
time. Again, this is done to lower the system overhead.

Figure 2.8 shows the average overhead obtained depending on the choice of the base polling
time for the different tested programs. As we can see, the lower the polling time, the higher
the overhead, since the program will be spending more time checking the latencies of each load.
However, if the polling interval is too big, the system is slower to respond to a change of phase
and the overhead is also high, since the instrumentation code will remain longer in place. The
polling interval of 10 milliseconds was chosen because it represents a good ratio quality of the
poll/overhead of the system. Such an initial experiment can be done each time our system has
to be implemented on a new hardware, in order to select a convenient polling interval.

2.2.3 Trace selection

Most dynamic optimizers use a trace selecting system instead of directly monitoring each load.
For dynamic instruction optimization, it is often necessary to be able to select the frequently used
blocks. Instead of handling each instruction independently, a block groups instructions together
as a minimal functional unit. This allows a dynamic system to consider every instruction of
a block as the same element and instrument or optimize it as a whole. In our system, this is
not needed since the overhead is already low and we are interested in instrumenting each load
independently. However, another important aspect to a dynamic optimizer is extra memory
consumption. For example, on embedded systems, it is important to keep this consumption to
a minimum. The lightweight profiling system helps in reducing the execution overhead but each
called function is parsed completely and loads that are not often executed are still instrumented.

Loads that are executed only a few thousand times are not very significant and, if memory
consumption is a factor, these loads should simply be ignored. Since the code must be instru-
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Number of loads
instrumented

Benchmarks Without TS With TS
gcc icc gcc icc

ft 188 145 86 66
ks 313 280 120 94

anagram 384 134 265 82
bc 1841 1744 1358 1192
mcf 465 420 314 258

equake 399 1087 279 387
art 497 689 172 379

ammp 2700 2065 1104 909
bzip2 1139 1133 439 578
parser 5909 3084 4665 2415
gzip 1138 1176 535 539
swim 227 4503 95 2547
mesa 4484 4039 1579 623
applu 1319 4427 837 2760
twolf 8189 9913 3105 3162
lucas 670 3773 308 2482
crafty 6701 6247 3275 2326
fma3d 10813 10338 2045 4394
facerec 100 5496 74 2721

vpr 3834 4634 1569 1603
treeadd 81 23 64 4

Table 2.3: Comparison between the number of instrumented loads using the Trace Selector (TS)
or instrumenting the whole functions with both compilers

mented to extract a profile of the current behavior of the program, a counting system can be
implemented to instrument the blocks, also known as traces, of the functions instead of directly
handling each load.

We define a trace as a one entry-multiple exit sequence of instructions. This definition
enables us to simply insert the instrumentation code at the start of the block in order to retrieve
the number of times the instruction sequence is being executed. Hence, multiple loads in a same
block are monitored with only one counting system. This means that the memory consumption
is reduced since we are globally reducing the size of the instrumentation code for each function.
Once a block counter exceeds a fixed threshold, the loads of the block are instrumented as it is
explained in section 2.2.

Table 2.3 shows a comparison between the trace selecting solution and the normal version
regarding the number of instrumented loads. A direct implication is the approximate memory
usage the system would need to instrument the whole code. The first thing we can notice is
the reduction in the number of instrumented loads when using the block selector, which has a
direct impact on the memory usage. Figure 2.9 shows the memory usage ratio between the two
versions. This shows the factor by which the size of the instrumentation pool can be reduced
and still be suitable to instrument efficiently the target program. There is slight increase of
loads in the icc version of the fortran codes. Our system uses a technique called dynamic
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Figure 2.9: Ratio of the memory usage between using the trace selector or not
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Figure 2.10: Comparison between the speedups achieved using the trace selector or instrumenting
the whole functions with the gcc compiler

function instrumentation that consists in only instrumenting functions that are at least called
once during the execution. This is explained in greater detail in subsection 2.4.7 and was not
possible with these codes. If we compare the number of loads in the gcc and the icc versions,
library functions are also included into the icc binary and are therefore handled by our system.

The drawback of such a system is the time spent to actually start optimizing the code. The
accelerations achieved with both versions for the different benchmark programs, using the two
compilers, are shown on figures 2.10 and 2.11. First, we notice that the results are similar.
A slight slow-down is due to the time spent by the system to start prefetching the data for a
particular load. Hence, we feel that on an architecture where memory is not a factor, the trace
selection scheme is not essential in a per-load optimizing scheme. However, on an embedded
system, the percentage of memory gain is an important factor and we have shown that hot-traces
are selected with a 5% overhead. This means that, compared to code-interpretation solutions,
our method keeps quite a low overhead convenient for instruction-based optimizations.
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Figure 2.11: Comparison between the speedups achieved using the trace selector or instrumenting
the whole functions with the icc compiler
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Figure 2.12: The finite state machine representing the states and transitions of the load instruc-
tions

2.3 Dynamic Optimization System

Various optimization schemes can be attached to a low overhead dynamic profiler. This sec-
tion presents a lightweight solution for data prefetching. The section starts by presenting the
augmented state machine and the general framework.

2.3.1 Optimizer finite state machine

The finite state machine presented in section 2.2.1 needs to be augmented to handle an optimiza-
tion scheme. Figure 2.12 shows the new finite state machine implementing a data prefetching
scheme. Four new states have been added and a new counter ol is associated to the loads.

Once the loads are instrumented, they enter the monitored state. When the number of
executions reaches the threshold, depending on the average latency, they enter the dormant
state or the stride learning state. The cycle between the dormant and the monitored states is
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the same as for the profile system presented in 2.2.

In the stride learning state, the instrumentation code segment contains stride learning code.
This code retrieves the last accessed address, subtracts it to the new address and stores the
stride in memory. Once the number of executions in this state reaches a threshold, the load
enters the distance learning state.

Most prefetchers classify loads into different categories. For example, Lu et al. [73] distin-
guishes direct, indirect loads and link list loads, while Zhang et al. in [120] has three different
categories named stride, pointer and same object. Our system handles every load without any
distinction by simply calculating the last stride. If the stride is ineffective, the load quickly
enters the dormant state where it is executed natively. On the next instrumentation, a new
stride is calculated. Thus, if there exists a dominant stride in the access trace, statistically our
system finds it.

In the distance learning state, the prefetch distance is tested with the calculated stride.
The prefetch distance is the number of accesses before the speculated data is actually used.
To calculate the best distance, prefetch code is inserted into the instrumentation code segment
using different prefetch distances. The system tests every power of 2 between 21 and 26. A
dynamic optimizer cannot test every possible prefetch distance since each test adds a certain
overhead to the overall system. So we decided to use these powers of 2 distances since they are
easy to calculate and still represent a wide range of distances.

Once the distances have been tested, the most suitable one is chosen and the load enters the
prefetching state. In this state, the instrumentation code is removed and the code segment only
contains the original code and the prefetch code. While the loads are in the prefetch state, the
base code is accelerated by the prefetches. When loads are in this state, they generally accelerate
the base program.

The load stays in that state for a duration of 2ol times the base poll time. When the time
has elapsed, it goes into a prefetched and monitored state where the effectiveness of the prefetch
is evaluated. After a certain number of executions, the average load latency is calculated and
compared with the base latency without any prefetches. As dl is the confidence level indicating
that the load remains in the same state, ol is the confidence level characterizing a load remaining
delinquent and being a good candidate for optimization. Such a candidate is defined if the
prefetch mechanism is effective. Hence, if a prefetch is not lowering the load latency, the load
goes to the dormant state and the ol level is reset. On the other hand, if the prefetch reduces
the latency, ol is incremented and the load remains longer in the prefetch state.

A ping-pong scenario can occur in the case of a delinquent load which is never improved
by prefetching. With no specific care, this load would always have its dl and ol levels at 1.
To resolve this problem, when the latency is lowered by the prefetching, dl is decremented
until it reaches 0 and directly incremented when entering the dormant state. In our ping-pong
scenario, the load spends more and more time in the dormant state, reducing the overhead
of its instrumentation. If, at another time of the program execution, the load benefits from
prefetching, dl is slowly decremented as a confidence level indicating that this load is now
becoming interesting.

Finally, the system periodically recalculates the base latency of each load. Since we do not
always have the actual base latency, the system memorizes a value for it from the monitored
state. This means that if a load was at first delinquent, its average was high at that moment.
However, later on in the execution, it can become non-delinquent. To ensure that we eventually
stop prefetching, when ol reaches a certain level, the load reenters the base monitoring state.
If it is still delinquent it eventually reenters the prefetch state. In the case where it is no longer
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delinquent, it enters the dormant state.

2.4 Implementation Issues

The previous section presented the different modules needed to instrument, profile and optimize
a program. This section presents the general framework of our system, the register alloca-
tion scheme used and details are given for dynamically modifying binary code on the Itanium
processor.

2.4.1 General Framework

Figure 2.13 illustrates the profiling framework. The main program is instrumented to fill a Global
Counter Table with load execution occurrences and latency information.

In order to modify a program binary, the read-only flag must be removed. Since the binary
code tightly maps functions together, it is difficult to directly insert instrumentation code. A
common solution is to insert an unconditional jump to another section of the memory, the instru-
mentation pool, where we can handle the code insertions at runtime and where an unconditional
jump is used to return to the next instruction of the original code.

In the same way as in Adore, our system is implemented as a shared library on Linux for
IA64 that can be automatically linked to the application at startup. A second thread, called the
Monitoring thread is created at startup to handle the polling mechanism. The target program,
whose binary is instrumented, is periodically polled in order to gather latencies and execution
counters for each load. To allow a pre-compiled program to be monitored, we also modified the
libc entry-point routine __libc_start_main to include our own startup codes.

2.4.2 Register allocation

Dynamic systems generally need to use a certain number of registers to achieve their goals. The
solution to this problem depends on the architecture, but also on the amount of needed registers.
In our current implementation, only four registers are needed to implement the instrumented
code. For example, to allocate the needed registers on the IA64 architecture, a few solutions
can be used as it has been presented in [31]:
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• Compiler assisted: some compilers allow the programmer to request free registers. This
was done in [73] where it has been shown that, if the number of requested registers is low,
the impact is negligible. However, not all compilers have such an option and this is a huge
drawback since it reduces the portability of the system.

• Liveliness calculation: it is possible to know which registers are being used and which
are free by analyzing the program’s control flow. For example in [76], Pin incrementally
computes the liveliness information during execution, effectively reducing register spills.
In our system, this would result in finding the four needed registers. However, it is possible
that all registers are being used.

• Dynamic register allocation: this is the solution of Adore [74]. On the Itanium processor,
register allocation is achieved using the alloc instruction. Modifying this instruction can
give the system the required registers.

The third solution was chosen since it does not require the help of a compiler and has
virtually no overhead compared to the liveliness calculation. However, there are limitations to
this technique. First, if the last executed alloc has already requested every possible register, the
system is unable to add its four needed registers. This was noticed for only two programs in our
set of benchmarks (ammp and mesa) and concerns only 13% of the loads of these two programs.
The second problem concerns functions that have more than one alloc. A control flow analysis
would enable us to detect which alloc should be modified for the concerned load, but we have
chosen to simply ignore these cases for the moment. This second case concerns 10% of the loads
of the considered benchmarks. The last issue is when the load is in a function where there is no
alloc instruction. This also represents 10% of the loads in the considered benchmarks and our
system simply adds an unconditional jump at the beginning of the function in order to add an
alloc instruction before the function’s code.

The alloc instruction is modified by adding four output registers. If there is a function call,
these new output registers are considered as scratch registers. This means that the output
registers become input and local registers to the callee. If the caller wants to preserve them, a
spill or a move to local registers is needed.

Finally, this solution is feasible in our profiler since we ensure that no branch instruction is
executed during the profile of the load. To profile a load, the profiler needs to increment a value
to count the number of times the load has been executed but also calculate the average latency
of a load. If a branch instruction were to be executed, we would not be able to guarantee that
the live-values of the dynamically allocated registers would be preserved. This is not a problem
in our profiler, but a more general instrumentation tool without any control flow analysis would
have to either also guarantee this or spill the registers.

Figure 2.14 shows the overhead of modifying the allocation instruction. In the general case,
the benchmark programs respond very little to the register allocation modifications. In the worst
case, using the icc compiler with program twolf resulted in a significant slowdown. On the
other hand, benchmark programs ft and mcf actually obtain a speedup of 1% when modifying
the instructions. Since most of the programs respond positively to this method, we feel it is
a viable solution. However a better alternative is needed for programs like twolf where just
modifying the allocation system results in a relatively high overhead compared to the other
programs.
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Figure 2.14: Overhead of modifying the alloc instruction to obtain the needed registers

2.4.3 Code modification

The current system has been implemented for the Itanium [53] processor. On this EPIC archi-
tecture, instructions are packed into bundles. Each bundle contains three instructions that are
divided into five types: Memory, Integer, Float, Branch and Extended. This complicates the
insertion of unconditional jumps since, to instrument a load, the instructions joined with that
load generally have to be copied into the instrumentation pool as well.

Each load is instrumented by defining a prologue and an epilogue section. The prologue
consists in fetching the current counter and the accumulation value, incrementing the counter
and checking the time counter register value. The epilogue starts with a stop instruction, then
also checks the time counter register value. By subtracting the two time counters, a latency is
calculated and, adding the result to the old accumulation information, we have an updated value
of the accumulation of latencies for this load. By dividing the accumulator by the number of
executions of the load, we are able to get an average of the number of cycles needed to complete
this load.

The stop instruction is needed in order to ensure that, at the moment where the epilogue
checks the time register value, the load has been completed. Since the dynamic register allocation
scheme does not handle floating registers, the profiling system does not have a free floating-point
register it can use as the result register of this instruction. Therefore, this instruction is a simple
incrementation for an integer load and a store for a floating-point load. Though this will modify
the calculation of the load latency, we see the latency as a qualitative value and not as a
precise one. To compensate this fact, the threshold deciding if the load is delinquent is simply
augmented. We feel that the time for one integer incrementation is statistically always the same
during the program run.

For a floating-point load, we store the value of the load back into an area that has just been
loaded by the profiling system. This ensures that the store will not dramatically slow-down
the program. Finally, a special solution is used for speculative loads. Speculative loads contain
addresses that, unlike normal load instructions, can be illegal. A check instruction chk is used
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nop.i 0x0;;
nop.m 0x0
addl r32=608,r1;;

add r15 = 8, r35
br.ret.sptk.many b0;;


nop.m 0x0

nop.i 0x0;;
ld4 r2=[r32]
addl r32=608,r1;;ld4 r14=[r32]

add r15 = 8, r35
add r34 = 1, r34

ld4 r17 = [r23]
add r15 = 8, r35
br.ret.sptk.many b0;;


ld8 r1=[r14]
mov r34=r1

br.call.sptk.many b0=b6;;

ld4 r14=[r32]
add r15 = 8, r35
add r34 = 1, r34

Epilogue

Prologue

Epilogue

Prologue

Epilogue

Prologue

nop.i 0x0;;
ld4 r2=[r32]
nop.m 0x0;;

Epilogue

Prologue

Epilogue

Prologue

mov b6=r9
ld8 r1=[r8]
ld8 r9=[r8],8;;

mov b6=r9

nop.m 0x0;;
nop.m 0x0

ld8 r1=[r8]
nop.m 0x0

nop.i 0x0

ld8 r9=[r8],8;;
nop.m 0x0
nop.i 0x0

Epilogue

Prologue

1) First instruction

load load

2) Bundle has branch 3) Second instruction 4) Second instruction 5) Double load

load with branch

a)

b) ld4 r17 = [r23]
nop.m 0x0
nop.b 0x0

br.call.sptk.many b0=b6;;

ld8 r1=[r14]

mov r34=r1
nop.m 0x0
nop.b 0x0;;

nop.m 0x0

nop.b 0x0;;

nop.m 0x0
nop.m 0x0

Figure 2.15: Transformations of five types of bundles

to decide whether the address was valid or not. Since the addresses used by speculative loads
are not always legal and the processor can postpone their execution until a check is performed,
our system adds a check to handle these cases.

Finally, the Itanium processor contains predicated instructions. Almost every instruction in
the Itanium instruction set can contain a predicate. If the predicate is false, the instruction is
executed but the internal state of the processor is not changed. However, since the instruction
is executed even if the predicate is false, the system instruments these loads in order to try to
optimize the delinquent ones.

Figure 2.15 shows the transformation made to five types of bundles containing loads.

1. The first example shows the simplest case where a load is the first instruction of the bundle.
In this case, the prologue and epilogue are simply added before and after the bundle.

2. In the second example, there is a branch instruction in the bundle. To ensure that the
code in the epilogue is executed directly after the prologue and the instrumented bundle,
the branch is pushed after the epilogue. Of course, in the case of IP-relative branches, its
destination must be carefully recalculated.

3. In the third example, the load is the second instruction of the bundle. In this case, to
guarantee that the prologue code can be executed, the first instruction is moved in order
to be executed before the prologue.

4. The fourth example shows a bundle where a load instruction is the second instruction and
the bundle ends with a branch. This bundle must be divided into three separate bundles.
The first instruction is executed before the prologue and the branch is pushed to the end
of the instrumentation.

5. The last example shows a bundle containing two load instructions. In this last case, the
first instruction is executed before the first prologue and then the two loads are separated
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Lists Usage
new_instr monitored loads that have not yet entered another state
used_instr monitored loads
dormant unpatched loads that are in the original program state
learn_stride loads for which the memory access stride is being learned
pref_dist_learn loads for which prefetch distances are being evaluated
optimized prefetched loads
opt_instr monitored prefetched loads

Table 2.4: Lists associated to load states

Lists Usage
todo_instr loads that have to be patched to enter either

the “stride learning” or “dormant” states
todo_dorm loads that have to be patched to enter the “monitored” state
todo_ls loads that have to be patched to enter the “distance learning” state
todo_dl loads that have to be patched to enter the “prefetched” or “dormant”

states, or reenter the “distance learning” state
todo_opt prefetched loads that have to be patched to be monitored
todo_optim prefetched and monitored loads that have to be patched to enter

either the “dormant” or “prefetched” states

Table 2.5: Intermediate lists

by the epilogue of the first load and the prologue of the second load. Thus the latency of
each load can be calculated separately.

The latency of a load can be calculated on most modern processors by accessing the internal
clock register before and after the load. Though the Itanium processor is an in-order proces-
sor, using synchronization schemes would give the framework the possibility to monitor loads
on out-of-order architectures. Since the number of executions that are monitored are negligi-
ble compared to the total number of loads executed, it would not be have a high impact on
performance.

2.4.4 Data structure details

The optimization framework is directly built from the profiling framework presented in figure
2.13. Since many loads are going to remain in the same state during a poll, different linked lists
are created. Table 2.4 shows the different lists that are present in the system.

When loads are instrumented for the first time, they are inserted into the new_instr list.
Once they have been executed a certain number of times, depending on their delinquent nature,
they are either inserted into the dormant list or the learn_stride list. The difference between
the new_instr and the other lists is the frequency where they are traversed. Since the new_instr
list contains every newly instrumented load, it also contains loads that are never executed. To
lower the overhead, this list is only checked one poll out of ten. This raises the time it takes the
system to notice that a load should change states but, in programs with many unused loads,
this is compensated with the saving of the traversal overhead.

Each entry in these lists contains the address of the load bundle, the start and ending
addresses of the associated code in the instrumentation pool, both counters dl and ol and the



2.4 Implementation Issues 71

ld4 r17 = [r23]
add r15 = 8, r35
br.call.sptk.may b0;; Epilogue

Prologue

Jump back

ld4 r17 = [r23]
add r15 = 8, r35
br.call.sptk.many b0;; 

Jump back

Prefetch

Jump back

Prefetch

Jump down

add r15 = 8, r35
br.call.sptk.many b0;; 

nop.m 0x0

ld4 r17 = [r23]
nop.m 0x0
nop.b 0x0

ld4 r17 = [r23]
nop.m 0x0
nop.b 0x0

add r15 = 8, r35
br.call.sptk.many b0;; 

nop.m 0x0

d) Correcta) Original b) Instrumented c) Wrong

Figure 2.16: The original bundle (a), the instrumented bundle (b), an incorrect optimized version
(c), the correct prefetch code by keeping the call branch at the same place (d)

index to the global counter table. So the state of the load is known according to the list in which
the load structure is.

There are two groups of lists: sorted and unsorted. The new and used instrumented, the
learn stride, the distance learning and the monitored prefetched lists are all unsorted since the
monitoring thread has to check each entry. The dormant and the optimized lists are sorted since,
when they enter those lists, ol and dl indicate how long they are supposed to stay. Sorting
those lists consumes some time inserting the elements but, when the monitor checks those lists,
only a few entries need to be tested and transferred to the other lists.

2.4.5 Temporary lists

The monitoring thread cannot extensively modify the binary code without a risk of interfering
with the execution of the first thread. Hence, it simply modifies the template of a bundle
containing a load that enters a new state. This code modification technique is explained in
greater detail in subsection 2.4.9. When a load changes its state, it is first inserted into one of
the temporary lists. Its bundle is replaced by an illegal instruction and the system waits for an
illegal instruction to occur. When this happens, every load in the temporary lists are transferred
back into the state lists. Table 2.5 explains the significance of these temporary lists.

2.4.6 Considerations about call branches

When handling bundles that contain call branches, a careful measure must be taken to prevent
damage to the semantics of the program. Since we are modifying code during the execution, we
must also guarantee that the bundles following a call branch are not wrongly changed. Figure
2.16 illustrates this issue by showing the instrumented code segment of a bundle containing a
call branch instruction. When writing the instrumentation code, the branch must remain at
the end of the instrumentation segment. If it is moved at the beginning, there is no guarantee
that the call will return before the code is rewritten. This would change the program flow and
generally results in a segmentation fault.

The solution is presented on the right side of the figure. By using a jump to the end of the
instrumentation segment, we guarantee that, when the control flow returns from the call, the
jump back to the original code is still valid.
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Listing 2.1: Instrumentation code

movl r38 = @counter ; //Load the address o f the a s s o c i a t e d counter
ld8 r35 = [ r38 ] , 8 ; //Load the counter va lue and increment the address

//Now, the address i s now at the accumulator
ld8 r36 = [ r38 ] , −8; //Load accumulator and decrement the address
add r35 = r0 , 1 , r35 ; // Increment the counter
s t8 [ r38 ] = r35 , 8 ; // Store new counter and increment address

//Now, the address i s now at the accumulator
mov r37 = ar . i t c ; //Get c l o c k counter

ld8 r17 = [ r25 ] ; //The load

s t8 [ r38 ] = r17 ; // Store the load to h a l t the proces sor
mov r35 = ar . i t c ; //Get c l o c k counter
sub r37 = r36 , r37 ; // Sub t rac t b e f o r e time from accumulator va lue
add r37 = r35 , r37 ; //Add a f t e r time to accumulator
s t8 [ r38 ] = r37 ; // Store new accumulator va lue

2.4.7 Dynamic function instrumentation

The Itanium architecture is based on explicit instruction level parallelism. This means that the
compiler decides what instructions can be executed in parallel. The instructions are grouped
into bundles. Each bundle contains three instructions and a template, which gives the type of
each instruction. The template is 5 bits long and each instruction uses 41 bits. The total size
of the bundle is 16 bytes.

At the start of the execution, the program calls an initialization function of our system. This
function first fills an array with each function name, start address, size and the first bundle by
reading the ELF header. To lower the overhead of the system, the binary code of each function
is not parsed at this point but only at their first call. This is achieved by replacing the first
bundle of each function by an illegal instruction. Additionally, the index to the function array
is added to the bundle. This directly gives the system the index to the array containing the
information regarding the functions.

When the illegal signal handler is called, the template of the bundle is checked. If it is the
value used to define a first call to a function, the index is retrieved and the handler copies the first
bundle back into place and calls the parser function. As explained in subsection 2.4.2, the parser
first handles the register allocation issue and, if it is not possible to obtain the required registers,
the original function is left untouched and the execution resumes. In the case of Fortran codes
using the icc compiler cannot use this system since the associated signal handler is not able to
handle the current version of the code correctly. However, if registers have been allocated, the
function is parsed and the loads are copied into the instrumentation pool with the profiling code.

Another solution to this problem would be to replace the first bundle of a function by an
unconditional jump to a handling code instead of using the signal handler. However, this would
necessitate to write a trampoline between the original code and the parsing code to preserve the
semantics of the program. This is more complex and since the signal handler is only called once,
the overhead incurred is minimal.

Listing 2.1 shows an example of the prologue and epilogue assembly codes. In the middle of
the code is the load that is instrumented. The instrumentation starts with setting the address
of the associated counters. Each load from the original is associated to an execution counter
and an accumulator counter. The execution counter is the number of times a load is executed
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Figure 2.17: Left: Sum of load latencies (in ten millions cycles) with execution of functions from
group B. Right: Average load latencies with execution of functions from group B

Group A Group B

refresh_potential compute_red_cost
update_tree replace_weaker_arc
primal_iminus price_out_impl
bea_compute_red_cost
bea_is_dual_infeasible
sort_basket
primal_bea_mpp

Table 2.6: Two groups of functions that share the program’s execution

and the accumulator represents the sum of the different latencies of the load. The prologue
starts with loading both counters using a post increment/decrement system from the Itanium
processor. This technique allows, in one instruction, to perform the load from an address and
then update the address. Once both counters are loaded, the execution counter is incremented
and stored. Then, before the load is executed, an access to the clock register is performed.

Once the load is executed, a stop instruction is used to stall the processor until the data
has arrived. In this case, a store instruction is used. Then, the second clock register access is
performed. By subtracting the time obtained before the load and then adding the time after,
we obtain the number of cycles between both values. Finally, the accumulator is updated after
adding this value.

2.4.8 Polling mechanism and evaluation

Once the system has modified the first bundle of every function and set the signal handler, it
creates a second thread to monitor the load activity. This second thread polls the different
counter values that have been modified by each profiling code. At every wakeup, the profiler
checks each load counter. If the execution counter of a load is over a fixed threshold, it stores the
counter value and the accumulated load latency in the associated load-information structure.

The presented profile method enables to evaluate program bottlenecks regarding load laten-
cies. For example, program mcf shows a cycle of two groups of functions given in table 2.6.
Figure 2.17 shows the sum of latencies of every load in the program throughout the execution.
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The dotted line represents the execution of functions from group A. When the line has a value
of 10, it means that a function from the group A is being executed. We can clearly see that,
during the execution of the group B, the sum of latencies is much higher.

Also, when comparing the average load latency of program mcf in figure 2.17 with the
execution of the functions of group B, we see that the average is higher during the execution of
the functions from group B. This means that an optimization system should clearly handle the
three functions of group B in order to achieve a speed-up.

2.4.9 Dynamic code modification

While the profiler is instrumenting and de-instrumenting the code, it is possible for a modification
to be made to a bundle that the main program is currently executing. Any dynamic code
modification must be done in a way that preserves the semantics of the program. On the
Itanium processor, the length of an atomic write is 8 bytes while the length of a bundle is 16
bytes. Thus the modification of a bundle cannot be considered atomic.

Two solutions are generally used. The first puts the main thread to sleep and modifies the
code at that moment, the second writes an illegal instruction to stop the execution of the main
thread and, when an illegal signal is received, the signal handler performs the modifications.
Our system modifies the template to an illegal format before modifying the rest of the bundle.
On the Itanium processor, each bundle has a template to indicate the contained instructions.
This template is 5-bits long and there are 8 reserved values that cause an Illegal Operation
Fault. Finally, the bundle’s address is put into a special linked-list that represents pending
modifications. To differentiate a modified bundle and the modification of the first bundle of a
function rapidly, a different illegal template value is used.

When the main program encounters such a bundle, an Illegal Operation signal is captured
and the modification of the pending bundles can proceed. Since modifying a bundle template can
be done while the main program is executing the bundle, a safety mechanism is implemented.
When the handler is called, two parameters are given to the handler: the address of the illegal
bundle and the instruction that has raised the illegal instruction.

In the best case scenario, it is the first instruction that raises this illegal operation. In this
case, the profiling system simply goes through the linked-list to complete the modifications and
the program resumes its execution at that corrected bundle. In the worst case scenario, it is
the second or last instruction that has caused the illegal operation. This means that when the
program resumes its execution, it must not re-execute the first instructions.

To correct this problem, a safety net is implemented by replacing the bundle by an uncondi-
tional jump to a correcting patch code. Figure 2.18 shows this correcting patch. On the left, the
original bundle executes only the first instruction. It is first replaced by an unconditional jump
to a three bundle segment. The first bundle consists in the rest of the original bundle that needs
to be executed. The second bundle has an illegal template that gives the handler the chance to
finish the modifications of all pending bundles. Since the instruction stream is stopped at this
new illegal bundle, when the handler function now returns, the instruction stream resumes at
that bundle. To let the program flow continue, the system fills this bundle with nop instructions
as we can see on the right of the figure, in order for the program to reach the last bundle. The
last bundle of the patch code is a branch that returns to the bundle following the one that
generated the first Illegal Operation.

However it is possible that at least one of the last instructions of the bundle contains a
branch instruction. In this case, when the program executes them, it jumps back to the original
code. The program then continues its execution until the next illegal operation. This case is
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ld8 r17=[r19]
ld8.s r23 = [r20]
add r26 = r20, 16

Illegal 
Operation

ld8.s r23 = [r20]
add r26 = r20, 16

nop.m 0x0

nop.i 0x0
nop.i 0x0
nop.m 0x0

br.cond.sptk.few
nop.i 0x0
nop.m 0x0

br.cond.sptk.few
nop.i 0x0

ld8.s r23 = [r20]
add r26 = r20, 16

nop.m 0x0

nop.m 0x0

a) Original bundle b) Patching System c) Resume execution

Figure 2.18: Original bundle that has executed only the first instruction (a), patching mechanism
(b), once the modifications are finished the illegal operation is removed (c)
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Figure 2.19: System overhead with the gcc compiler

extremely rare and is not an issue, since the next illegal operation allows the profiler to modify
the pending bundles.

In the general case there is no branch in the bundle and the program raises the Illegal
Operation in the patching segment resulting in the modification of the pending bundles. Then
the program resumes its course through the branch instruction at the end of the patching
segment.

2.5 Experimental and Performance Evaluation

In the current implementation, the minimum number of times a load has to be executed before
changing its state is fixed to one thousand. The average latency over which a load becomes a
candidate for prefetching is fixed to 15 processor cycles.

Our system was run with nine SPECFP2000 benchmarks, seven SPECINT2000 benchmarks
with reference inputs, four Pointer Intensive benchmarks (ft, bc, anagram and bc) and one Olden
benchmark (treeadd). Our test machine is a 2-CPU 1.3Ghz Itanium-2 rx2600 workstation.
However, notice that our system is entirely run onto one unique processor. The operating
system is Linux kernel version 2.6.9-42 with glibc 2.3.4. We used both compilers gcc version 4.1
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Figure 2.20: System overhead with the icc compiler
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Figure 2.21: Performance Speed-Up of Dynamic Prefetching with gcc and icc compilers

and intel icc version 8.1 with O3 to compile the benchmark programs. Notice that the icc

compiler generates prefetch instructions with O3 while the gcc compiler does not. Finally, every
result is the average of 5 distinct runs.

2.5.1 System Overhead

To measure the system’s overhead, we inhibited the insertion of prefetch instructions. In such a
dynamic system, it is impossible to really calculate the overhead of the system since its decisions
obviously differ when not inserting the prefetch instructions. But this gives an idea of the cost
of such a system as a worst case scenario. As we can see on figures 2.19 and 2.20, though the
execution times differ between the gcc compiler and the icc compiler, the overhead is on average
5%.

2.5.2 Performance Analysis

Figure 2.21 shows the performance of our system on the considered benchmark programs com-
piled with both gcc and icc. About half of the programs show speed-ups ranging from 2% to
143%. For programs showing no benefit, the performance difference is between -1% and -16%.
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The worst case is program twolf, which already had a bad performance because of the register
allocation scheme. After that initial overhead, the framework is unable to find a load to optimize
efficiently. If we only consider programs that are being slowed down, the average slowdown is
only slightly over 5%. Long duration programs respond better to the system showing significant
speed-ups. In the case where there is no single interesting load, each load enters the dormant
state for longer periods of times making the whole system slowly shutdown. For example, pro-
gram bc lasts only 22 seconds whereas parser lasts more than 300 seconds. When comparing
the overhead of both programs, we notice that parser is almost not slowed-down by the gcc

code and even accelerated using icc. We think that bc does not have an execution time long
enough for the system to counterbalance its overhead. Finally, the additional execution time is
very low for the programs that are slowed down.

We notice very different results when comparing the execution of codes from the two compil-
ers. For example, art responds much better with the icc version of the code. However, equake
obtains a speed-up of almost 50% with gcc. The icc version also has a considerable speedup.
This shows that, even if icc issues prefetches into the instruction stream, our system is still able
to improve performance. This is especially true since if there is a load that is being correctly
prefetched by the program, it will not be considered delinquent by our system. Therefore, the
system can be considered as a prefetch helper and not a competitor.

For mesa and ammp the results can be explained by the fact that our system does not instru-
ment the functions that use all the processor registers. This means that the biggest functions
could not be transformed as it is explained in section 2.4.2.

Finally, for program swim, a big difference in execution time was noticed between the codes
compiled with gfortran -O3 and ifort -O3. With gfortran, the execution lasted about 11
minutes, compared to the 90 seconds of the ifort version. A significant speed-up was obtained
using the gfortran compiled code as expected for such an execution time.

2.5.3 Prefetch distance

Since our system dynamically calculates the best prefetch distance for each load, it is interesting
to compare this system with a fixed distance technique. Figures 2.22 and 2.23 show the results
of this comparison for both compilers. The comparison with the distance learning solution is
done using the best distance for each benchmark compared to our distance learning system.
Since our system only uses power of 2 distances, our learning mechanism does not test every
possible distance.

The numbers over the histogram groups are the best fixed prefetch distance found between
1 and 64. It can be noted that programs are quite sensitive to the used distance. For programs
art and treeadd, a fixed distance can even slow-down the program instead of accelerating it.
There is a cost of learning the prefetch distance and this explains the slight loss of performance
when learning the distance dynamically instead of testing each distance off-line.

As we can see, each benchmark has particular distance for which the performance is optimal.
In most cases, like equake for example, where the best prefetch distance is 35, the system could
also include more distances in the learning phase. This would obviously slightly heighten the
overhead but would give the system a better chance for such programs. However, with the
current system, we feel the performance of the system is already significant with the actual
learning mechanism.

Though our performance never dramatically outperforms the best fixed distance, in programs
where the input modifies the behavior of the program or in cases where different programs need
to be optimized by the same optimizer, our system performs and adapts correctly. Finally, the
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Figure 2.22: Effectiveness of the prefetch distance learning process with the gcc compiler
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Distance Loads changing Optimized
Benchmarks changes distances loads

gcc icc gcc icc gcc icc

ft 3 3.33 2 2 0.67 2
bc 0 0 0 0 1 1
mcf 21.33 14.67 9 6.67 16.67 10

equake 27.33 18.67 10.33 2.33 16 4.33
art 20.67 10.33 9 4.33 9.67 4

ammp 20.67 11 8.33 4.33 21.33 15
bzip2 6.67 2.33 4.67 2.33 0.67 5.33
parser 128.67 68.67 64.67 32.33 155 80.33
gzip 0 0 0 0 0 1
swim 97.67 5 24 3 32.67 8.67
mesa 0 0 0 0 0 1.33
applu 79 5 33.33 3.67 71.33 8
twolf 27 8.67 10.33 4.67 34.67 32.33
lucas 36 0.67 22 0.67 68 0
crafty 4 3 2.33 2.33 40 30
fma3d 143.67 1.33 48.33 1 81.67 2.33
facerec 47.67 0 3 0 0.33 0.33

vpr 40.67 39.67 15.67 14 34 23
treeadd 7.33 8.33 3.67 0.67 5 0.67

Table 2.7: Prefetch distance variations

differences between fixed distance and distance learning techniques are important for programs
ft and treeadd because their execution times are very low. For example, there is actually only
a 2 second difference for program ft.

Table 2.7 shows the average number of changes in the prefetch distance during the executions
of the different programs. Only programs having at least one load that changed its prefetch
distance are shown. A change in the prefetch distance is defined when, after an initial distance is
calculated, a better distance is found. For example, treeadd only has one load that is optimized
for the icc version by the system but the best prefetch distance changes on average 8 times
during the execution of the program. The prefetch distance can change on two occasions. First,
when the load goes from the dormant state to the instrumented state. If it is still delinquent,
a stride and prefetch distance calculation occurs. Second, if the load is continuously optimized,
the load is reinstrumented to recalculate the current latency. When that happens, if the load
is still delinquent, another stride and prefetch distance calculation occurs. The percentage of
loads that have a prefetch distance change out of the loads that have been optimized is 42.6%
across the different programs, and the average number of changes per load is 2.54 per program
for every load that changes distance at least once.

Figure 2.24 shows the effect of modifying the fixed distance. The figure shows three programs
lucas, art and treeadd. The programs were executed with prefetch distances ranging from 1 to
64. Only three programs are shown but the other programs show similar variations. Programs
equake, ft and swim showed the same kind of sensitivity than art or treeadd when modifying
the prefetch distance. On the other hand, the programs mcf and fma3d show little or no sign of
change, like the program lucas, when we modify the prefetch distance. The remaining programs
are always slowed down by our system.
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Figure 2.24: Acceleration depending on the fixed distance used ranging from 1 to 64 using the
gcc compiler
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Figure 2.25: Acceleration depending on the fixed distance used ranging from 1 to 64 using the
icc compiler
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Figure 2.25 shows the effect of modifying the fixed distance using the icc compiler. With this
compiler, only two groups of programs were found. Accelerated programs mcf, equake and ft

resemble the behavior of treeadd and art. The other programs, which show a general slowdown
resemble the behavior of lucas.
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Figure 2.26: The distribution of prefetch distances used

The used prefetch distances by the system are equally balanced between the different dis-
tances used. Figure 2.26 shows the percentage of each prefetch distance used using the gcc

compiler. The empty histograms are from programs where no efficient prefetch distance was
found. As we can see, there is no benchmark that uses exclusively one distance. Each bench-
mark program used, at one time or another, almost every prefetch distance. This shows that a
dynamic prefetching system must be able to use different distances in order to achieve the best
possible speed-up.

Figure 2.27 shows the percentage of loads for which the system always assigns the same
prefetch distance. For benchmark programs that have at least one load that was optimized, the
average percentage of loads that always have the same prefetch distance is 56%. However, mesa
contains only one optimized load and the system always maintains its prefetch distance. The
loads from program facerec always change their prefetch distance.

Finally, figure 2.28 shows the distribution of loads that changed prefetch distance at least
twice. Though most benchmark programs have a majority of loads in this case that change twice,
ammp, treeadd, facerec and swim have more loads with a higher number of distance changes.
Program facerec had the maximum number of prefetch distance changes with 35 changes.
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Figure 2.27: Comparison between loads maintaining the same prefetch distance and the loads
using more than one distance
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Figure 2.29: Evolution of the number of loads in each state for program equake

2.5.4 Behavior Analysis

Since every load is associated to a particular state, it can be interesting to analyze the evolution
of the proportion of loads in each state. Figure 2.29 presents this evolution for program equake.
The monitored state is divided into two groups: the new monitored and the used monitored
loads, where the new monitored loads are those that have never been executed more that 1000
times. At a given time, the number of loads for a certain state is given by the interval between
two successive curves. For example, if we look at the end of the execution, we can see that there
are 65% of the loads remaining in the "new monitored" state, compared to 87 − 65 = 22% in
the used monitored state.

The four arrows under the time axis represent some interesting phase transitions. The first
arrow shows the end of the initialization code and the start of the computation code. After the
initialization phase, a lot of loads simply remain in the used monitored state since they are not
being used anymore. As we can see, until the third arrow, the proportions of each group do not
change. The second arrow shows a different peak that is generated by the monitoring phase.
These peaks represent loads that are transfered from the dormant state to the monitored state.
Since most of the loads are instrumented at the same time and are all sent to the dormant state
for the first time, they all wake up together. Since they remain non-delinquent, they simply
become dormant again but with a higher dl level. It is this incrementation that generates the
increasing interval between two successive peaks.

The third arrow represents a real phase transition in the program’s behavior. At that mo-
ment, the number of new monitored loads decreases. This means that the system has found new
loads that have been recently executed enough times to change states for the first time. Since
the proportion of used monitored and dormant loads remain constant, we can determine that the
loads all went into the stride learning interval. This means that the program has entered a new
portion of code and that the loads are considered delinquent. Finally, the fourth arrow shows
the time where the loads have been filtered out into two groups: some return to the dormant
state and some continue to the prefetch state.

2.6 Conclusion

In this chapter, we showed how to implement a dynamic analysis and optimization system, which
is entirely software, that inserts prefetch instructions where it has been evaluated as effective
by measuring the load latency. The system does not use any interpretation or emulation like
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other solutions, but dynamically modifies the target program to directly take into account the
needed instrumentation and maintains a low overhead. The software implementation has been
achieved by constantly optimizing the code in order to minimize the induced overhead. It has
been shown on several benchmark programs that even if it is entirely software, significant speed-
up is obtained. Moreover, our performance results look similar to results obtained in other works
entirely or partially based on specific hardware.

However we think that the overhead could still be lowered by avoiding jumps to the instru-
mentation pool and by inserting monitoring and prefetching code in the place of existing nop

instructions surrounding loads.
Finally, though the achieved speed-ups are promising, the prefetching scheme can be consid-

ered too as simple. Assuming each load might be stride-based, testing each distance in order to
find a correct prefetch distance is time-consuming and not always applicable. A solution is to
create a model that can help decide whether to optimize or not a particular load. The solution
we propose, presented in the next chapter, is to use a Markovian model.



Chapter 3

Esodyp: an Entirely SOftware and DYnamic

Prefetching system

The previous chapter presented a lightweight dynamic system to optimize programs by
automatically detecting delinquent loads. However, the system does not try to under-
stand the memory access behavior before trying to optimize the loads. This chapter
presents a Markovian model that is created at run-time and can perform predictions at
a low cost. A Markovian model uses past elements in order to calculate predictions.
The chapter presents the theory behind Markovian models and compares two possible
structural representations. Finally, an API is provided and tested in order to optimize
and accelerate target programs.

3.1 Introduction

Handling data cache misses correctly can help to achieve significant speed-ups if the prefetcher
is able to predict correctly the occuring memory stream. In chapter 2, we presented a simple
stride predictor that handles one type of memory stream. However, there are certain limitations
to this system. For example, before knowing if the data stream is strongly strided, it must test
different prefetch distances. If the optimization framework had a mechanism to modelize the
data stream, this would not be necessary. This chapter presents a solution that modelizes the
data stream using a Markovian model.

Predictors usually consider information from previous events to calculate the probabilities of
future events. Certain predictors, for example stride predictors, are relatively simple. However,
more complex models are possible. Markovian models are generally considered as correlated
predictors and are generally represented by finite state machines. Using statistical information
about previous monitored events, they calculate the probability of future events.

Many works have used Markovian models to understand or predict the behaviors of programs
[50, 62, 40, 34, 65, 41]. When considering data prefetchers, Markovian models can be integrated
into the processor chip to handle branch predictions [21] or to prefetch data [55]. In the latter
technique, Joseph and Grunwald use a hash table to handle multiple data streams and the
solution is able to profile and prefetch data. However, the system only uses the last element in
the sequence to calculate predictions. In our system, the model handles a variable number of

85
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elements to calculate the predictions. Finally, Markovian models can be complex to create and
off-line techniques can be used [62]. Once the model is created, it can be loaded into the chip
and used at the appropriate time.

Software solutions also exist. For example, Bartels et al. [7] present a solution predicting
page-faults that uses multiple past elements to calculate a prediction. In this solution, a graph
is also used to implement the model. However, a hash table query is needed at each call in order
to find the correct prediction. Furthermore, the system only predicts the next page fault. In
our system, the graph representation does not need a hash key calculation since the information
is kept in the main structure and only the current element is needed to update the model. The
predictions of our model also depend of a prefetch distance, meaning that our model can predict
elements further in advance.

Tree representations are another common solution to represent Markovian models. Suffix
trees are for example often used for pattern recognition algorithms [94]. Begleiter et al. [8] com-
pare six prediction algorithms using tree representations of Markovian models. These systems
represent the sequence of elements correctly but necessitate a complex calculation in order to
calculate a prediction.

This chapter presents a dynamic solution to create a Markovian system prefetcher. The
dynamic system must be able to gather the information during the execution of the program,
create a model to prepare the predictions and issue prefetches. The model is created in the
form of a graph in order to limit the memory and CPU overhead. Also, the system considers
memory strides instead of considering the absolute addresses. A memory stride is the difference
between two consecutive memory accesses. In many cases, this difference enables the system to
handle large memory regions with a relatively small model. Furthermore, compared to hardware
solutions [39, 55], the solution we present is totally software. This means that it is portable across
different architectures and can be easily extended to other applications.

Though the implementation was intended for predicting and inserting prefetch instruction
to reduce load latencies, chapter 4 extends this work to the Distributed Shared Memory sys-
tems. The current chapter begins with a presentation of the Markovian model in section 3.2
and presents briefly some theoretical aspects. The implementation aspects and decisions are
discussed in section 3.3, where two potential data structures are studied and compared. Finally,
section 3.4 shows two examples of how the model is used and section 3.5 shows the performance
and evaluation of the model on different benchmark programs.

The work presented in this chapter was published in [9].

3.2 The Markovian model

At compile time, modern compilers use different optimization passes in order to create an op-
timized binary code specific to a certain processor. However, it is often difficult to assess what
optimization should be used in certain cases. Dynamically allocated structures or data de-
pendent behavior renders the application of some static optimizations impossible. However, a
dynamic solution can decide at run-time if the optimizations are beneficial by directly testing
their impact on the target program. Though generally more costly in terms of CPU overhead
and more complex to implement than a static solution, it is a good compromise when a decision
cannot be made at compile time.

Statistical information about the behavior of the program is needed for the dynamic opti-
mizer. However, this information must generally be filtered in order to extract the important
elements. One statistical method is the construction of a Markov model. A Markov model stud-
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Element Successor

A B

B C,D

C B

D B

Figure 3.1: A simple prediction table

A

B

C D

Figure 3.2: A simple graph

ies a sequence of information and extracts certain statistical information. The information can
generally be described as a notion of sequencing. It can be the fact that instruction A precedes
instruction B, as it can be that the memory block C is accessed after D.

3.2.1 An example

To understand a Markovian model, let ABCBDBCBD be the considered sequence of elements.
A description of the sequence could be:

• Though there is only one element A, after each element A is an element B;

• After each C or D is an element B;

• Finally, after a B is either a C or a D with equiprobability.

One way to modelize this would be to define each distinct element of the sequence and list
the elements that appeared directly after it. Figure 3.1 shows one possibility of illustrating these
predictions. The first column represents the current element and the second what the model
noted as possible successors. As we can see, for the element B, there are two entries in the
second column. This means that, if B is the latest element processed by a model that only
considers the current element, it cannot predict accurately the next element.

Another representation is the figure 3.2 in which the nodes represent each element of the
sequence and each directed-edge the direct order in which the elements appeared in the sequence.
Since the graph can be considered as a state machine, we use the term node or state throughout
this chapter.

The two presented models can be used to predict the future elements of the sequence. For
example, let us assume we are using the table representation and the current element is C. The
first column contains a C and the corresponding second column contains a B. The model would
then predict that the next element will be a B. In a classical implementation, a hash table would
be used with the key representing the current element and the associated hash value being the
prediction.

3.2.2 Markov chains

Markov models exploit the theory behind Markov chains. A Markov chain is a sequence of
random variables x1, x2, x3, ..., xn with the property defined in the figure 3.3.
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Pr(Xn+1 = x|Xn = xn, ..., X1 = x1) = Pr(Xn+1 = x|Xn = xn)

Figure 3.3: Recursive definition of the probability defined by the Markov Model

Pr(Xn+1 = x|Xn = xn, ..., X1 = x1) =
Pr(Xn+1 = x|Xn = xn, Xn−1 = xn−1, ..., Xn−m+1 = xn−m+1)

Figure 3.4: Recursive definition of the probability defined by the Markov Model of order M

This means that the element xn+1 is not dependent of the elements x1, ..., xn−1 but only of
xn. As we can see in the table 3.1 and the figure 3.2, the predictions are only dependent of the
current element. This type of model only considers the current state to define the next. What
happened before is not used to calculate the prediction of the next element.

A variation to the Markov model is called the Markov chain of order M. The order M defines
the number of previous elements used to calculate the probability of the current element. Figure
3.4 shows the definition of the probability for the Markov chain of order M . As we can see,
comparing it to figure 3.3, the probability of having a element xn+1 depends not only of xn but
also of xn−1, xn−2, ..., xn−m.

Figure 3.5 shows the table representation when using the element sequence ABCBDBCBD
and an order of 2. As we can see, using the two last elements to calculate the next element is
sufficient to achieve a perfect model where each row contains only one possibility in the second
column. This means that, as long as the behavior remains constant, an order of 2 is sufficient to
perfectly modelize this sequence without any error possible. Section 3.3.2 explains the different
algorithms used to create the models in detail. Figure 3.6 shows the same model using the form
of a graph. As the sequence is being processed, the model maintains a pointer on the current
node. The nodes are represented by two letters: the last two elements that were noticed at their
creation. For the current node, this represents the before last and last element of the sequence.
The predicted element is the second letter of the node following the edge of the current node.
This means that after the model has detected the sequence AB, following the edge, it can predict
that the next element is C since the label of the next node is BC.

Finally we notice that the sequence produces a cycle in the model. Using this cycle, we are
able to predict accurately the next elements of the sequence. For example, if we are in the state

Element Successor

AB C

BC B

BD B

CB D

DB C

Figure 3.5: A prediction table using an order
of 2

DB

BD

AB

BC

CB

Figure 3.6: A prediction graph using an or-
der of 2
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Source Destination

S1 d11, ..., d1k1

... ...

Sn dn1, ..., dnkn

Source Destination

S11S12 d11, ..., d1k1

... ...

Sn1Sn2 dn1, ..., dnkn

Figure 3.7: The general definition of order 1 and 2 tables

BD, we know that the next 4 elements are BCBD.

Order of the model

Figure 3.7 shows the general definition of the tables of order 1 and 2. We can extend this order
to the general number n and we can give four propositions. Let S be the sequence that the
Markov model studies. Let us name the table representing the information at the order k as Tk.
Finally, let us assume for the rest of this section that the length of the sequence is greater than
n + 1. This assumption is not restrictive since we are creating a model to predict the rest of the
sequence. Generally, the construction of the model is done on a small fraction of the sequence
and the predictions for the rest of the sequence.

Proposition 1. If the transition s1s2...snsn+1 → d exists in the table Tn+1, then s2...snsn+1 → d
exists in the table Tn.

Proof. Since s1s2...snsn+1 → d exists in the table Tn+1, this means that s1s2...snsn+1d exists
in the sequence S otherwise the transition would not exist in Tn+1. Thus, we can extract the
subsequence s2...snsn+1d from S. Finally, if s2...snsn+1d exists, s2...snsn+1 → d must exist in
Tn.

Proposition 2. If the transition s1s2...snsn+1 → d exists in the table Tn+1, then s1...sn → sn+1

exists in the table Tn.

Proof. Since s1s2...snsn+1 → d exists in the table Tn+1, this means that s1s2...snsn+1d exists
in the sequence S otherwise the transition would not exist in Tn+1. Thus, we can extract the
subsequence s1...snsn+1 from S. Finally, if s1...snsn+1 exists, s1...sn → sn+1 must exist in
Tn.

Proposition 3. If the length of the sequence is strictly greater than n + 1, every transition
s1...sn → d from Tn can be extracted by a transition from Tn+1.

Proof by contradiction. Let us remind the hypothesis of the proposition H1 and assume by
contradiction hypothesis H2:

• The length of the sequence is strictly greater than n + 1 (H1)

• s1...sn → d exists in Tn but cannot be extracted from the order n + 1 table (H2)

However, if s1...sn → d exists in Tn, this means that in the studied sequence s1...snd exists.
If s1...snd exists then αs1...sndβ exists with α and β being possibly empty (or ǫ).
To finish this proof, let us consider each case:

1. If α = ǫ and β = ǫ, then s1...snd is the whole sequence. However, this means that the
length of the sequence is equal to n + 1 which is a contradiction with our hypothesis H1.
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2. If β 6= ǫ, then s1...sndβ exists in the sequence. This means that s1...snd → β exists in
Tn+1. Using the proposition 2, we know that s1...sn → d must exist in Tn. This means
the information can be extracted which is a contradiction with our hypothesis H2.

3. If α 6= ǫ, then αs1...snd exists in the sequence. This means that αs1...sn → d exists in
Tn+1. Using the proposition 1, we know that s1...sn → d must exist in Tn. This means
the information can be extracted which is a contradiction with our hypothesis H2.

These propositions show that if a predictor creates a Markov model of order n, it can extract
the models of inferior orders. Algorithm 1 shows the solution to extract the information from
a table of order n + 1 to create a table of order n. The Table Tn can be considered as a set of
transitions and the Add function can be considered as an addition to that set. This means that
the addition is only performed if the element does not yet exist in the set.

Input: Tn+1: Markovian table of order n + 1

Output: Tn: Markovian table of order n

foreach Transition s1...snsn+1 → d in Tn+1 do
Add s1...sn → sn+1 in Tn;
Add s2...sn+1 → d in Tn;

end

Algorithm 1: Extraction of Tn from Tn+1

Since all the information contained in the order n is contained in the order n + 1, we know
that if we use a higher order, no information is lost. This means that, a perfect Markov model
has an order ∞ and has all the information available. Actually, for a sequence of n elements,
a Markov model of order n − 1 is enough since it can predict correctly the whole sequence. If
it cannot predict anything, the model can always create a lesser order that might be able to
predict an element. However, there are at least two reasons why a Markov model of order n− 1
is not recommended. The first reason is the memory required to store the model and the second
is the usefulness of such a model. Generally, a Markov model is used to predict elements in the
sequence. However, if the model is being created during the sequence, no predictions can be
made. For example, if we know that the sequence contains 50 elements, creating a model with
an order 49 is useless since before predicting, 48 elements must be studied in order to create the
first transition. For example, it would probably be best to create a model of an order of ten,
construct the model using the twenty first elements and predict for the last thirty.

Finally, proposition 4 states that we cannot use a model with an inferior order to create a
model with a superior order still representing the original sequence. This proposition says that,
though the model can be accurate, it does not replace the original sequence. Since the history is
limited, the model can create false predictions as long as there remains a node which has more
than one son. If there is only one son per node, the model can be used to extract the whole
sequence or patterns contained in the sequence. Of course, this is only true if the rest of the
sequence does not include variations to the behavior studied during the creation of the model.
The proof consists in taking an example and showing that the extracted sequence does not lead
to the same Markovian model.
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AB

BC

CB

BD

DB

Figure 3.8: A order of 2 graph for the new sequence ABCBCBCBCBDBD

Proposition 4. The Markov model of order n representing a sequence S cannot be extended
uniquely to an order n+1 that represents the same sequence S without using the original sequence.

Proof. Figure 3.2 shows the graph form of the model representing the sequence ABCBDBCBD.
However, from that graph, we can create new sequences. For example, the following sequence
ABCBCBCBCBDBD can be extracted from the graph. This sequence, though created from
the model is not equivalent since the Markov model of order 2 for that sequence is different
compared to figure 3.6 as we can see in figure 3.8. Finally, the graph obtained does not represent
the original sequence. This means that, without additional information or the original sequence,
we cannot extrapolate the order 1 to the order 2.

3.2.3 Dynamic representation

We have shown that a Markov model helps to understand and to calculate predictions using
prior elements in the sequence. The order of the model defines how many elements are used to
calculate the next element. Also, we have shown that the higher the order, the more precise is
the model since information is never lost when incrementing the order. However, with only a
model of a particular order, it is impossible to calculate a model of a higher order.

This means that, when creating the model, the right order must be used. If too low, the
predictions can be inaccurate. If too high, the complexity and memory usage of the model can
be unnecessarily too important. To use such a model in a dynamic framework, these factors
must be taken into account.

Memory usage is an important factor. A model using too much memory has a risk of
generating many cache misses. Also, on embedded systems, the amount of memory available is
limited. A second factor is the complexity to calculate the prediction. Since a lookup into the
model is done frequently, a fast algorithm must be used to quickly decide what to prefetch.

These two factors need to be taken into account when defining different parameters used for
the creation of the model.

3.2.4 Predictions using a Markov model

When implemented into a dynamic framework, the model must be able to calculate the prediction
with the lowest complexity possible. Moreover, if it prefetches data into the cache, the model
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Element Successor

A B (1)

B C (2),D (2)

C B (2)

D B (1)
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B
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2

D

22

1

1

Figure 3.9: Extended versions of the models

must be able to predict elements further in advance. This means the model must predict n
elements in advance and as accurately as possible.

We presented two model representations: one using a table and one using a graph. There is
an additional information needed to be able to predict. If there is more than one choice possible
from a given state, the predictor must know which is more likely to happen. This can be done
by counting the number of times the model notices one transition compared to the other ones.
For example, figure 3.9 shows the extended representations if we add this information into the
models.

For the table representations, the numbers in the second column are the number of times
the different transitions were noticed. This same number is also the label of the edges in the
graph representation. This means that, if the last element was B, the model would not be able
to decide between C or D since both appeared the same number of times. However, in a more
general context, the label of an edge may be higher than the other edges. Therefore, this would
be the most probable son and the best prediction.

3.2.5 Table vs. Graph

This subsection addresses the problem of deciding between both representations which one is
the best. The system must:

1. Use the least memory possible: the table representation requires having an array big enough
to hold all the information. Though dynamically allocated arrays are a solution, the
constant reallocation can be prohibitive in terms of performance. The graph representation
uses more memory since pointers need to be allocated for the edges between the nodes.
However, each node is allocated when it is needed and the total size of the graph does not
need to be calculated before the start of the construction.

2. Have the lowest complexity possible when calculating the prediction: when using a table
representation, the system needs to calculate the position of the row containing the studied
sequence. This can be done with a hash function but is still relatively costly. The graph
version is faster since edges exist between nodes to directly give the next state of the model.
The complexity depends on the number of edges leaving a node. However, optimizations
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Figure 3.10: Optimized table representation

can be implemented to accelerate the search by keeping certain edges as most probable
edges. Details of this technique are given in section 3.3.1.

3. Be able to handle mispredictions : when the model is unable to predict or the current
behavior does not reflect the behavior the model noticed during its construction, it must
still be able to predict quickly. In the table representation, if we only have the order n,
the predictor must wait n elements before being able to predict correctly. However, if we
ignore the memory usage, the model can build the tables of order 1 to n and use each order
when appropriate. For the graph representation, it is not necessary since, while creating
the graph of order n, we also create the orders 1 to n − 1. Therefore, at a lower cost,
we already have the different orders available for use when a misprediction occured since
the graph representation does not necessitate more memory to include this information
compared to the table representation.

3.2.6 Dynamic solution

Though solutions are possible to create a good and fast table representation, another problem is
the memory allocation scheme used. An array is generally defined as being a contiguous memory
block. This means that a general idea of the size of the structure before creation is required.
Though a dynamic reallocation scheme can be used or a special data structure can be created
to allow only portions of the table to be contiguous, the complexity of the model creation or the
complexity of the lookup are augmented.

If we ignore this problem, a solution must still be found in order to predict effectively.
Though hash tables are a solution to find an entry in a table, using a hash function at each
prediction would probably be too costly in a software solution. Figure 3.10 shows one solution
to optimize the time needed to make a prediction. Two tables representing the first two orders
are augmented by links between different cells. These links represent the different predictions
and, if the predictions were correct, one of the next states the model would be in. Therefore,
instead of resorting to a hash function at each prediction, the predictor would first check the
links.

If we suppose that the model contains a pointer to the cell that represents the current state
of the model, the model can start by checking the different links of the current cell. Each time
the model receives information about the program behavior, it can update this pointer to always
represent the best state. The system starts by checking if the current behavior leads to one of the
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cells that are linked to the current one. If the check failed, a normal hash search is performed.
However, if it succeeds, a call to the hash function is not needed since the predictor directly has
the next current cell. Also, the links can be used to perform predictions from each cell. Hence,
by using links as predictions of the next element in the sequence, the model can, at each call,
predict and prefetch elements.

As we can see, there is no entry B in the first table and certain 2-order entries are also
missing. This is done to minimize the memory usage of the model. If we consider the first
column of figure 3.5, we notice that every couple finishing by a C or a D is followed by a
B. This means that we do not need to know what preceeded a C or a D in order to make a
prediction. This is why we can remove the entries from the second order. The removal of B
is performed because, if the predictor does not know what preceeded the B, it cannot predict
accurately. Another solution is to leave the B in the first order table and, if that is the current
state of the model predict either C, D or even both.

Though different schemes or decisions can be made, augmenting the table representation
with prediction links almost leads the predictor to a graph representation with the allocation
problem of a table representation.

The graph

The previous section briefly presented a representation of a Markovian model using a certain
number of tables. This section shows how some of the presented ideas naturally lead us to a
graph representation to handle the model and predict efficiently. First, since a graph is generally
allocated dynamically, each node can theoretically be added at any time.

Figures 3.2 and 3.6 showed two possible graph representations of fixed order Markovian
models. One important factor for the predictor is to be able to stay at the highest order as long
as possible, but if there is a misprediction or a slight change in the behavior of the program, it
must be able to use the lower orders.

Having separate graphs for each order is not practical in a dynamic optimizer since too much
memory is required. However, the previous section presented a technique using links between
orders to lead the predictor from one order to another. This idea can be used in the graph
representation.

Figure 3.11 shows this kind of representation on the sequence ABCBDBCBD. The square
nodes represent the nodes from the first order. Links from the first order lead to second order
nodes since we keep the information from the previous order. For example, if the sequence is
AB, we have an edge from the node A to the node AB but no edge between the two nodes A
and B. Once in the second order nodes, the predictor does not return to first order nodes unless
a misprediction occurs.

This can happen if, for example, the current state of the predictor is the AB state. If the
next element is D for example, the predictor cannot go to a state BD since there is no edge
between both states. However, it could create such a link if needed and this could be used the
next time the predictor is in the AB state.

However, maintaining and updating edges between the nodes of such a graph is complex and
time consuming. In a dynamic system, this is not an option. Therefore, the predictor creates the
graph and then stops inserting new nodes or new links. This, of course, makes the graph valid
for a certain amount of time but, at a phase change for example, a new graph will be needed.
The next subsections show a few extensions that were added to render the model adaptable to
slight behavior changes.
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Figure 3.11: The order 2 graph representation including the first order. First order nodes are
represented with square boxes

3.2.7 Prefetch distance

The prefetch distance is defined by the number of elements between the current element and the
element predicted. The distance must be carefully calculated since a small distance results in
the prefetch element arriving too late and, if the distance is too high, the system risks a cache
line eviction before the data is needed. Indeed, when the prefetch data arrives, it is placed in
a cache line that can be used for another line of data if that is what the replacement policy
decides. This means that the prefetched data must arrive as close as possible to the time it is
needed to limit these risks.

A drawback when using a higher distance is the drop of accuracy. Since each step in cal-
culating the prediction adds a certain risk of error, the chances the predictions are wrong are
greater if the distance is important. Table 3.1 shows three different traces and the results using
the Markovian model. The first column shows the three traces that were repeated 200 times and
the models were constructed using the first 30 elements of the sequence. The second and third
column show the different parameters used. We used 4 different depths for the construction of
the model. For example, 3 means that the model will consider the last three elements to predict
the future access. For each trace, we compared different prefetch distances.

As we can see, the higher the construction depth, the greater number of nodes in the model.
However, the higher order models are able to predict with better accuracy, especially when the
prefetch distance is increased. As we can see, using a prefetch distance of 20, only the model of
order 4 is able to predict correctly for each trace.

Another important consideration is the quantity of calculations made by the predictor. The
time needed to finish the calculation depends on this distance. For example, for the Markovian
model, if n is the prefetch distance, n nodes must be visited to calculate the predicted element.
Since the goal of the model is to be as quick as possible, the solution is to keep the result in
the current node. This means that, when a prediction is needed, the system already has a
pre-calculated prediction.
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Trace Const. Depth Pref. Dist. Accuracy Size

1-2-3-4-3-2-1-4-3-2-1-5-3-2

1 1 71.32% 5
2 1 71.36% 14
3 1 92.71% 27
4 1 99.82% 41
1 3 14.31% 5
2 3 21.34% 14
3 3 92.56% 27
4 3 99.64% 41
1 20 0% 5
2 20 0% 14
3 20 7% 27
4 20 98.42% 41

1-2-1-4-1-2-3-1-4-5-1-2-3-1-5

1 1 53.30% 5
2 1 86.56% 14
3 1 93.6% 27
4 1 99.83% 47
1 8 0% 7
2 8 46.38% 19
3 8 53.05% 33
4 8 99.33% 48
1 20 0% 7
2 20 26.27% 19
3 20 32.88% 33
4 20 98.53% 48

1-2-3-4-5-4-3-2-1

1 1 77.6% 3
2 1 77.56% 8
3 1 77.62% 15
4 1 99.72% 24
1 8 22.12% 3
2 8 11.08% 8
3 8 33.18% 15
4 8 99.44% 24
1 20 0% 3
2 20 0% 8
3 20 0% 15
4 20 97.5% 24

Table 3.1: Different traces using the model. Each trace was repeated 200 times, the model was
constructed using 30 elements of the sequence.
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Listing 3.1: The SNode structure

// Pred i c t i on node
typedef struct snode
{
int s t r i d e ; // Informat ion o f t h i s node
int predSt r ide ; // Pred i c t i on
struct s n o d e l i s t ∗next ; // L i s t o f the sons
}SNode ;

Of course, since the labels of the edges are continuously updated, a new better prediction
can appear. Using a node version counting system presented in section 3.3.3, the system is able
to update the predictions when needed.

3.3 Implementation

Section 3.2 presented the theory behind the Markovian model. We compared two possible
representations of a Markovian model. Since the memory used and the complexity of calculating
the predictions with the table representation were considered too costly, the graph representation
was chosen as the best solution.

This section presents the implementation choices that were made to create a dynamic graph
representation of the Markovian model. The system was implemented to predict memory ac-
cesses. To achieve this, memory strides between consecutive accesses were modelized and stride
predictions were performed. The rest of this section is as follows. First, the general structure
of the model is presented. The information that is needed and the information available is con-
sidered. Since the model is kept in memory, it is possible that data cache misses are caused by
the model. Spatial locality is considered to optimize the global system. Optimizations are then
explained to reduce the overhead of the system and the construction and usage of the model is
presented. Finally, the associated API is presented.

3.3.1 The Markovian structure

The markovian structure used by the graph is divided into different structures. Two main
structures are used to create and handle the model. The first represents the nodes of the graph.
The second structure is used to handle internal counters and the general state of the model.

Listing 3.1 shows the definition of the structure for the nodes of the graph. The contents of
the node are the stride that represent the node, the precalculated stride and the next elements
of this node. The next field of the structure is a linked list containing a pointer to a son of
the current node, a counter which indicates how many times the model followed the edge and a
pointer to the next element of the list.

The construction of the model requires a complex algorithm. To reduce the overhead to a
minimum, the model is not continuously updated. When the model is not updated, it is used to
predict elements. If the predictions are not accurate, the model is destroyed and reconstructed.
The general structure is shown in the listing 3.2. This structure contains every element needed
in order to handle the model, check the construction phase and the miss predictions.

The fields of the Markovian model are:

• depth: the depth of the model, i.e., the number of elements used to calculate the predic-
tions;
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Listing 3.2: The SMarkov structure

typedef struct sMarkov
{
int depth ; //Depth o f the Markovian model
int nbr_err_max ; //Maximum of consecu t i v e miss p r e d i c t i o n s

// t o l e r a t e d b e f o r e a f l u s h
void∗ address ; //Current address , f o r the p r e d i c t i on we add t h i s address

// to the p r ed i c t e d s t r i d e
SBinNode ∗ root ; //Root o f the b inary t r e e
SNode ∗∗ cur ; // Poin ters on the graph

//Function t ha t w i l l be used by the programs t ha t want to be opt imized
void (∗ f c t ) ( struct sMarkov ∗ , void ∗ ) ;
int fct_ttlmax ; //Maximum Time to l i v e f o r the cons t ruc t i on func t i on
int pr e fD i s t ; //Distance o f the markovian model

// ( i . e : number o f jumps we make in the graph to p r e d i c t
// in advance )

}SMarkov ;

• nbr_err_max : the maximum number of miss predictions before a flush of the model is
performed. A flush occurs when the number of current consecutive mispredictions exceeds
the value in nbr_err_max. This flush resets the model and enables the system to construct
a new model that will represent the current behavior of a program;

• address : the current address that the program has accessed;

• root : the root node of the binary tree linked to the graph representation;

• cur : the current node;

• fct : the function pointer to the state function entry;

• fct_ttlmax : the maximum number of elements used to construct the model, once this
number is reached, the model is fixed and prefetching can start;

• prefDist : the prefetch distance used by this model.

Though most of the elements contained in the structure do not require more information,
the fct, root and cur fields requires a little more attention. The signature of the pointer function
fct states that two arguments are required. First, a pointer to the Markov structure in order
to update the internal counters. Second, the address of the considered load. With these two
elements, the function is able to update the structure and use the address to create the model
or check the accuracy of the predictions.

Figure 3.12 shows the different states of the model. At first, the model enters the first
call state. This first state sets the address field of the structure and sends the model into the
construction phase. After fct_ttlmax calls, the state is sent to the prediction phase until the
end of the execution. However, if there are too many consecutive errors, the model resets itself
and the state is set back to the First call state. In order to achieve these state changes, the
system simply updates the pointer function.

The model is accessed through the fct pointer function and, at each call, the system can
update the model or use the model to predict and prefetch a data element. Since each node
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Figure 3.12: The state machine of the model
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Figure 3.13: The binary tree, used to accelerate the search of the first order nodes
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represents a certain state of the model, the model needs to store the current node when updating
or predicting. The current node is stored in the field called cur of the SMarkov structure. For
example, if the program informs the model that the next access is A, the model checks if there
is a son of the node pointed by cur that is labeled A. If so, the label of the edge is incremented,
and cur is updated.

However, when miss predictions occur, it is necessary to return to the first order states shown
in the figure 3.11. This means that, whenever the model is looking for a son that the current
node does not have, the system has to search the different root nodes to find it. A binary tree
is added to limit the overhead as can be seen in figure 3.13. The root of the binary tree is the
root field presented in the SMarkov structure. If the model finds the root node it was looking
for, the model can continue predicting from that node. At each call, the model goes from the
current node to one of the sons. This means that after a certain number of updates, the model
will be at the maximum depth.

Spatial locality optimization

The model is constructed during the execution of the program. Nodes are created, edges are
attached, internal counters are updated. Every access to the model may cause data cache misses
that can slow down the program. To reduce the risk of modifying the behavior of the program,
the system allocates a data block in which the whole model can reside.

The memory allocation system is handled internally using a pointer to define the next free
block available and a free-space counter. If the counter reaches zero, there is no more memory
available. The memory that we initially allocated is less than 300 kilobytes and can store a
model of over 4000 nodes. This limit has never been reached in the considered benchmarks.

This allocation scheme has two consequences: spatial locality and a simple solution to flush
the model. Spatial locality is the successive accesses to elements residing in the same memory
region. Since the system now handles the allocation inside the block, it is able to concentrate
the nodes of the model together, thus limiting the number of data cache misses. Second, when
a model flush is required, the system can simply modify the root and cur pointers and the
allocation pointer to flush the model.

Best and not so best pointers

The Markovian model contains a pointer to the node that represents the current state of the
model. The edges of the node lead to the next strides that were monitored during the construc-
tion of the graph when it was in that particular state. Since a node can have a certain number
of edges, a solution must be devised to limit the calculations needed to find the node with the
correct stride.

Each node contains the edge that was the most followed. By doing this, the system is able to
check the most probable edge before having to search the list of edges. Also, each node contains
two other likely edges that are tested before the list. These tests limit the number of times the
list of nodes must be checked. Listing 3.3 shows fields added to SNode structure presented in
listing 3.1. The first element that is added is the vis_probableNext counter and probableNext
pointer. If the stride contained in probableNext is the correct stride, the counter is incremented
and the probable son becomes the current node of the model.

However, if the most probable son is not the one that the model is looking for, the model
checks two other nodes last and last2. These two nodes act as a modified Least Recently Used
(LRU) system. If one of the nodes corresponds, then the associated counter is incremented and
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Listing 3.3: The new edges in the node structure

//We have the number o f t imes we used the edge to the most used son
int vis_probableNext ;
//and a po in t e r to t ha t son
struct snode ∗probableNext ;

//We then have a LRU system between the two l a s t sons t ha t f o l l owed t h i s node
//And o f course the number o f t imes we f o l l owed t h e i r edges
int v i s_ la s t ;
struct snode ∗ l a s t ;
int v i s_ la s t2 ;
struct snode ∗ l a s t 2 ;

a check is performed to see if it is now more probable than probableNext. If this is the case, the
two pointers and two counters are interchanged. The full algorithm is presented in section 3.3.3.

3.3.2 Algorithms

The previous subsection briefly presented the implementation choices for the graph representa-
tion of the Markovian model. This subsection first presents the different phases of the construc-
tion of a Markovian model, and then presents the different algorithms used to construct, predict
and update the model.

Example

Before explaining the algorithms in detail, we present the different steps required to construct a
Markovian model using a simple example. The examples use the same sequence ABCBDBCBD
as before. Figures 3.14 and 3.15 show respectively the construction of the Markov models of
order 1 and 2. The rest of this section explains the constructions of these two models to explain in
depth how the model functions. First, we explain the first order since it is easier to understand.

The Markov model of order 1

To explain the construction process, we enumerate each step and present the modifications to
the model for each processed element. Each enumeration is associated to the subfigure presented
in the figure 3.14. For example, the enumeration a explains the construction process of the first
element of the sequence and refers to the figure 3.14(a).

a) when the model receives the first element A, it creates a single node A. This node has no
parent since the model does not know what happened before and no son since the model does
not know what will happen next;

b) after the second element B is processed, a node B and an edge from A to B are created.
This edge signifies that after an A the model noticed a B and the label means that it noticed
this behavior once;

c) the third element C is then processed and a node C is created. As we can see, an edge is
now attached from B to C for the same reasons as before;

d) when the fourth element B is processed, another node B is not needed since there is already
one in the graph. Instead, we can notice that a cycle between B and C is created;
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Figure 3.14: The construction of the Markovian models of order 1
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e) D is the next element of the sequence and it is a new distinct element. This means that a
new node D is needed and attached to the node B;

f) like figure 3.14(d), when the next element B is handled, a cycle between B and D is created;

g) the next element C is then handled and the model does not need to create a new edge or a
new node. The current node is B and the next element is C. Since an edge exists from B to
C, a simple incrementation is performed, meaning that this edge was used twice;

h) after the next B is handled, the labels of the cycle between nodes B and C are both at 2;

i) Finally, when the last element D is processed, the label of the edge from B to D is also
incremented.

The Markov model of order 2

Let us now consider a Markov model of order 2. This means that, instead of only using the
last element to calculate the predictions, the model considers the last two elements. Figure
3.15 shows the construction of this model. Using the same explanation technique as before, we
enumerate the different steps of the construction.

a) after the first element is processed, we notice that the figures 3.14(a) and 3.15(a) are identical;

b) however, when the second element B is processed a difference can be noticed between figures
3.14(b) and 3.15(b). The edge between nodes A and B exists but a second node B was
created. The difference between both nodes B can be defined as this:

• The square node B, which represents a first order node, can be translated as follows:
From this node B, the model does not know what happened before or what is going to
happen;

• The circle node B, which represents a second order node, can be translated as follows:
From this node B, the model knows that the previous element was A but does not know
what is going to happen;

c) once the model has processed the third element, two more nodes are created. The square
node C and the circle node C are respectively the same type as the square node B and
the circle node B in the previous figure. However, the edge from the circle node B in this
figure to the new circle node C adds new information to the model. Indeed, the model now
knows that if the last two elements were AB then the next element is likely to be a C. The
destination of the edge is not the square node C, since this is a second order Markov model
that uses the two last elements to calculate a prediction. The square node C is a first order
node and this means that it is better to connect the B node to the circle node C because
that node is a second order node. Finally, the circle node C is defined as a C that was noticed
after a B which is precisely the case;

d) when the next element B is processed, a new node B is created and attached to the square
node C as we can see in figure 3.15(d). The node is also attached to the circle node C since
the model noticed that if the last two elements are BC then the next element is B. As we
can see, every edge label is 1 since we followed these edges only once. However, a new square
node B is not created since it already exists;
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Figure 3.15: The construction of the Markovian models of order 2
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Figure 3.16: The construction of a higher order Markov model

e) after D has been processed, two more nodes are created the same way the model created the
two C nodes;

f) the model then handles the element B, another node B is created and, at this stage, no more
nodes will be created. We can now see that this representation includes both Markov model
orders at the same time. Let us compare the figure 3.14(f) with figure 3.15(f), A, C and D
have each only one edge leading to B and followed these edges only once. From the node B,
there are two possibilities: C and D and these edges also have a label 1. However we have
additional information in this second order model: we know that after the sequence CB the
next element is D and after DB the next element is C;

g) when the next element C is processed, the last edge of the model is created. We also notice
that the label of the edge from the square node B to the node C has been incremented. At
this stage in the sequence, this is the second time the model noticed that, if only considering
that the current element is B, the next element was twice C;

h) as for the handling of the last element, when the model processes the next element B, the
edges are simply incremented;

i) finally, when the last element is processed the model is in the state shown in figure 3.15(i).

The construction algorithms

The previous section presented the construction of the graph with an example. This section
presents the algorithm of the construction of the graph and explains in more detail certain
aspects of the construction. The construction of the graph is performed in two different phases.
First, it is merely the addition of nodes to the graph as we saw in the figures 3.15(a) and 3.15(b).
During this stage, the graph is actually an accumulation of separate trees where each node has
at maximum one parent. Figure 3.16 shows the construction of the model with an order superior
to 5 and using the 5 first elements of the same sequence. Four trees were created since we had 4
different elements in the trace. Since the first node of a tree represents the first order nodes, a
root of a tree can be defined as without knowing what happens before this element, this is what
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Transitions

Starting A B C D

A → B B → C C → B
AB → C B → D CB → D

ABC → B BC → B
ABCB → D BCB → D

Table 3.2: The transitions that can be extracted from the graph representation in figure 3.16

happens after. This means that, because there are 4 different elements in the trace, the model
needs 4 different trees.

The root node B is the only node that has two sons. This is also logical since, if the
last element was a B and we only have that information, then the next element is either a C
or a D. Also, table 3.2 shows the different transitions that can be extracted from the graph
representation. As we can see, we are able to extract every order inferior or equal to 4, since 4
is the highest depth of the graph.

Let cnt be the number of iterations this algorithm has been executed, initialized at 0
Let depth be the depth of the construction
Let cur be the array of pointers on the current nodes of the graph
Let elem be the last element monitored by the model
foreach node cur[n] in the array cur do

if cur[n] does not have a son labeled elem then
Create a node labeled elem and an edge labeled 1 from cur[n] to this node

end
The pointer cur[n] is now assigned to this son

end
if a root node labeled stride does not exist then

Create a root node labeled elem and add it to the graph

end
Add a pointer to the root node labeled stride to the array cur
Increment cnt
if cnt >= depth then

Finished, start second phase

end

Algorithm 2: Construction algorithm (First part)

Algorithm 2 explains the first part of the construction. This part is used during the first
steps. The number of iterations in this part of the algorithm is equal to the depth or order of
the model. At each iteration, the model is called and must process the new element elem. The
model keeps pointers to a certain number of nodes stored in cur, called current nodes. At each
step of the construction, the model checks each pointer, if the pointed node already has a son
labeled elem, it increments the label of the edge and assigns the pointer to that son. However,
if the node does not have such a son, the model creates a node labeled elem, attaches it to the
pointed node via an edge labeled 1 and assigns the pointer to the new son.

The last part of this algorithm checks the different roots of the graph. Since the graph
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possesses different trees, each root is tested and if a label is equal to elem, a new pointer is
added to cur and assigned to that root. If not, a new root is created and a pointer is also added
to cur.

Finally, if the number of calls is sufficient, the algorithm is finished and the second part of
the construction can be used. The number of calls is equal to the order of the model. This first
part is executed at the beginning of the construction and we can see that, in the case of an order
1 model, this is only done once. Figure 3.14(a) shows this state. However, when using a second
order model, two iterations are needed as we can see in the figures 3.15(a) and 3.15(b).

Let depth be the size of the array cur, it is also the order of the prediction model;
Let elem be the last element monitored by the model
Let cur be the array of pointers on the current nodes of the graph, index from 0 to
depth-1
Let cur[iter] be the pointer that is at the maximum depth
foreach node cur[n] from the array cur except cur[iter] do

if cur[n] does not have a son with the element elem then
The node cur[n] creates a son labeled elem with an edge labeled 1

end
The pointer cur[n] is assigned to this son

end
if cur[iter] does not have a son labeled elem then

Create an edge between cur[iter] and the node cur[iter-1] (the value of this pointer
has already been updated)

end
if there is no root node labeled elem then

Create the root node labeled elem
end
cur[iter] is assigned to the root node labeled elem
Decrement iter (modulo depth);

Algorithm 3: Construction algorithm (Second part)

What defines the end of the first part of the algorithm is the fact that the maximum depth
of the graph is now the depth of the first tree that was created. In the previous figures, this
was always the tree on the left. We showed that in the case of a second order model, after two
iterations, the left-most tree already has two nodes. If we look at this state, the model contains
a tree that is defined by a root node A and a son B. However, there is also another tree that
only has one root node labeled B. After the next element C is processed, the model adds a son
to the square node B and this son is labeled C. We have shown that this node must be the same
node as the one that is added to the root node B. If this was not the same node, then the trees
would still be independent and the left-most tree would have a depth of 3 instead of 2. This
would mean that the son of the node C would be calculated using the last three elements of the
sequence instead of only the two last. This is why the trees can no longer be independent.

That said, the major difference between both parts of the construction algorithm resides in
the fact that the model does not, at first, add edges between the different trees. It only starts
to do so when the depth of the leaf nodes is equal to the order of the model. Once that is taken
into account, the algorithm is quite straight-forward.
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Algorithm 3 shows the second part of the construction phase. There is, at each iteration, a
single element in the cur array that points to a node that we will call nodemax at the maximum
depth. nodemax must not add an edge to a new unique son, since it would then create a tree
with a height superior to the order of the model. However, the algorithm also shows that
the node nodemax−1 pointed by cur[iter-1] is a node with a depth equal to the order-1 (For
simplification reasons, if iter is equal to 0 then we define that iter-1 is actually equal to depth-
1). The algorithm 3 starts by updating every node except nodemax. Once that is done, we know
that the old nodemax−1, since it has been updated, now has a son labeled elem. This son might
be a new graph node or was created during a previous call. In any case, the pointer nodemax−1

is now assigned to that son and it is a node whose depth is equal to the order of the model.
Also, from the root of the corresponding tree to this leaf, the sequence of labels are the last n
elements that the model has processed. The model then creates an edge if it does not yet exist
from nodemax to nodemax−1. Once that is done, the pointer cur[iter] is assigned to a root node
labeled elem. Again, if this root node does not yet exist, it is created.

The algorithm requires that, at its entry, cur[iter] points to a node of depth the order of the
model. Before the update this was cur[iter-1] (or cur[depth-1] if iter is worth 0). This is why,
at the end of the algorithm, the counter iter is decremented modulo the order of the model.

3.3.3 Graph traversal

Once the graph is constructed, it can be used to predict elements and prefetch data. To achieve
this efficiently, the model must be able to prefetch elements in advance using a parameter called
the prefetch distance as fast as possible and must be able to check for accuracy. The prefetch
distance is defined by the number of elements between the current element of the sequence
and the one that is predicted. This section presents the prediction algorithms, the optimizing
techniques to lessen the overhead and the solution to check the accuracy of the model.

Prefetching

The created Markovian model uses the strides between the different references that are provided
by the program. As the model receives a sequence of elements, a pointer is maintained as the
current state of the model. When the program accesses a data reference, it is passed to the model
that either continues the model as previously explained or predicts a future data reference. This
prediction is later sent to the prefetcher.

One solution to calculate the prediction is to follow the most probable son. Since the edge
to that node is the most followed edge from the current node, the label of the node is also the
most probable stride. However, since the predictor may want to predict two elements in advance
or even further in the future, it would have to sum the different most probable sons and walk
through a part of the graph to achieve this.

Even though this is a possible solution, it is not very practical in terms of performance. This
is why a precalculated stride is used. A precalculated stride is included in each node and is
recalculated when there is a change in the graph that affects the calculation. This way, when
the model needs a prediction, it only needs to retrieve this value. However, different checks are
needed to maintain the model in the correct state.

Algorithm 4 presents the update and the prediction mechanism. At the end of the con-
struction, the model still has multiple pointers on different nodes of the graph. The predictor
keeps the pointer on the node with the highest depth and updates its position at each call. The
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Let cur_node be the current node
Let last_Stride be the last monitored stride of the program
Let pred_Stride be the predicted stride from the current node
Let probableNext be the pointer to the most probable next current node
Let last and last2 be the last two sons of the current node that were accessed after the current node
Let vis_probableNext, vis_last, vis_last2 be the number of visits to each corresponding node
Let sprobableNext, slast et slast2 be the labels of each corresponding node
if cur_node == NULL then

Search for a root node labeled last_Stride
Assign the result to cur_node (if the root does not exist, the result is worth NULL)
Increment the miss prediction counter
No prediction this time

else

if sprobableNext == last_Stride then

Increment the counter vis_probableNext
cur_node = probableNext
Predict the stride pred_Stride from the new cur_node and add it to the base address to make the
prefetch
Set the miss prediction counter to 0

else

Increment the miss prediction counter
if slast == last_Stride then

Increment the counter vis_last
cur_node = last
Predict the stride pred_Stride from the new cur_node and add it to the base address to make the
prefetch

else

if slast2 == last_Stride then

Increment the counter vis_last2
cur_node = last2
Predict the stride pred_Stride from the new cur_node and add it to the base address to make
the prefetch

else

Search for the son labeled last_Stride if the node is found then

The current node cur_node is assigned to this son
Predict the stride pred_Stride from the new cur_node and add it to the base address to
make the prefetch
Update the label of the edge leading to this son
last2 = the new son

else

Search for a root node labeled last_Stride
Update cur_node (NULL if no such root node)

end

end

end

end

Update pointers last, last2 and probableNext

end

Algorithm 4: Update and prediction algorithm
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program calls the model and provides the last accessed address. First, the model calculates the
stride by subtracting this latest address with the last address.

Once this is done, it compares the stride to the different sons of the current node. First it
tests the most probable node. If the stride matches the label of that son, we know that there
wasn’t a miss prediction since the parents of this node used this stride to calculate their own
predictions. Therefore, the counter representing the miss predictions is set back to 0. Finally, a
prediction is issued using the precalculated value associated to the node, the vis_probableNext
is incremented and then the current node is updated.

However, if the label of the most probable son does not match with the latest stride, we know
a miss prediction occured and the miss prediction counter is incremented. The model then tests
two possible candidates last and last2. If either match, the corresponding counter vis_last and
vis_last2 is incremented and the current node is updated. Finally, if the counter is superior to
vis_probableNext, the two pointers and associated counters are exchanged and the prediction of
the current node is recalculated.

If none of the three labels matched, the model looks for another son with a matching label.
If it exists, the pointer last2 and the counter vis_last2 are assigned to this node. If not, the
model looks for a root node labeled correctly and assigns the current node accordingly.

Prediction calculation

Once the construction phase is finished, the model starts predicting elements. At this stage, two
possibilities can be adopted to calculate the predictions: pre-prediction or just-in-time.

The pre-prediction calculation is a traversal of the graph that calculates the predictions for
each node. This is done at the end of the construction phase and just before any prediction.
The advantage of this technique is to perform the calculation once and for all and, during the
prediction, the model knows that every prediction has been calculated. This means that a test
is the prediction calculated? is not needed. The down-side of such a technique is the overhead
incurred. In the case where the majority of the nodes are visited periodically, this does not have
a big impact since, for each node, a calculation of the prediction is needed. However, in the case
where the graph has many nodes that are not used during the prediction phase, this can be a
major issue.

The just-in-time technique uses a flag to signal if the precalculation has been performed.
Before a prediction is made, the system checks the flag and, in case the calculation has not
yet been performed, it calculates the prediction stride. The advantages and drawbacks of this
method are the opposite of the pre-prediction calculation technique. Since the predictions are
only calculated on a need-to-use basis, the problem of using the whole graph during the prediction
phase is irrelevant. However, the continuous check of the prediction flag is a problem since it
heightens the overhead during the prediction phase.

Finally, since the calculation phase is defined as being a minor phase compared to the length
of the prediction phase, the pre-prediction technique was chosen for the calculation of the pre-
dictions. This was decided since a rare calculation that incurs a large overhead was deemed less
costly that the possibility of frequent tests during a large period of time.

Node version number

Though the predictions are calculated before the prefetching phase, the model continues to
update the labels of each edge. If an edge becomes the new most probable edge, a recalculation
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Figure 3.17: The evolution of the labels on each edge of the graph

is needed. Figure 3.17 shows the evolution of certain nodes in a graph. In the figure 3.17(a), we
can see 5 nodes with different label values for the edges.

The most probable son for the A node is C. The most probable son for the C node is E.
This means that if we were to predict two elements in advance from A, we would predict E.
Furthermore, if the labels of the nodes were strides, the model would actually predict that the
full stride is C + E.

Figure 3.17(b) shows the state of the model after 10 passes through this part of the graph,
we notice that the most probable son of A is still C but the most probable son of C is now
D. For C, when this happened, a change in the nextProbable, last and last2 pointer values was
performed. At that moment, C recalculated the prediction from its node. However, for the node
A, this is difficult to test and handle. Recalculating the prediction at each step is not a solution
since it is too costly in terms of CPU overhead.

The adopted solution is to use a general counter that acts as a version number. At each
change of the most probable son, the node increments the counter and assigns a new version
field in its structure. Before predicting something, a simple comparison between the versions
of the current node and its most probable son is performed. If the versions do not match, the
current node recalculates the prediction and updates its own version number.

This solution is not perfect in the sense that if we are predicting n elements in advance and
there is a change of one of the most probable nodes, it will take multiple passes through the
graph to update every node. However, this solution is acceptable since it is lightweight and a
few iterations through the graph is minimal compared to the millions of accesses to the model.

The probableNext, last and last2 links

This section presents the use and decisions made for the three probableNext, last and last2
pointers. The three pointers were added to the basic node structure in order to limit the number
of times the list of sons has to be accessed. Though the list of sons is sorted, this would still be
a long process at each step of the model and would not allow a speed-up when predicting.

The probableNext pointer represents the most likely son because its associated edge has the
highest value. Whenever another edge has a superior label value, the model exchanges the
pointers.

If the new most probable node is the last pointer, the model simply exchanges both counters
and pointers. However, if it is the last2 pointer, a cycle between the pointers is performed:
probableNext becomes the last pointer, the last pointer becomes the last2 pointer and the last2
pointer becomes the new probableNext.

In the case that none of the three pointers match the current stride, the model compares the
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Listing 3.4: API of the Esodyp framework

SMarkov∗ Markov_In i t ia l i z e ( ) ; // I n i t i a l i z e f unc t i on
void Markov_Reset (SMarkov ∗m) ; //Reset the model
void Markov_Clear (SMarkov ∗m) ; //Clears the model
void Markov_Set (SMarkov ∗m, int v , int mask ) ; // Set c e r t a i n a t t r i b u t e s
void Markov_SetAddress (SMarkov ∗m, void ∗ ) ; // Se t s the address f i e l d

//Output graph to . dot format
int Markov_OutputGraphDot (SMarkov ∗m, const char ∗ fname ) ;

void Markov_DisplayInfo (SMarkov ∗m) ; // Disp lay in format ion

Type Definition

Construction Depth The depth or order of the model

Maximum error The value of the number of consecutive miss predictions
before the model resets

Construction time The maximum number of elements used to construct the model

Prefetch distance The distance the model uses to predict in advance

Table 3.3: The different parameters a user can define

stride with the other sons of the current node. If a node is found, the last pointer becomes the
last2 pointer and the son becomes the new last pointer.

The last scenario occurs when none of the above solutions has succeeded. In this case, the
model must find a new current node that is not one of the possible sons. The different root nodes
are checked and, if one of the root nodes corresponds, it becomes the current node. However,
before losing the pointer to the current node, a link is added between the current node and the
root node.

We have stated that no new edges and no new nodes would be created during the prediction
phase because it would add too much overhead. Though this is true, this new link type is a
solution to limit the number of miss predictions. Since this new link is added via the three
pointers and not added as a real son of the node, the model does not really add an edge but
simply limits the number of times a check would have to be made through the sons of a node.

Though not perfect, this solution gives the possibility of slightly adapting the model in
the case where the sequence in the construction phase was not a perfect representation of the
sequence being processed during the prediction phase.

3.3.4 The API

The previous sections have presented examples of Markovian models, the construction and pre-
diction phases through example and algorithms. This section presents the API that is used to
perform and use the Markovian model. We have called the system Esodyp [9] for Entirely SOft-
ware and DYnamic Prefetching system. Most of the code of the model is internalized, leaving
the user with a few simple functions to set up, use and delete the models.

Listing 3.4 shows the different functions that a user can call. Here is a brief summary of
their purpose :

• Markov_Initialize: this allocates the memory block necessary for the model and sets the
default values;
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Figure 3.18: An example of a graph produced by the dot program. The dot file is created by
Esodyp
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Figure 3.19: A complex sequence

• Markov_Reset: this function resets the graph and sets the model back into the construc-
tion phase;

• Markov_Clear: this function destroys the graph and frees the memory used by the model;

• Markov_Set: this function is used to define the values of the different parameters of the
model. The different parameters that a user can define are explained in the table 3.3;

• Markov_SetAddress: this function modifies the address field in the structure of the model,
a detailed explanation of the purpose of this function is given in section 3.3.5;

• Markov_DisplayInfo: this function displays information regarding the model, it gives, for
example, the number of nodes created, the number of resets;

• Markov_OutputGraphDot: this function creates a .dot file that represents the current
graph. Figure 3.18 shows an example of a graph that the model can output.

3.3.5 The Markov_SetAddress function

The purpose of the Markov_SetAddress function must be explained in detail. This function does
not add accuracy or directly optimize the model. However, it does limit the number of nodes
in certain cases. To illustrate its use, figure 3.19 shows a trace of strides that can be modelized
by Esodyp. As we can see, every 6 elements, the pattern is repeated except for the first access.
This can happen when the program periodically performs the same behavior but on different
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0 16 20 8 12 24 0 16 20 8 12 24 0 16 20 8 12 24 0 16 20 8 12 24

Figure 3.20: The simplified sequence

Listing 3.5: Initialization of Esodyp

SMarkov ∗m1;
. . .
m1 = Markov_in i t i a l i z e ( ) ;

Markov_Set (m1,& j ,M_CONSTTL) ;
Markov_Set (m1,&k ,M_DEPTH) ;
Markov_Set (m1,&m,M_ERRMAX) ;
. . .

sets of data. Such a trace can have an arbitrarily big number of different strides between two
sequences. This means the model will contain many nodes that are very rarely used.

In order to limit this, we can ask the model to ignore this address by calling the function
named Markov_SetAddress prior to the first element of the pattern. This way, when the first
element is processed, a stride of 0 will be calculated and this will be the case for each first
pattern element of the trace. Figure 3.20 shows the simplified trace that is obtained. When
modelizing this trace, the nodes that represented the different strides between the last element
of the pattern and the first element of the next sequence are set to 0, which limits the number
of nodes in the graph. For example, using a Markovian model of order 4 creates a graph with
65 nodes for the first sequence and 23 for the second.

3.4 Examples

This section presents two examples of how Esodyp is used and how the system reacts to different
benchmark programs. The two programs that are presented are the treeadd program from the
Olden benchmark [89] and the 181.mcf program from the SPEC2000 benchmark [101].

3.4.1 treeadd

The treeadd program creates and traverses a binary tree. We modified the code in order to
traverse the tree multiple times. With this change, 90% of the program is concentrated in the
TreeAdd function. Our model was of course deployed in this function.

Initialization

Listing 3.5 presents the initialization of the Esodyp model. The initialize function allocates and
sets different default values in the model that we can modify with the Markov_Set function.
There is only one data stream that will be optimized in this program, therefore there will be
only one model.

Call to the model

Listing 3.6 shows the TreeAdd function. First the function recursively calls itself passing the
address of the left son, then itself again passing the address the right son. At the end, it returns
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Listing 3.6: Call to Esodyp in the TreeAdd function

SMarkov ∗m1;

. . .

int TreeAdd ( t )
register tree_t ∗ t ;

{
. . .
m1−>f c t (m1, t ) ;

t l e f t = t−>l e f t ;
l e f t v a l = TreeAdd ( t l e f t ) ;
t r i g h t = t−>r i gh t ;
r i g h t v a l = TreeAdd ( t r i g h t ) ;
va lue = t−>val ;
return l e f t v a l + r i g h t v a l + value ;

}

the sum of the values in the current node, the left son and the right son. To optimize this
function, we need a predictor to prefetch the different nodes of the binary tree. This can be
achieved by inserting the call m1 → fct(m1, t).

By doing so, at each call to TreeAdd, the model is informed of what tree node has been
accessed. Internally, our system constructs the model, prefetches and checks the prediction
accuracy.

Once the model is set and the different calls are placed, Esodyp is able to create a model
and predict dynamically. However, this means being able to know where to insert the model
and what parameters to use. This can be achieved by a profiler and an off-line training system
or a dynamic framework that can locate hot traces in the code.

3.4.2 mcf

The 181.mcf program is more complex than the previous program. However, there is one
region of code containing memory accesses that is used extensively and optimizing those loads
is sufficient to achieve a significant speed-up.

Listing 3.7 shows the instrumentation performed on the 181.mcf program. Two separate
data streams are optimized by the Esodyp models. Using two different structures, the streams
are handled independently. This is useful when the programmer, compiler or dynamic framework
knows that different data structures are being used. Though providing the full stream to the
Markovian model is a possibility, it generally complicates the model and more miss predictions
occur.

The instrumentation starts by calling the Markov_SetAddress function to set the current
address correctly. Once that is done, the while loop is executed and, at each iteration the model
m1 is called and the m2 model is called but at different points in the code. Though, in this
case, because of the keyword continue, at each iteration the m2 model is only called once. This
shows that, in some cases, it can be beneficial to call the same models at different areas of the
code.
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Listing 3.7: Call to Esodyp in the 181.mcf program

SMarkov ∗m1, ∗m2;

. . .

i f ( a r c i n )
{
Markov_SetAddress (m1, arc in−>t a i l ) ;
Markov_SetAddress (m2, arc in−>ta i l−>mark ) ;
}

while ( a r c i n )
{

t a i l = arc in−>t a i l ;

m1−>f c t (m1, arc in−>t a i l ) ;

i f ( t a i l−>time + arc in−>org_cost > l a t e s t )
{

m2−>f c t (m2, t a i l−>mark ) ;

a r c i n = ( arc_t ∗) t a i l−>mark ;
continue ;

}

. . .

m2−>f c t (m2, t a i l−>mark ) ;

a r c i n = ( arc_t ∗) t a i l−>mark ;
}

. . .
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Figure 3.21: Speedup results of the benchmark programs

3.5 Performance and evaluation

The previous section presented two examples using the Esodyp framework to optimize two
programs. This section presents the performance and evaluation of the system on different
architectures, different compilers and different programs. Our first test machine is a 2-CPU
1.3Ghz Itanium-2 rx2600 workstation. However, notice that our system is entirely run onto
one unique processor. The second processor is an AMD Athlon 64 X2 Dual Core Processor
4800+. We used both compilers gcc version 3.4 and intel icc version 8.1 with O3 to compile
the benchmark programs. Notice that the icc compiler generates prefetch instructions with O3

while the gcc compiler does not. Finally, every result is the average of 5 distinct runs.

Figure 3.21(a) shows the acceleration of the programs depending on the compiler used. As
we can see, using a different compiler has a different impact on the speedup obtained. In the
case of mcf, it has been accelerated by a ratio of 1.24 using the icc compiler and 1.27 using the
gcc compiler.

3.5.1 197.parser

In this subsection, we detail the behavior of the model when trying to optimize the parser

program. Table 3.4 shows the impact that the depth of the model has on the speedup and
overall performance of the model. We present this program here, since it shows that a simple
depth 1 is not enough to correctly model certain memory behaviors.

Eventhough the model cannot achieve a significant speedup when working on the parser

program, it is capable of compensating its overhead. As we can see, 3 is the best depth we can
choose from. Depth 1 gives too many prediction mistakes for the model to be efficient. This
can be noticed by the number of resets that have been made using a depth of 1. By using a
depth 3, we reduce the number of resets from 1443 to 68 and the number of total nodes created
(this count is based on the number of nodes created throughout the execution of the program,
not the number of nodes created in one construction phase). If we push the depth to 4, these
numbers are not reduced anymore (the execution time is even a little greater).

What is interesting to note, is that even if the model has almost the same prediction rate in
the different depths presented, the number of resets is reduced significantly. After looking more
in detail, it was shown that this had to do with the number of consecutive errors. With a higher
depth, the model was able to reduce this number and keep it under the threshold that would
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Information Original Code Depth 1 Depth 3 Depth 4

Correct predictions (%) N/A 81.7 82.22 84.84

Execution time (in sec) 215.5 235.4 212.8 214.4

Number of nodes N/A 8190 1808 2972

Number of resets N/A 1443 68 68

Speedup 1 0.9 1.01 1.00

Table 3.4: Impact on the depth used for the Markovian model on the 197.parser program (for
the Athlon processor).

Program File involved Function involved Input

treeadd node.c Treeadd 20 nodes and 1 processor

ft graph.c PickVertex The reference input

mcf implicit.c price_out_impl The reference input

equake quake.c smvp The reference input

art scanner.c match The reference input

parser xalloc.c xfree The reference input

Table 3.5: The functions yielding a lot of cache misses

have provoked a flush.

3.5.2 Other benchmark programs

We present four other benchmark programs: treeadd from the Olden benchmarks [89], equake
and art from the Spec2000 benchmarks [101] and ft from the Pointer Intensive benchmarks
[90] for which one of the most costly functions of each program has been optimized (See table
3.5).

The speedups achieved on these different programs can be seen in figure 3.21. Notice that the
given measures are resulting from the whole execution time of each program and not uniquely
from the time of the optimized function. We were interested in optimizing the most time
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Figure 3.22: Speedup results of the benchmark programs
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Program Distances
treeadd 4/6/9

ft 2/4/7
equake 3/5/10

mcf 2/4/9
art 1/4/9

parser 1/4/10

Table 3.6: Different prefetch distances used for the histogram in figure 3.22

consuming function and we looked for the delinquent load that heavily stalled the program.
Only mcf was optimized in two different places since the loads were in the same while loop. We
also present in this figure a comparison between the Intel compiler icc and the GNU compiler
gcc. As we can see, the difference between both compilers is noticeable, especially for the ft
program where we have a difference of more than 2 points.

Figure 3.22 and table 3.6 show the impact of different prefetch distance that the model
can use. The direct impact is the resulting execution time. They were obtained with different
parameters shown in the table. For example, if we look at the treeadd histograms, from left to
right, they represent a prefetch distance of 4, 6 and 9.

A comparison between figures 3.22(a) and 3.22(b) can be made by stating that the programs
ft and treeadd do not have a significant change between the program speedup and the function
speedup since the functions that are optimized use 99% of the execution time. However, mcf
has a major change since the function optimized only uses 31% of the original time. Therefore,
when we look at the function speedup, we notice a significant boost (from 1.27 to 2.85). Program
equake also gains a few points when we look at the function speedups.

3.6 Conclusion

In this chapter we present a Markovian model that was implemented as a totally dynamic and
software solution. We presented the theory behind Markov chains, showing that Markov chains
of order M offer an interesting accuracy when used to predict data streams. However, the higher
the order, the bigger the graph and the overhead incurred. A compromise must be found if a
speedup is to be achieved.

The implemented representation of the model is also an important element. Two solutions
were presented and a graph representation was chosen since it offered the minimal overhead once
the model was built. Using different optimization techniques, the calculation of the prediction
can be made in a O(1) complexity. Only a few tests are needed in order to make the prediction.

Also, an optimizing framework called Esodyp was implemented. This gives users the possi-
bility to easily use and integrate the system to their programs. Using a few functions, the user is
not only able to set up, profile and optimize programs but also understand them by generating
the graph representation in the form of a dot file that can be converted to most image formats.
Two examples were presented in order to fully understand the system.

Finally, a performance and evaluation section presented the behavior and capabilities of the
model across different benchmark programs. The performance section compared the icc compiler
that inserts prefetches and the gcc compiler that does not. For the data streams we modelized
and optimized, both compilers were unable to fully optimize and eliminate the delinquent loads.
We showed that Esodyp can significantly reduce the delinquent loads and thus accelerate the
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executions. However, the programmer must insert the calls to Esodyp manually and check if the
overall system reduces the execution time. Chapter 5 shows how it is possible to automatically
integrate Esodyp into a dynamic optimization system.

The next chapter presents an extension to the Esodyp framework. The system was integrated
into a Distributed Shared Memory system called Jackal. Instead of predicting local memory
accesses, the system predicted distant memory accesses that cause costly messages. By predicting
the next N elements that would need to be accessed, the system is able to limit the number of
messages sent by the global system.



Chapter 4

Communication prefetching in Distributed

Shared Memory Systems

The previous chapter presented a Markovian model called Esodyp. If the model is
informed of every memory access of a program, the overhead would be too high compared
to the acceleration provided on modern processors. However, in the case of Distributed
Shared Memory (DSM) systems, this is not true since it is the number of messages sent
between distant nodes that is costly. Therefore, the calculations needed to maintain the
model can be considered as negligible when the model is accurate. This chapter shows
that Esodyp+, an extension to Esodyp for the DSM systems, is a good candidate for
such applications and, by modifying the DSM system called Jackal, Esodyp+ can handle
each access check efficiently. Finally, the chapter presents a state machine like the one
presented in chapter 2 to rewrite the binary code depending on the memory access
behavior of each access check.

4.1 Introduction

The previous chapter presented Esodyp, an Entirely SOftware and DYnamic data Prefetching
system based on a Markov model. We showed that the model is able to accurately predict future
elements of the monitored sequence while continuously checking its accuracy. However, trying
to optimize data cache misses on modern processors demands very low cost dynamic systems in
order to obtain a speed-up.

Markov models can also be used to predict other sequences such as communications between
distant machines on a network. The cost of sending messages being greater that data cache
stalls, the models can be more complex while still yielding a noticeable acceleration. This chapter
presents the challenges and results of porting the Esodyp framework to parallel programs. This
work was done with the collaboration of Michael Klemm from the Computer Science Department
2 at the University of Erlangen-Nuremberg.

Today’s high-performance computing landscape mainly consists of Symmetric Multi - Proces-
sors (SMPs) and clusters [1]. SMPs provide a hardware-managed global address space; clusters
are assembled from nodes with private memory. Thus, programmers must explicitly commu-
nicate (e. g. with MPI’s send/receive) to access remote data. A Software-based Distributed

121
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Shared Memory system (S-DSM), like TreadMarks [58], Delphi [102], or Jackal [110], provides
a shared-memory illusion on top of the distributed memory. In addition to registers, different
cache levels, and the local memory of the node, the DSM system adds the remote memory as
another level to the memory hierarchy of the nodes. Remote memory accesses are much more
expensive than local accesses, as the high-latency interconnection network has to be crossed.
Hence, it is desirable to direct the memory accesses of the application to the local memory
as much as possible. For applications that do not offer such locality properties, performance
drastically drops due to the high-latency remote accesses.

Esodyp+ extends Esodyp for use in an S-DSM system on a cluster. It is implemented in
Jackal, an object-based DSM system, whose compiler prefixes each object access with an access
check to test whether or not the object is cached on the local node. If not, the runtime system
(RTS) requests the object from its home node. The home node is generally the node that created
the object. However, if another node is extensively using that object, an object migration can
occur. Esodyp+ extends the checks to monitor data access patterns in order to predict future
accesses and prefetches the objects by bulk transfers.

Obviously, a dynamic prefetcher is superfluous for pleasingly parallel applications or if data
access patterns can be analyzed and optimized statically. In contrast, network-bound applica-
tions with complex data access patterns benefit from this prefetching solution.

The related work can roughly be divided into a hardware axis and a size axis. With respect
to hardware, prefetching occurs either (1) for single CPUs/SMPs or (2) in clusters, especially in
S-DSMs. With respect to size, either (A) a single data item is prefetched or (B) a bulk transfer
is used.

Most modern processors provide prefetch instructions for single data items (1A). There are
also projects, e. g. Adore [73, 74] or the work of Chilimbi and Hirzel [22], that dynamically
insert prefetches into programs. Modern hardware platforms with caches show a simple form of
bulk prefetching (category 1B) since a whole cache line is prefetched upon memory accesses. On
clusters, prefetching single data items (2A) is prohibitively expensive. As this chapter presents
work contained in category 2B, we present this related work in more detail.

Adaptive++ [14] and JIAJIA [72] use a history of past accesses to predict. Delphi [102] pre-
dicts by means of a third order differential finite context method. In [54], an OpenMP DSM uses
the inspector/executor pattern to determine future accesses. All these projects asynchronously
request predicted pages one by one. For an object-based DSM system this is not viable, as
prefetching small objects cannot hide high network latencies.

Stride predictors [42] often separate data streams by using the instruction address as a hash
key. While this works well for stable access patterns with regular strides, it does not for the
more complex access patterns of object-based DSM systems.

Whereas most prefetchers in S-DSMs request page by page, our approach bulk-transfers sets
of objects. MPI programmers often use this technique to manually transfer large amounts of
data by one MPI send/receive pair. Similarly, Java RMI [107] ships a deep copy of arguments
to remote method invocations even if some of the shipped objects are not needed at the remote
side. Jackal statically groups associated objects into larger ones [111] and, aggregating access
checks, it requests a set of objects and ships it in bulk fashion [110].

Instead of object combining, TreadMarks dynamically builds page groups that can be consid-
ered as larger prefetching units [59]. A predictor continuously monitors page faults and decides
which pages to group. The predictor is also capable of ungrouping pages if too much false shar-
ing is caused. Our approach is similar in that it requests a set of objects during a prefetching
request. However, the to-be-prefetched objects are not grouped and un-grouped, but the set is
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int f oo ( SomeObject o ) {

return o . f i e l d ;
}

int f oo ( SomeObject o ) {
i f ( ! r eadab le ( o ) )

f e t ch (o , r eadab le ) ;
return o . f i e l d ;

}

Figure 4.1: A function before (left) and after the insertion of an access check (right).

dynamically formed at each prediction step as necessary.

The rest of this chapter is organized as follows. Section 4.2 presents the integration of the
Esodyp+ into the Jackal DSM. However, to use the Esodyp+ framework necessitates that the
programmer inserts calls to the predictor as it was done using the API in chapter 3. This is
a significant drawback and section 4.3 presents an extension to the system that automatically
instruments the access checks. At the beginning of the execution, every access check is instru-
mented. During the execution, if the data cannot be modelized by the Esodyp framework, the
access check is de-instrumented to lower the overhead.

The work presented in the first part of this chapter was published in [64] and the second
part is currently submitted for publication [13].

4.2 Esodyp+: Integrating Esodyp in a Distributed Shared Mem-

ory System

4.2.1 Jackal

As an introduction, this subsection presents Jackal in detail. Jackal implements an object-based
DSM system for Java on clusters. Instead of cache lines or pages, data transfer and memory
consistency are implemented on the granularity of Java objects to reduce false sharing.

Jackal respects the Java Memory Model (JMM) [80] and provides a single system image
to programmers. The Java Memory model distinguishes a global main memory which is used
for communication between the different threads and the separate and private working memory
which is considered as a thread-private cache. The data modified by each thread is only flushed
to main memory when a synchronization point is encountered. The Jackal compiler and the
runtime system limit the amount of synchronizations by performing code-based optimizations.

Jackal compiles to a native executable, e. g. for IA-32 or Itanium, and inserts access checks
into the Java code to prepare it for the usage in the DSM environment. In order to handle
memory coherency, each thread contains two bitmaps to handle the different objects. One is
used for readable objects and the second is for writable objects. Before a set or a read to an
object, a check is performed on the associated bitmap. If the right bit is set, the object is directly
read or written via the local memory. However, if the bit is not set, the program is halted until
the runtime system requests and receives the data.

From the programmer’s perspective, a Jackal program is a simple multi-threaded program
that can be executed on a single computer. However, since Jackal can send the threads to distant
nodes, different access checks are used to request the required distant data. Figure 4.1 shows
a sample of original Java code (left) and the added check as Java-like pseudo-code (right). If
the accessed object is not locally available, a message is sent to the home-node that stores the
master copy of the object. This request is answered with a message that contains the requested
data. Thus, the caused delay is roughly two times the network latency plus the cost of object
serialization and deserialization. A prefetcher suffers from about the same latency for its request,
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o.n p.n q.n r.n

get p p get q q get r r

Figure 4.2: The execution of the Jackal request/send system

o.n p.n q.n r.n

get p, q, r, s p, q, r

Figure 4.3: The execution of the Jackal request/send system using a prefetching mechanism

but reduces the number of blocking waits by requesting multiple objects at the same time. This
bulk transfer request greatly reduces the number of messages.

Figure 4.2 shows the execution of the Jackal request/send system. When the node on the
top requires an access to p, it notices that the object is not in the local cache. A message is
thus sent to the home node which sends the required object. Later, when q or r are needed, the
same mechanism is used. However, figure 4.3 shows the same access sequence using a predictor.
When the access to p fails, let us assume that the predictor requests p but also q, r and s. In
this example, the object s does not exist. Since a predictor is not always accurate, it can request
data that does not exist. In this case, the home node simply ignores such requests and only
sends the objects that do exist. Therefore, upon receiving the objects p, q and r, the first node
accesses the objects without stalling.

To uniquely identify each object that is allocated in the DSM system, a Global Object
Reference (GOR) is created. A GOR is a tuple (alloc-node, alloc-address), where alloc-node is
the logical rank of the node that created the object and alloc-address is the address of an object
on that node. The GOR is fixed during the life time of an object; only if the object is reclaimed
by the garbage collector, the GOR is released and may be recycled. When a non-local object
is received, it is stored in a local caching heap and it is assigned a local address in the local
address space for efficient object access. The DSM system maps these local addresses to their
corresponding GORs and hence to the home-nodes (for status or data updates).

Whereas Jackal mostly transfers individual objects, arrays are handled differently for per-
formance reasons. Since transferring an array as a whole is not an option since its size can be
arbitrarily large, the RTS partitions it into regions of 256 bytes. Thus, a failing access check
requests only one region from the concerned home-node.
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Listing 4.1: A Java class that extends the Thread class

c l a s s SumWorker extends Thread {
stat ic int sum = 0 ;

int s ta r t , end ;

Stenc i lWorker ( int s ta r t , int end ) {
t h i s . s t a r t = s t a r t ;
t h i s . end = end ;

}

p r i va t e int f ( int i ) {
return 2∗ i +3;

}

pub l i c void run ( ) {
int local_sum = 0 ;

for ( int i=s t a r t ; i<end ; i++) {
local_sum += f ( i ) ;

}

sum += local_sum ;
}

}

4.2.2 A Jackal Program

A Jackal program is by definition a multi-threaded Java program. This subsection presents a
simple Java example in order to explain how Esodyp is integrated into the Jackal DSM system.
In Java, a multi-threaded program starts by writing a class that either extends the Thread class
or implements the interface Runnable.

When extending the Thread class, different methods can be redefined but the most important
is the run method. When a program creates a thread, it must first call the start function that
will handle internal initializations and then calls the run method. If not redefined, the method
simply returns and the task of the thread is finished.

Listing 4.1 shows a simple example of a class extending the Thread class. As we can see, the
class contains a static field called sum and two private fields named start and end. The run

Listing 4.2: The correct implementation of the run method

pub l i c void run ( ) {
int local_sum = 0 ;

for ( int i=s t a r t ; i<end ; i++) {
local_sum += f ( i ) ;

}

synchron ized (sum) {
sum += local_sum ;

}
}
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Listing 4.3: A Java program that creates 5 threads

pub l i c c l a s s Sum {
pub l i c stat ic void main ( St r ing [ ] a rgs ) {

int threads = 5 ;

for ( int th = 0 ; th < threads ; th++) {
SumWorker sw = new SumWorker( th ∗ 100 , ( th + 1) ∗ 100 ) ;
sw . s t a r t ( ) ;

}
}

method simply calculates the sum of values returned by the f method using the different values
ranging from start to end.

The field sum is shared among the different instances of the SumWorker class and, at each
update, a verification must be made to keep the program semantically correct. In order to
optimize the program, a local variable called local_sum is used. Since the local variable can
be updated without having to take special precautions, the calculation can be achieved without
any special care. However, once it is finished, a single update to sum is required but this update
must be handled correctly.

In a multi-threaded program, the update to sum requires a mutex to ensure that the semantics
of the program is respected. Java provides mutex handling using the key word synchronized.
Listing 4.2 shows the run function that is semantically correct. Since the Java Memory Model
does not require the thread to write back the update to the static variable, the thread can simply
keep the modified value until a synchronization point is reached. Therefore, in a Jackal program,
though access checks are inserted by the compiler, the synchronized keyword is still necessary
since the keyword forces Jackal to lock the value before each update.

Finally, to use the SumWorker class, a number of threads are created as it is shown in the
listing 4.3. The main method starts by creating five instances of the SumWorker class and calls
the method start for each object. The start method is the entry point to the thread and calls
the run method internally.

4.2.3 Integration of a communication predictor into Jackal

Esodyp+ extends Esodyp, the model presented in chapter 3. This subsection briefly presents
the model, how the addresses passed by the DSM framework are processed and how it helps to
prefetch objects.

One extension to the Esodyp framework is that Esodyp+ no longer handles only simple
addresses but can store any type of information in its prediction model. Hence, we can directly
map the Global Object References (GORs) of the Jackal system to the model and get exact
predictions. However in such a configuration, for each monitored GOR, at least one node in
the graph is created. Since this would make the model unmanageable for large working sets,
it has to be kept compact without losing prediction accuracy. Our solution to this problem is
similar to the stride system used in the Esodyp model, as we compute the differences between
two subsequent GORs and store only the difference in the model.

Originally, Esodyp is implemented using a construction phase to create the model that later
is used in the prediction phase. Esodyp+ merges both phases and emits predictions even while
it is constructing. This helps to reduce the overhead of the model by starting to predict earlier.
This means that prediction strides must often be recalculated when changes are made in the
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Listing 4.4: An example of false sharing

c l a s s IndependentSumWorker extends Thread {
stat ic double sumLocal [N_THREADS] ;

int i d thread ;
double [ ] tab ;

IndependentSumWorker ( int id , double [ ] t ) {
idthread = id ;
tab = t ;

}

void run ( ) {
sumLocal [ id thread ] = 0 . 0 ;

for ( i =0; i<tab . l ength ; i++) {
sumLocal [ id thread ] += tab [ i ] ;

}
}

graph. Every time a change to the most probable child of a node is more recent than the last
change of the current node, the prediction is recalculated. This was presented in subsection
3.3.3 page 110.

Finally, a function called Markov_PredictN was added to the API of the framework. This
function enables bulk prefetching and receives three parameters: a pointer to the Esodyp model
m, an array tab and an integer N . The function fills the array tab with the next N predictions
using the graph contained in m.

Integration

A predictor for an object-based DSM system is different in several aspects compared to single-
core processor predictors. Since predictors cannot guarantee accuracy, the DSM runtime must
still check the validity of predicted GORs. Except for the creator of an object, nodes cannot
guarantee the validity of GORs without previously having accessed the object. Hence, only the
home-node of an object can check a GOR for correctness. Thus, the predicted GORs are sent to
the home-nodes and an object is only sent back for valid GORs; otherwise the request is safely
ignored.

Predictors often only predict the next probable address. For each address, a prefetch instruc-
tion is emitted into the instruction stream [22, 73]. Because of the high network latencies in the
DSM system, prefetching of single objects does not give enough overlap of communications and
computations. Hence, Esodyp was extended to emit predictions to the next N objects by calling
the Markov_PredictN function. If N objects are bulk-transferred, the program can continue
without delay until the (N + 1)th object is needed. In addition, the message count is reduced
from 2N to 2 by serializing together N objects into a single message. While predicting the next
object can be fairly accurate, the farther away a predicted access is, the smaller is the accuracy.
This causes predictions of unused objects. In addition, a growing N increases the chance of false
sharing, which in turn increases DSM protocol activity. False-sharing occurs when two threads
are accessing different elements but the DSM protocol computes useless checks.

For example, listing 4.4 shows a classic case of false sharing. Each thread uses an independent
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Listing 4.5: The wrapper definition

c l a s s MP {
/∗ Read ∗/
pub l i c stat ic j a cka l_nat ive void shm_markov_add_array ( Object o , int elem ) ;
pub l i c stat ic j a cka l_nat ive void shm_markov_add_obj ( Object o ) ;

/∗ Read/Write ∗/
pub l i c stat ic j a cka l_nat ive void shm_markov_add_array_rw( Object o , int elem ) ;
pub l i c stat ic j a cka l_nat ive void shm_markov_add_obj_rw( Object o ) ;

/∗ Reset addres se s ∗/
pub l i c stat ic j a cka l_nat ive void shm_markov_resetAdd_obj ( Object o ,

int wr i t e f a u l t ) ;
pub l i c stat ic j a cka l_nat ive void shm_markov_resetAdd_array ( Object o ,

int elem ,
int wr i t e f a u l t ) ;

}

element of the array sumLocal which is used to calculate the sum of an array. Consider the
case where the threads are all modifying the array sumLocal and that the elements are located
in the same region. In this case, every time the DSM protocol requires a synchronization of
one element, the other one must also be synchronized though both elements are semantically
independent. However, this is only a simple example since the Jackal compiler reduces such
cases of false-sharing.

To reduce the negative effects of false-sharing, Jackal detects multiple writers to the same
region. In such cases, Jackal creates a shadow copy of the region before any modification takes
place. When the system flushes the modifications, thus sending the information to the home
node, Jackal compares the unmodified shadow copy and the modified region and only sends back
the change to the home-node. Hence, the false-sharing no longer causes a message upon each
access but instead defers the update message until the flush operation eventually is executed.
For the different benchmark programs we have tested, our measurements have shown that, on
average, N = 10 is a good trade-off between false sharing and message reduction for the Jackal
DSM.

Since prefetching alters the sequence of memory accesses (accesses that would regularly hap-
pen later in the execution are now performed earlier when a node prefetches data), it interferes
with memory consistency. As a data item might be updated while a prefetch is outstanding,
depending on the memory model, a prefetch either can continue or has to be canceled. Jackal
implements the JMM [80] even in the presence of a prefetcher. Simplified, each thread owns a
private memory to cache its working set of data items that must be flushed when a synchro-
nization point is reached. Hence, an update is usually not visible to other threads until all of
them have reached a synchronization point as well and have flushed their caches. Prefetching
blends well with such a weak memory consistency model. An active prefetch is not affected by
concurrent updates that happen in the private cache of the updater. If the update hits a syn-
chronization point, it still does not affect the prefetch, since the JMM requires a synchronization
for a cache refresh as well. As the requestor waits for the prefetch request to complete, it cannot
reach a synchronization point in the meantime.
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Listing 4.6: The SGlobalAdd structure

typedef struct sGlobalAdd {
u_int64_t low ;
u_int16_t high ;
u_int16_t reg i on ;
void ∗ obj ;

u_int8_t wr i t e_fau l t ;
} SGlobalAdd ;

Calling the predictor

As it was shown in chapter 3, the program must provide the access sequence to the Esodyp
model. In the Jackal DSM, this is achieved by creating a Java wrapper around the Esodyp+
C code. Listing 4.5 shows the definition of the class. Each function with a name starting with
shm_markov_add handles a distinct access check type.

Jackal first distinguishes read and write access checks. The DSM system then handles object
access checks and array access checks differently. In the case of an array, the index is also
provided in order to calculate the region of the element that is accessed. The jackal_native

identifies the function prototype as being implemented as a optimized ABI (Application Binary
interface) for the Jackal compiler. This keyword is only used within the implementation of Java
wrappers to call C-functions in the Jackal RTS system. In each of these codes, the program
simply transforms the reference of the accessed object into a special internal structure that is
then used by the Esodyp framework.

When writing a wrapper, a structure is generally needed to go from one part of the code to
the other. Listing 4.6 shows the SGlobalAdd structure definition that was used to handle this
migration. An object in the Jackal DSM system is defined by four elements. Like many parallel
paradigms, each thread of the program is assigned a unique index for identification purposes. To
reach optimal results, each thread is sent to a unique distant node in order to use each processor
at its maximum capacity. Therefore, for simplification reasons, we can suppose that the index
also represents the node that contains the thread though this is not always the case. The high

field represents this index and that node contains the original copy of the object. The low field
represents the address of the object at its home node. The region field is only used for array
objects and represents the chunk of 256 bytes that contains the first byte of the object. The obj

field contains the address of the object in the local memory. Finally, the write_fault field is
set to 1 if the access check is a read/write access check and is set to 0 if it is a read-only access
check.

Listing 4.7 shows a simplified version of the function handling an access to an object. As we
can see, the low, high and obj fields are simply updated using respectively local fields of the
Java object. The region is set to 0 since this access is not an array access and the write_fault

field is set to 0 since this is a read-only access check. The last instruction of the function calls
the Esodyp+ pointer function fct as we have shown in chapter 3.

Finally, listing 4.8 shows a code segment from benchmark program Blur2D. It contains a call
to the predictor. Since the object that is read and written is M [i][j], it is that object that we
pass to the predictor. This is done by calling the function shm_markov_add_array_rw and
providing the array M [i] and the index j.
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Listing 4.7: A wrapper function

void shm_markov_add_obj ( javaObject ∗o )
{

SGlobalAdd a ;

a . low=o−>alloc_home_address ;
a . high=o−>alloc_home_node ;
a . r eg i on =0;
a . obj=o ;
a . wr i t e_fau l t =0;

rm−>f c t (rm,&a ) ;
}

Listing 4.8: Code fragment calling Esodyp+ from the Blur2D benchmark program

for ( int i = 1 ; i < s i z e − 1 ; i++) {
for ( int j = lb ; j < ub − 1 ; j++) {

MP. shm_markov_add_array_rw(M[ i ] , j ) ;

M[ i ] [ j ] = (
M[ i −1] [ j −1] + M[ i −1] [ j ] + M[ i −1] [ j +1] +
M[ i ] [ j −1] + M[ i ] [ j +1] +
M[ i +1] [ j −1] + M[ i +1] [ j ] + M[ i +1] [ j +1]
) / 8 ;

}
}
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Figure 4.4: The call sequence between the base program, the Jackal RunTime System and the
Esodyp+ predictor

Handling the access sequence

Once the predictor is informed of the access sequence, the model can be created and predictions
can be issued in order to prefetch the data. Figure 4.4 shows the call sequence between the base
program, the Jackal RunTime System (RTS) and the Esodyp+ predictor.

The main program contains calls to the wrapper of the model. The wrapper functions
directly call the Jackal RunTime System depending on the type of the access check.

The Wrapper functions start by transforming the GOR representation into the SGlobalAdd
representation as it was shown in listing 4.7. Once the SGlobalAdd structure is completed, the
code calls the Esodyp+ predictor.

Esodyp+ uses, like Esodyp, a function pointer to determine efficiently the function code
handling the current state of the model. For simplicity reasons, only two states are represented
in the figure: the construction phase and the prediction phase. Let us assume the model is
currently in the prediction phase. This means the Markov_Predict function is called and the
general algorithm 4 presented page 109 is used.

However, there is a difference between both models. When the prediction code requests a
prefetch in the basic Esodyp model, Esodyp+ calls a Jackal RTS function to test the prediction.

The prediction test checks if the predicted data is available locally. If it is, a prefetch is
not useful since the data is already present. On the other hand, if it is not present locally, the
Jackal RTS calls the Markov_PredictN function.

The Markov_PredictN function fills an array with the N next predictions. This is done
by moving through the graph following the probableNext links. However, while filling the array
with predictions, if the last GOR was A and the system directly predicts A again, the last2 or
last link is followed instead in order to predict another GOR. This happens for example when
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the model has a node whose label is equal to zero. In such a case, the predictions would no
longer be different. Instead, the system, follows a less likely link to fill the array.

The prefetches are issued but the array is first checked and the predictions are grouped
by node index. Each group is then sent to the corresponding home node that checks the validity
of the different requests and sends the objects that are valid.

4.2.4 Performance

To evaluate the performance of Esodyp+ in Jackal, we compare it to both a stride predictor and
the Delphi predictor presented below on a Gigabit Ethernet cluster of Xeon 3.20 GHz nodes with
2 GB of memory and Linux (kernel 2.6.14.2). Since all prefetchers use the same RTS interfaces
and the same maximum of N = 10 objects for each prefetching request, the measured differences
are only caused by the overhead incurred and by the prediction quality. In all tests, each thread
uses its own predictor model (since a global predictor does not make sense). Hence, the memory
consumptions below are per thread and are not global.

We present four benchmark programs and discuss the effects of the prefetchers. Since a
predictor is useless in an embarrassingly parallel program, the programs represent classes of
applications that communicate with different access patterns. We feel that the selection is
representative for applications that make use of general purpose DSM systems. The results are
the averages over five runs of each program.

Predictors

Our multi-stream stride predictor implementation [42] with a table of 128 bytes calculates a
new stride as the difference between the current GOR and the last GOR. Using a confidence
counter, predictions are only made if the same stride occurs a certain number of times in se-
quence. To give the stride prefetcher a better chance to keep recurring strides, we use a dirty
counter that enables the predictor to ignore a different stride as long as the recurring stride
reappears quickly enough in the sequence of strides. The next data accesses are predicted by
adding the active stride to the current address. Stride predictors can only predict very regular
accesses. As a GOR not only consists of a memory address but also contains a node rank, the
Stride often mispredicts in non-array programs or for complex data distributions.

Our Delphi predictor implementation [102] continuously updates its information and uses
a constant memory cache. As it cannot detect the frequency of sequences, rare sequences cause
it to forget earlier sequences and to emit mispredictions. Delphi uses a hash function to map
sequences to its table. In the best case, each sequence receives a unique index. However, the
number of conflicts depends on the memory access pattern. Our implementation employs a
4096-entry hash table that uses the last three accesses as the hash key. Each entry contains a
pointer to a structure containing a GOR and access check information. Hence, the total size
of the table is 96 KB per thread. In a certain sense, Delphi is closer to a Markov model, as it
uses a fixed depth of 3. But it cannot handle depths of 1 or 2 simultaneously. For n sequences
(A, B, ∗), Delphi needs n entries, each of which stores A, B, and the last element. Esodyp+,
however, handles all the depths 1, 2, and 3, and stores the subsequence (A, B) only once. A
prioritized linked list then covers the n possibilities.
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Table 4.1: Runtimes and message counts for the benchmarks (best in bold).
Runtime (in seconds) Messages (in thousands)

Nodes w/o Stride Delphi Esodyp+ w/o Stride Delphi Esodyp+

SOR

2 24.0 23.7 23.7 23.9 27.6 7.1 5.4 6.0
4 13.2 12.3 12.3 12.4 83.1 22.7 17.9 17.6

6 9.4 8.6 8.6 8.7 139.2 36.2 29.9 30.0
8 8.0 7.2 7.3 7.3 196.0 53.9 40.6 42.3

Water

2 113.8 113.7 114.5 102.3 1593.0 1593.0 1593.0 962.4

4 78.0 78.2 78.5 62.1 2651.6 2651.6 2651.5 1593.9

6 64.4 64.4 64.5 52.6 3260.4 3260.5 3260.6 1967.9

8 58.7 58.7 59.1 49.6 3756.5 3756.7 3758.4 2248.9

Blur2D

2 10.6 5.9 9.3 3.6 223.9 223.9 134.6 33.4

4 6.9 6.6 5.9 4.0 385.4 385.4 190.0 99.8

6 7.9 10.0 6.1 5.0 483.4 483.4 230.6 166.2

8 8.8 13.5 7.1 6.9 581.5 581.5 277.2 232.3

Ray

2 69.2 71.7 71.8 69.9 9.2 5.9 8.7 5.9

4 35.4 36.1 36.5 35.2 27.3 17.4 25.8 17.1

6 24.1 24.2 24.6 23.8 45.4 29.0 42.1 28.4

8 18.4 18.5 18.9 18.3 57.3 42.7 59.9 41.1

Table 4.2: Accuracy of different prefetchers and their unused but prefetched objects.
Accuracy (in %) Unused objects (in %)

Stride Delphi Esodyp+ Stride Delphi Esodyp+

SOR 81,09% 97,13 % 95,39% 2,48% 0,75 % 6,61%
Water 8,91% 31,81% 67,81 % 79,42% 7,88 % 12,83%
Blur2D 0,00% 49,94% 76,81 % 0,00% 1,96% 10,36%
Ray 79,99% 0,00% 83,12 % 6,31% 100,00% 1,93 %

Average 42,50% 44,72% 80,78 % 22,05% 27,65% 7,93 %

Benchmark programs

Table 4.1 shows the runtime and the number of messages obtained on the various benchmark
programs. We tested the programs using a 2, 4, 6 or 8 node configuration on the cluster. The
column w/o represents the benchmark program execution without any instrumentation.

Table 4.2 presents the accuracy percentage of the different predictors and the percentage of
unused prefetch objects. Accuracy is important since a non-accurate model is not able to reduce
the number of messages of the system. However, the percentage of unused prefetched objects
is equally important since it directly affects the number of messages that are added by the
mispredictions. Both elements are important when considering a predictor since, in an extreme
case, a 100% accurate model is possible if the predictor issues prefetches for every object in the
program. However, the percentage of unused objects would be also approximately at 100% and
the total number of messages would be very high. The ultimate predictor has an accuracy rate
of 100% and never predicts an unused object.

The rest of this subsection presents the different benchmark programs and analyzes the
obtained results.

SOR iteratively solves discrete Laplace equations on a 2D grid. The size of the grid is
4,100×4,100 and the number of iterations of the program is set to 50. It computes new values
of a grid point as the average value of four neighboring points. Each thread of SOR receives a
contiguous set of rows of the grid. SOR only communicates at the boundaries of the partitions,
at which the threads read the values of the grid points of other threads.

Although restructuring compilers for array-based languages may handle such highly regular
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programs better, it is instructive how a prefetcher affects SOR. With a model of 2.2 KB, Esodyp+
reduces SOR’s runtime by about 9 % and the message count by about 78 %. As can be seen in
Table 4.1, all predictors roughly achieve the same gain; Stride is slightly faster due to its lower
internal overhead. Table 4.2 shows that Delphi is most accurate closely followed by Esodyp+.
Stride cannot outperform the others as the access sequence is not simple enough.

Water [115] simulates moving water molecules by means of an (N -square) N -body simula-
tion. Work is divided by assigning molecules to different threads. After a thread has finished
computing new directions and accelerations for its molecules in the current time step, it pub-
lishes these results for the other threads by means of a special class that implements both
synchronization and simultaneous exchange of updates with other threads.

Water has a large working set (1,792 molecules) that is communicated after each time step,
making it highly network-bound. Stride cannot correctly predict, as the objects are scattered
over the DSM system. Delphi suffers from a number of conflicts in its database and from the
high number of objects being accessed. In contrast, Esodyp+ builds an almost perfect model
of 14.8 KB and reduces runtime by up to 20 % (for 4 nodes). The message count is decreased
by about 40 %. No static analysis can achieve similar results for such irregular applications.
Esodyp+ achieves 68 % accuracy (Table 4.2), which is twice as good as Delphi and about 8
times better than Stride. Stride predicts many unused objects since, once a decision is made,
the program behavior has already changed.

Blur2D implements a 2D convolution filter that softens a picture of 400×400 gray-scale
points (20 iterations). It uses a 2D array of double precision values that describe the pixels’ gray
values. The value of a pixel is computed as the average of itself and its eight neighbors. For such
a stencil computation (like SOR) accesses are difficult to predict because the parallelization does
not fit to the data distribution of the DSM system. While Jackal favors a row-wise distribution
scheme, Blur2D uses a column-wise work distribution. Hence, false sharing and irregular access
patterns make Blur2D highly network-bound.

In contrast to Stride and Delphi, Esodyp+ saves roughly 20 % runtime on 8 nodes and the
number of messages drops by 60 %. The size of the model is 5.4 KB. Esodyp+ predicts more
accurately (almost 77 %) due to the additional information in its model. In contrast to Delphi
and Stride, when constructing the request message, Esodyp+ first tries the most probable next
access. If this leads to an object that has already been requested, it uses another edge of its
graph to predict a less probable but still possible access. Hence, Esodyp+ prefetches not only
the most likely sequence but also less frequently ocurring data access sequences. For increasing
node counts, it cannot compensate the false sharing. The simplistic model created by the Stride
predictor is the reason for its poor behavior. Due to a high number of consecutive accesses to
the same DSM region, Stride does not emit any good predictions. As of the confidence counter,
Stride does not prefetch when a pattern change occurs. Disabling this counter causes a 50 %
slow-down due to mispredictions. Delphi’s hash table is not able to provide enough slots to store
the complex data access sequences of Blur2D.

Ray renders a 3D scene constructed from 2, 000 randomly placed spheres. The image is
stored as a 2D array (500×500) of RGB values. For parallelization, the image is partitioned
into independent sub-images that are assigned to the threads. Raytracing is inherently parallel:
it has a read-only working set (the spheres) and a thread-local working set that is written (the
sub-images).

On average, the prefetchers do not gain any performance, although Stride and Esodyp+
(1.5 KB model) save roughly 35 % of the messages. Delphi is unable to make correct predictions
due to conflicts in the hash table. This leads to an accuracy of 0 % and an unused prediction
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percentage of 100 %. Stride is able to keep a score of 79 % compared to the 83 % of Esodyp+.
However, Stride makes more unused predictions (6,31 % vs. 1.93%). Transferring read-only
data at initialization, the threads work on local data that is only transferred at the end of the
computation. Obviously, for embarrassingly parallel applications prefetching does not improve
performance. Variations in the cluster load cause the fluctuations in Table 4.1.

To summarize, let us compare the overheads of the predictors. When learning, Stride has
the lowest overhead as it only considers strides relative to the last access. Delphi causes a
higher overhead by computing the hash index for each access. Esodyp+ updates a few nodes
and counters in the model, which also results in a higher overhead. When predicting, Delphi
still calculates the hash index of the current access sequence, whereas Esodyp+ predicts by
just following pointers to the most probable prefetch candidates. Hence, for stabilized models,
Esodyp+ reaches the low overhead of a stride predictor. This is a major advandage of the
Esodyp+ model, as it is able to modelize complex memory access behavior with a low prediction
overhead once the model has been created.

4.2.5 Conclusions

In this section, we have shown that it is useful to integrate a predictor into an object-based DSM
system since predictors can generally compensate their overheads. Esodyp+, a novel Markov-
based prefetcher performs better than two existing prefetchers. It is more precise and more
efficient in predicting and emitting prefetches and reduces the message count by about 60 %. It
reduces runtime by 15 % on an 8-node computation. On average, it achieves an accuracy of 80 %
compared to 45 % of the other predictors. Hence, our prefetcher is well-suited for network-bound
applications with complex data access patterns.

However, the fact that the programmer must, as for the Esodyp model shown in chapter 3,
manually insert calls to the model greatly reduces the possibilities of the framework. Though
this section has shown that correctly inserted, the framework is able to reduce the execution
time and the number of messages, an automatic solution such as the one presented in chapter 2
would be beneficial.

The rest of this chapter presents such a solution by automatically instrumenting the code
and inserting calls to the Markovian model when it is considered beneficial.

4.3 Automatic Instrumentation in the Jackal DSM

4.3.1 Introduction

Automatic instrumentation is a technique that has been presented in chapter 2. The code is
instrumented with monitoring code at runtime without any prior knowledge of the behavior of the
program. Once instrumented, decisions must be taken in order to reduce the overhead incurred.
In chapter 2, this is done by using a Dormant state where load instructions are de-instrumented.
This solution enables the code to execute itself natively without any instrumentation.

This section presents a similar method but in the Jackal DSM system. It also shows that the
same level of performance of manually placed prefetching hints can be reached by dynamically
removing superfluous or unprofitable calls to Esodyp+. This is achieved by rewriting the code
dynamically. However, instead of being totally dynamic, the solution adopted modifies the
Jackal compiler to use modified versions of the access checks.

If the modified access check decides it is unprofitable to prefetch, the call is replaced with an
almost original access check. This special Waiting access check adds a simple test to the original
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1 leaq -1308622848(% r8), %rdi
2 shrq $5 , %rdi
3 movq %rdi ,%rcx
4 movq %fs:(0), %rdx
5 movq thread_local_dsm_read_bitmap@TPOFF (%rdx), %rdx
6 bt %rcx , (%rdx)
7 jc .L28961
8 movq %r8 ,%rdi
9 call shm_start_read_object@PLT

10 movq %rax ,%r8
11 .L28961:

Figure 4.5: Example of an access check in assembly code.

check code. When an access check is sent to the Waiting state, a wake-up time is set. The
test compares the current time and the wake-up time and, if the first is superior to the latter,
the access check is re-instrumented. However, if the prefetches seem profitable, the monitoring
calls are replaced with calls to the Esodyp+ framework to enable prefetching. Finally, this new
system adapts its bulk prefetch distance in order to obtain the best performance possible.

A final but important distinction between both methods is the position of call to the Es-
odyp+ model. In section 4.2, the Esodyp+ model was informed of every access check since the
programmer inserted a call to the wrapper directly in the code. The model created represents
the general memory behavior whether the accesses provoke cache misses or not. In this new
version, the model is directly integrated into the access check which means that it is only called
when the check fails. This section presents in greater detail the reasons and consequences of this
choice.

Access Checks

It is important to know how an access check is implemented on the system level to understand
how it is rewritten by our binary rewriter.

Jackal assigns two bits in the local heap for every object. The first bit is used to indicate that
a particular object is readable by a thread; the second one is set for writable objects. Hence,
the individual objects in the heap have to be aligned to efficiently compute the bit position in
the per-thread bit list during an access check. Jackal uses a 32 byte alignment since most Java
objects fit into a 32 byte boundary and fast integer shift operations can be applied to compute
the final bit position.

Figure 4.5 shows EM64T assembler code that is emitted by the compiler to implement the
functionality of the access check depicted in figure 4.1 page 123. It is assumed that the address
of the object is already stored in register %r8. Line 1 computes the relative offset of the object
in the local heap. The shift operation in line 2 then divides the heap offset in %rdi by 32 to
obtain the position of the bit of the object in the read bitmap. Lines 4–5 load the address of
the read bitmap from the Thread Local Storage area of the current thread. The bit test in line
6 determines whether the bit is set and sets the condition register for the following jump. If
the bit is set (the object is already cached), the object reference can be used after the jump
to the label in line 11. If the bit is not set, the object address is loaded into %rdi and passed
to shm_start_read_object (passing the reference through %rdi is required by the application
binary interface of the Linux systems on EM64T).

The function shm_start_read_object is part of Jackal’s RTS and is responsible to request
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PrefetchingModel CreationMonitoring

Waiting

Figure 4.6: State evolution of the Esodyp+ access checks

1 leaq -1308622848(% r8), %rdi
2 shrq $5 , %rdi
3 movq %rdi ,%rcx
4 movq %fs:(0), %rdx
5 movq thread_local_dsm_read_bitmap@TPOFF (%rdx), %rdx
6 bt %rcx , (%rdx)
7 jc .L28961
8 movq %r8 ,%rdi
9 call shm_start_read_object_monitored@PLT

10 movq %rax ,%r8
11 .L28961:

Figure 4.7: Example of an access check in assembly code after rewriting to monitoring state.

an object from its home node and to allocate a region for it in the cache of the local node. To
request the object from the home node, the RTS uses the hash table to map the object pointer to
the GOR. A message is created that contains the GOR and information about the access check.
The message is then sent to the home node of the object which unpacks the request and locates
the object. It is the task of the home node to maintain a list of nodes that read the object
(for example, to direct the distributed garbage collector). After updating the object status, the
home node serializes the object into a data message and delivers the message to the requester.
Back at the requester, the data of the object is deserialized and mapped to the caching heap.
Finally, the bit that corresponds to the object is set to reflect the new local state of the cache.

A write fault is processed in a similar manner. The only difference is that, upon object
receipt, the requester not only maps the object into its caching heap, but also creates a shadow
copy, the twin, of the object. When the cache is flushed, the twin is used to determine the
modifications that have been made by the local node.

4.3.2 Dynamic Monitoring

While the application is executing, access checks are performed and if the data is not locally
available, it is requested from its home node. In order to prefetch the data, a model is created
and used to predict future accesses. However, when every access check is instrumented to provide
information to the model, the predictor might receive too much information and this can hurt
performance. For example, if an access check cannot be accurately modeled by our system, it is
best to de-instrument that access check. To achieve this, we apply a state machine to determine
which access checks the model handles.
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State Machine

Figure 4.6 shows this state machine. First, the access checks are simply monitored by replacing
the call to shm_start_read_object with a call to shm_start_read_object_monitored as it is
shown in figure 4.7. This replacement is performed by the Jackal compiler during compilation
of the source code. Using a hash table to monitor the number of times each access check is
executed, frequently executed access checks are sent to the model creation state.

In this state, access checks collect the accessed GORs in a buffer. Once the buffer overflows,
the system selects the most frequently executed access check, as it is likely to benefit most from
prefetching the data it is requesting. The GORs of that access check are then used to construct
a model for which the accuracy is calculated. If the accuracy is over a fixed threshold, the access
check enters the prefetching state and prefetching starts for it. However, if the accuracy is too
low, the access check enters the waiting state.

The access check remains in the waiting state until it is time to re-instrument itself. Using a
waiting level resembling to the dormant level presented in chapter 2, the access check is, at first,
quickly re-monitored. Then, if the model is still unable to create an accurate model, the level is
incremented and the access check must wait a longer period of time before the next check. As
for the dormant level in the system from chapter 2, the associated waiting level is incremented
every time an access check enters the waiting state. This solution enables the overall system to
handle each access check independently.

Finally, in the prefetching state, when access checks fail, predictions are made and prefetch
messages are sent. Once a new access check is integrated into the prediction state, the Esodyp+
model automatically adapts or even reconstructs itself depending on the new memory behavior.

A state change of the access check is directly reflected in the executable code. Each state in
the state machine consists in a particular entry point that is directly used by the access checks.
Figure 4.7 shows the assembly code that calls the monitored entry point. When the access check
is selected for prefetching, the call to shm_start_read_object_monitored is replaced by the call
to the entry point of the prefetching code. These calls to the different versions of the access checks
are directly replaced for performance reasons. Another solution is to call a common function that
uses a series of if statements but this causes the execution of additional instructions, increases
load on the memory bus, and puts a higher pressure on the branch prediction unit of the CPU.
For these reasons the call instruction is directly replaced.

When compared to the state machine in chapter 2, there are certain differences. First, this
system seems simpler in design. In certain aspects it is. For example, the distance learning state
is removed and a general distance learning system is implemented and presented in subsection
4.3.3. Second, monitored access checks no longer go into the Waiting state since this system is
called upon directly in the access checks. This means that, when the model is called, the access
check did fail. Hence, the system knows that every access check in the model is one that fails.

Finally, since the predictor is only triggered during a failing access check, the created model
only represents the behavior of the application for accesses into the remote memory instead of
modeling the memory references of every accessed object. This means that at each time the
model is called, it can predict the next remote accesses and prefetch them.

Modeling Remote Faults

In the previous version explained in section 4.2, Esodyp+ was informed of every (local and
remote) access made by the program, because the model creation functions were prefixing the
access checks. Although this solution creates models that correctly represent the general memory



4.3 Automatic Instrumentation in the Jackal DSM 139

behavior of a program, the model cannot know which accesses actually need prefetching and
which do not. This happens, as remote faults and accesses to locally allocated objects are
interleaved. As another disadvantage, this kind of instrumentation causes additional runtime
overheads as the instrumentation code is always executed, even if only local objects are accessed.
Furthermore, if the model contained local references as well, it would also mix in predictions
that target the local memory, which have to be filtered out and, thus, cause additional overhead
when prefetching.

In the current system, the model creation code replaces the access check code of the DSM
runtime. Hence, the predictor model only receives memory references that stem from faulting
access checks. The system only incurs an overhead if there are failing access checks. Therefore,
in the case of an application that only accesses its local memory, there will be no overhead
since the prefetcher is never called. As the assembly code contains the bit tests, the monitor
code is skipped if the object is already available on the local node. Hence, in the local case,
the overhead is null. A second advantage is that access checks that cannot be modeled are
directly de-instrumented and replaced by their regular DSM runtime counterparts. Therefore,
these access checks are executed without any instrumentation and, thus, without any overhead.

However, there is a major disadvantage of such a system. Once the model represents the
current memory behavior of failing access checks, the next failed access check might not be the
one predicted. This happens when the model is able to predict the next access check and emits
a prefetch for it. Hence, this particular access check does not fail as expected, as the object was
already requested by the prefetch, and the model cannot update its information. The next time
it is called, it can only notice that it apparently performed a miss prediction. This happens since
the prediction it made transformed the next failing access check into a successful one. However,
this is not a problem with our predictor, as at the next failing access check, the model will
notice that there is a difference to the modeled behavior. In this case, the model will not emit
prefetches until the memory references match the model again or the model notices that too
many faults happen, which indicates a change in the behavior of the application. If the memory
access behavior remains constant, our predictor is able to quickly predict correctly, minimizing
this effect. Finally, if the prefetch distance is chosen high enough such that it fit the application’s
access behavior best, this effect becomes negligible.

4.3.3 Dynamic Adaption of the Prefetch Distance

In the previous version of Esodyp+, the prefetch distance was kept fixed to N = 10, as a set
of experiments has shown that this value was a good trade-off between message reduction and
DSM protocol overhead. While an increasing prefetch distance may reduce the overall number
of messages, prediction accuracy generally drops and, thus, DSM protocol activity increases due
to unused objects or false sharing. However, a static N does not give the best prefetch distance
for all applications.

Hence, our new system also adjusts the prefetch distance to reach its optimal value. When-
ever the local node sends out prefetches to remote nodes, it maintains a counter of how much
objects have been sent back as an answer. This number is then compared against the current
prefetch distance N to determine whether to increase or to decrease N . It is doubled if the
number of received objects is higher than 75% of the requests. The distance is decreased by two
thirds if less than 25% of the objects arrived. The current distance is kept for any other number
in between. Thus the prefetch distance stabilizes if the application’s memory access behavior is
stable.
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Access Checks Model Creation Prefetching

SOR 9 3 1
Water 68 24 16
Blur2D 9 3 3
Ray 6 2 1

Table 4.3: Number of access checks that are passed to the model creation state and the number
that are for prefetching using two nodes.

4.3.4 Performance

To evaluate the performance of the dynamic prefetcher with binary rewriting, we measured
the performance of the four different benchmark programs prsented in 4.2.4 page 4.2.4. These
benchmarks represent classes of applications that communicate with different access patterns.
An embarrassingly parallel application in the benchmark suite is used to show that the prefetcher
does not cause any performance penalty in such cases. We feel that the selection is representative
for applications that make use of general purpose DSMs on clusters.

We evaluate the programs on a cluster of dual Xeon 3.2 GHz nodes with 2 GB of main mem-
ory running Linux (kernel 2.6.20.14). The nodes of the cluster are interconnected with Gigabit
Ethernet. On each node, we only use one CPU to show network effects of our prefetcher. Table
4.3 shows the number of prefetching states compared to the overall number of access checks.
Table 4.4 lists the runtimes and the messages counts for each program. It shows the unmodi-
fied programs (w/o), the programs with manually added prefetches (Esodyp+), the automatic
prefetching placement (DyCo), and the automatic prefetching placement with automatic prefetch
distance adjustment (Dyn. N). The shown results are the averages over 5 runs of each program.

If we compare the table 4.4 with the results obtained in table 4.1 on page 133, we notice that
the values are not always identical. This is a consequence of multiple factors. First, the bench-
mark executions of both sections of this chapter were not done at the same time and the Jackal
compiler has evolved in between. The generated code is thus different between both versions
and this alone modifies the execution of each benchmark program. Second, distributed shared
memory systems are rarely entirely deterministic since the current state of underlying network
directly affects the number of messages that are sent and received. Finally, the interleaving of
executions of each individual process makes the system non-deterministic since, for example,
from one execution to another, the order of received messages can change. Results from exe-
cutions where the cluster was not being extensively loaded and executions where the network
is saturated differ, as the network load has an impact on the round-trip time of messages and,
thus, on the interleaving of the processes by delaying messages. For example, if a distant node
is sending the required data to a node but the message does not arrive on time, this can result
in a failed check and a request is sent. However, if the data had arrived on time, the program
could have directly continued the execution. Though this is true between two sets of results, we
can suppose that during one set of executions the state does not greatly differ and the results
we obtained showed this since the variance between two executions of a same set did not greatly
vary. It is for all of these reason that the results for the version without instrumentation and
the version with the manually added prefetches (Esodyp+) were re-evaluated for this table.

SOR only has a small working set that is accessed in a very regular fashion by the threads.
As Table 4.3 shows, the number of access checks is very low and only one qualifies for prefetching.
While the manually placed prefetching hints are able to reduce the number of messages sent by
57%, our automatic system roughly achieves 60% reduction on a 8 node execution. As SOR



4.3 Automatic Instrumentation in the Jackal DSM 141

Runtime (in seconds) Messages (in thousands)
Nodes w/o Esodyp+ DyCo Dyn. N w/o Esodyp+ DyCo Dyn. N

SOR

2 34.8 34.7 35.0 34.5 28.2 11.5 14.6 11.9
4 18.6 17.5 19.2 18.0 84.1 34.0 44.1 34.7
6 13.2 12.2 13.5 12.8 141.8 62.6 74.3 56.7

8 11.0 10.0 11.4 10.4 199.2 85.2 104.6 80.4

Water

2 122.7 110.3 106.0 93.7 1713.5 1088.9 1114.6 871.6

4 73.3 58.4 65.8 56.3 2941.5 1760.4 1843.3 1401.8

6 68.0 55.6 58.0 49.0 3680.7 2183.6 2180.0 1692.6

8 64.5 54.5 56.4 45.7 4299.6 2497.7 2612.9 1984.3

Blur2D

2 10.3 3.5 7.4 7.8 227.1 68.3 143.2 138.6
4 6.9 4.0 4.3 3.2 394.5 182.0 159.4 87.6

6 8.2 5.2 4.3 3.8 494.8 287.9 181.6 142.0

8 10.0 7.9 5.2 4.2 589.2 403.6 228.7 170.2

Ray

2 41.9 41.4 41.8 42.9 9.2 6.6 8.5 8.4
4 21.4 20.9 21.6 21.2 27.6 19.5 25.7 25.0
6 14.9 15.1 15.1 14.8 46.2 32.7 43.4 42.0
8 12.5 12.0 12.5 12.0 64.8 46.0 60.3 58.9

Table 4.4: Runtimes and message counts for the benchmarks (best in bold).

only has a small working-set, it does not give much rise to a prefetcher to gain performance.
Although all three systems reduce the number of messages by at least 48%, no runtime reduction
can be observed. Because of the high runtime compared to the average message latency, saving
messages does not pay off in a runtime reduction.

Water only has 24 out of 68 access checks that are actually assessed for their access behavior
and 16 are selected for prefetching. As Table 4.4 shows, the automatic system loses in message
count reduction due to the initial monitoring phase. However, as Water contains a very large
working set (the molecules) that is shared among the worker threads, the impact of the warm-
up phase is almost completely hidden by the runtime. In addition, the new system is able to
increase the prefetch distance which causes a reduction of the messages in transit by roughly
55% on 4 nodes, which corresponds to a gain of 12% over the old system. This is reflected by a
runtime gain of 29%.

Blur2D uses a column-wise work distribution. Hence, false sharing and irregular access
patterns make Blur2D highly network-bound. This is directly reflected by the poor execution
time of the unmodified Blur2D program. As Table 4.4 shows, the runtime increases if the node
count exceeds four nodes. Similar to SOR, Blur2D has a very small working set which makes
it difficult to monitor the access checks correctly. Hence, the manual system wins for small
node counts (70% compared to 39% for the automatic system). Yet, for larger node counts,
our system catches up and reduces the message count by a total of 71% compared to 32%. As
the data access behavior of Blur2D causes more and more false sharing, the automatic system
gathers more data about failing access checks and, thus, is able to correctly predict the beneficial
access checks. This results in a performance gain of rougly 58% on 8 nodes.

Ray shows that no prefetching technique can help to reduce significantly the runtime of
this benchmark program. Although the working set (the spheres) is large enough to trigger
state transitions (one access check is selected for prefetching) and to reduce the message counts.
Compared to the manually placed prefetches, the performance of our system is worse due to
the initial monitoring phase. In total, the reduction of the message count by the automatic
system is not sufficient to reduce the overall runtime of the program, as saving a few thousands
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of messages is completely hidden by the runtime of the application.

4.3.5 Conclusions

In this chapter, we have shown that it is worthwhile to integrate a predictor into an object-
based DSM system, since predictors can easily compensate their overheads. First, we showed
how Esodyp could be extended into Esodyp+ and integrated into the Jackal infrastructure. The
first part of this chapter showed how, using a wrapper class, the Esodyp+ API could be directly
called upon by the programmer as it was done in chapter 3. Not only did the results show that
speed-ups and message reduction are possible, a comparison with two other predictors showed
that Esodyp+ handled the memory behavior more accurately.

The second part of the chapter showed that, in addition, it becomes possible to remove
superfluous or unprofitable prefetching calls by using binary rewriting techniques. Also, the
overhead of monitoring is eliminated if the monitor calls can be removed. Our measurements
have shown that, on average, a performance improvement of 13% can be observed when binary
rewriting is enabled to automatically place the prefetching access checks; the message count
drops by 37%. The dynamic adjustment of the prefetch distance saves 19% of the runtime and
decreases the number of messages by 46%. Finally, the maximum speed-up by our system for
the benchmark programs is 58%. It has also been shown that the high prediction accuracy of
Esodyp+ can be kept, even in presence of the dynamic rewriter and the new placement strategy
for the prefetching calls.

Because of its Markov model, Esodyp+ automatically adapts to various access patterns and
is only limited when a pattern is completely irregular. To cope with such irregular applications,
we work on passing to Esodyp+ structural information about object associations, i. e., relations
between individual objects. Hence, the predictor will no longer emit GORs that are prefetched,
but instead it will predict which field of an object is used to access the next object. The DSM
runtime has then to evaluate this structural information to actually determine which objects to
send to the requester.

The next chapter presents a dynamic and automatic solution for the Itanium processor. As
the state machines from chapters 2 and 4, the state machine presented in the next chapter
is used to de-instrument and re-instrument loads efficiently, while at the same time selecting
delinquent loads for the optimization scheme. Furthermore, as this chapter has shown, the
Esodyp framework can be directly used to detect memory behaviors that can be optimized. The
next system also includes the Esodyp framework into its selection strategy. However, a dynamic
optimization system on a modern processor requires the lowest overhead possible and the next
chapter shows how this is handled on the Itanium processor.
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The extension Esodyp+ showed that the Markovian model could be used as a predictor
but also as a filter to decide what memory access checks should be optimized and which
should be de-instrumented. By using a state machine similar as the one in chapter
2, this chapter presents a solution using the Esodyp model as a filter for each load
instruction of a program. In order to integrate Esodyp into the dynamic optimizer, it
was necessary to modify the framework and a code abstraction level was added. This
abstraction level helps to limit the memory used by the system and to insert complex
algorithms into the instrumentation code. Using this technique, the general overhead
of the system is reduced while actually creating a more precise system.

5.1 Introduction

In chapter 2, we presented a dynamic optimization system that dynamically modifies the ex-
ecuting binary in order to insert prefetch instructions into the code flow. The system uses a
dynamic profiling mechanism that selects delinquent loads by calculating the current average
latency of each load. Once loads are chosen, a stride and a prefetch distance are then calculated.
By adding a prefetch instruction before the load, significant speed-ups are achieved on several
benchmark programs.

However, the system in chapter 2 contains a few drawbacks that makes extensions compli-
cated. First, it relies exclusively on modifying the bundle containing the load with an illegal
instruction for each state change. Second, since the state changes only occur when the sec-
ond thread checks the different counters, the system remains in the profiling state longer than
necessary. This increases the overhead incurred by the system.

This chapter extends the previous work by allowing a state change without the need of halting
the execution of the program. Furthermore, most of the state changes are handled internally,
keeping to a minimum the task of the second thread. Second, since state changes are handled
internally, loads are strictly instrumented as long as necessary. Third, the memory overhead
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of the system has been evaluated and a new internal structure has been created in order to
minimize this overhead. Finally, instead of calculating the stride by storing the last stride and
expecting that it will be the best one, the load memory accesses are stored and later processed
by the Esodyp framework in order to calculate a Markovian model. If this model shows a strong
stride-based load, a stride prefetching system is used. However, if a strong cycle is found in the
model, the sum of strides in the cycle is used.

The current chapter can thus be seen as a combination of all previous chapters. We propose
a dynamic optimization scheme that is totally software. Like the other systems in chapters 2 and
4, it does not use any prior knowledge of the program and calculates during the execution the
best distance that should be used by the prefetcher. The framework selects loads by evaluating
their latencies as it was done in chapter 2 and then modelizes their memory behavior using a
Markovian model [55, 62] as Esodyp+ was used in chapter 4. Once the model is created, the
system calculates the best prefetch distance and inserts a prefetch instruction into the code flow.

The overall system is handled with a state machine that is inspired by the one found in
chapter 2. However notable differences will be presented in subsection 5.2.1. Since the framework
is totally dynamic, the overhead of the monitoring system must be at a minimal. To achieve this,
the loads are de-instrumented if they are considered non-delinquent. However, since a load can
later become delinquent, the system periodically re-instruments the loads and calculates their
current latency. Each load is considered independently and is instrumented/de-instrumented
separately without modifying the code of the surrounding loads. This is a major difference with
other trace-based systems that would need to flush the basic block containing the load in order
to modify the instrumentation of the code.

Finally, the system uses an instrumentation pool to contain the dynamically generated code.
However, the content of the instrumentation pool is different from the one presented in chapter 2.
In order to implement complex algorithms, an abstraction level is used to exploit the same
generic instrumentation code for each load. The generic code is written once in memory and
the abstraction code spills and fills registers between the original code to the generic code. The
system is then able to use complex algorithms to calculate and monitor loads without using an
excessive amount of memory. This technique is similar to the framework called Dyninst [18], since
it also uses a code abstraction level. However, Dyninst is not intended for dynamic optimization.
For example, it processes a user code as the instrumentation code and it is possible to change
the instrumentation code when the user requests it but this would require modifying the code
at each state change. Our abstraction level uses a state handling system driven by a simple
state integer that acts as an index into the instrumentation array. This directly decides what
instrumentation is needed. It is an important element in our system since it allows to change the
performed instrumentation without modifying the code and without having to directly interfere
with the program.

The presented framework is implemented on the Itanium-2 processor and it automatically
modifies and instruments binary code with an overhead of 3% on average. On a large set of
benchmarks compiled at the optimization level O3 for both gcc and icc compilers, it is able to
achieve speed-ups ranging from 2% to 163%.

The chapter is organized as follows. The next section presents a general overview of the
system. A finite state machine is associated to each load once they are instrumented. Once loads
are selected as being delinquent, they are modelized by a Markovian model in order to decide
whether or not to optimize them. Section 5.3 presents the Markovian model, while section 5.4
presents the technical issues of the implementation. Section 5.5 shows the experimental results
and compares performance results between the compilers gcc and icc.
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Figure 5.1: The state machine giving the possible transitions between the different states for
each load

The work presented in this chapter has been submitted for publication [10].

5.2 The general framework

5.2.1 State machine

At the program startup, the system parses the code and instruments each load. The same
technique was used in chapter 2 and presented extensively in section 2.4 page 66. Furthermore,
each load is associated a state that determines the action to be taken when the load is to be
executed. Figure 5.1 shows the finite state machine representing the transitions between the
different states. First every load is instrumented and placed in the monitored state to determine
whether it is delinquent or not.

If a load is determined as being non delinquent, a specialized optimization would not be
beneficial. Therefore, instead of continuing to instrument the load, the system restores the
original instruction: this lowers the overhead of the system. We define this state as being the
uninstrumented state.

If a load is delinquent, the system tries to optimize it. The adopted optimization solution
inserts a stride-based prefetching system. The first thing the framework does is study the
memory behavior of that load in the MemAccess state. This is performed by storing a sequence
of consecutive memory addresses that the load accesses. Once a sufficient number of accesses
are stored, the system uses a Markovian model to analyze the behavior of that particular load.
If the system can modelize the load behavior, different prefetch distances are evaluated in the
DistLearn state. Then the best prefetch distance is used, a stride-based prefetch instruction is
included into the control flow and the load is sent to the Optimized state.

Compared to the previous systems where code rewriting was necessary in order to handle
each state transition, this new system does not. Instead, a code abstraction layer is added
and each load is assigned an integer state index. The index gives the abstraction layer the
information needed to determine what state code should be executed. Section 5.2.3 explains the
code abstraction infrastructure.

The rest of this subsection presents this framework in greater detail, explaining how each
state is handled and how it is possible to achieve this with the lowest overhead possible. At the
same time, this subsection presents the differences between this third state machine and the two
previous ones.



146 Chapter 5 - Code abstraction for a dynamic optimization framework

Monitored state The monitored state is the initial state for each load. It is the entry point
of the system and it determines whether or not the system will try to optimize the load. This
state simply counts the number of executions for each load and accumulates the number of cycles
needed to perform the load. Each load is associated to a structure containing the number of
times it is executed and the accumulator containing the sum of the number of cycles.

The instrumentation of a load starts by loading the counter, increments it and accesses the
clock counter. The load is then performed and the clock counter is accessed a second time.
The number of cycles needed to execute the load is obtained. By adding this value to the
accumulator, the sum of all the executions is stored. Once the number of executions of the load
exceeds a threshold, the accumulator is checked and if the load is considered non-delinquent,
the load instruction is restored and sent to the uninstrumented state. If the load is delinquent,
then the memory addresses are monitored in the memory access state.

As for the state machine integrated into the Jackal DSM system in chapter 4, this system
does not require an external help to modify the state of these loads. This means that the
framework does not need a second thread to check the execution counter in order to change the
state of a load. In this system, once the execution counter of a load reaches the threshold, the
state of the load is directly modified. Subsection 5.2.3 explains how this is performed in detail.

Uninstrumented In the uninstrumented state, loads are no longer instrumented. When the
load enters this state, the system puts the bundle containing the load back in its initial state,
lowering the overhead since the load is executed without any instrumentation. The system will
re-instrument the load at an ulterior time in order to check whether the load becomes delinquent.
This is the same as the Dormant state of chapter 2.

As in chapter 2, table 5.1 shows the number of latency variations of the loads for each bench-
mark program compiled with both gcc and icc compilers. The values in the table are the
average of three runs and represent the number of noticed group changes. The four groups are
defined by the average latency needed to complete the load: under 8 cycles, between 8 and 15
cycles, between 15 and 40 cycles and over 40 cycles. The second and third columns represent
the total number of latency changes for each program using the gcc and the icc compilers.
The fourth and fifth columns show the number of times a load changed latency groups. For
example, for parser, there are on average 1951 group changes but only 634.33 loads changed
latency groups at least once. Program vpr, for example, has 317.33 group latency changes for
only 107.67 loads. Thus, on average, there are three latency groups changes for vpr per load.
The last two columns represent the number of loads executed at least once before the last poll
of the monitoring thread.

If we compare the table with table 2.2 on page 58, we notice that there are certain differences.
This can be explained by the fact that the current system does not wait for the monitoring thread
to wake-up in order to calculate the average latency. Since this system directly modifies the state
of the load, the values obtained by both systems differ and this affects the results obtained. Of
course, other internal differences between both systems lead to a change in the decision making
of the overall systems. These differences directly modify the data obtained by both systems and
thus the results of such instrumentations.

Memory accesses In order to analyze the memory behavior, the system stores data informa-
tion in a buffer. Since multiple loads might need to be studied simultaneously, the study of the
memory behavior must be done concurrently. In order to limit the memory overhead, instead of
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Benchmark Latency Loads Executed
changes changing latencies loads

gcc icc gcc icc gcc icc

ft 30 28.67 20.33 17.67 105 89.33
ks 11 6.67 8.33 4.67 189 176

anagram 10 4.33 6.33 2.67 303 119
bc 21 19 13.33 11.33 883.33 847.33
mcf 254.33 200 84.67 61.67 402 374.33

equake 35.67 23.33 13 10.67 392 753.33
art 28.33 30 15.33 18.33 318 522.67

ammp 487 385 193.67 145 1592 1124.67
bzip2 106 92.67 37.33 36.33 797 861.33
parser 1951 1282 634.33 390.33 5193 2540
gzip 53.67 56.67 24.67 28.33 768 831.33
swim 74.33 37.33 29.33 18.33 205 673.33
mesa 90.67 90.67 40 36.67 1664 1808.67
applu 229 29.67 88.33 13 1105 744
twolf 395 288.33 167 132.67 4534.67 3578
lucas 56 2.67 31 2.33 478.67 483
crafty 939 561.33 450.67 257 4446 3633.33
fma3d 474 117 156.67 72.67 3815 2853.67
facerec 9.67 29.33 5.67 16.67 79 1286.67

vpr 317.33 258.33 107.67 83 2898 2806
treeadd 73.67 1.67 23.33 1 74 17

Table 5.1: Latency variations of the load instructions for the benchmark programs

using a dedicated buffer for each load, a single buffer is used for all loads. The instrumentation
stores the unique index associated to the load with the address accessed by the load. Once the
buffer overflows, multiple loads can be present in the buffer. Instead of creating a model for
each load, the system selects the load that was executed the most since the buffer was cleared.
It then creates the Markovian model associated to that load and decides whether or not that
load should be considered for optimization. If the model decides to optimize it, the load is
passed to the distance learning instrumentation state. On the other hand, if the model decides
not to optimize it, the instruction containing the load is restored and the load is sent to the
uninstrumented state.

In the system presented in chapter 2, each delinquent load was sent to the distance learning
state. It was then directly studied independently by testing various prefetch distances without
knowing if the memory access behavior of the load was stride-based or not. In this system, only
the delinquent loads that the Esodyp model decides to optimize are sent to the distance learning
state. The decision to optimize or not depends of the accuracy of the model when considering
the memory access sequence of the load. This screening process reduces the overhead of the
overall system since a minimum number of loads are extensively tested.

Distance Learning Once the model has decided to optimize a load, it calculates the stride
that will be used for prefetching the data. However, the final information needed to prefetch
correctly is the prefetch distance. The prefetch distance is the number of elements the system
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Figure 5.2: The general framework using two separate threads: on the left the original thread
executing the modified program, on the right the monitoring thread

prefetches in advance. If the system uses a too small distance, there is a risk the data will not
be in cache in time. On the other hand, a too high distance risks a cache eviction before the
prefetched data is needed. The calculation of the prefetch distance is as follows: the memory
address module passes the stride that should be used for prefetching. The system then tests a
set of distances by inserting a prefetch instruction into the instrumented code and calculates the
number of cycles the load takes to complete. It finally keeps the distance that yields the minimum
number of cycles which is the best distance for the load at that time. In our experiments, we
have found that testing every distance from 1 to 64 yields the best results while maintaining a
low overhead. Finally, the load is sent to the optimized state if at least one prefetch distance
is found to reduce the average latency. In the case where no prefetch distance was helpful, the
load is sent to the uninstrumented state.

Whereas the system in chapter 2 only tests each power of two between 2 and 64, this system
tests each distance while keeping a low overhead. Since the previous system tests each delinquent
load instead of just loads that the Esodyp model can predict accurately, it has a higher overhead.
This is the main reason why only the powers of two are tested. In the current system, since less
loads are tested, the framework can test every distance between 1 and 64 without raising the
overhead too much.

Optimized If a load enters the optimized state, the load is considered delinquent and the
Markovian model can predict correctly the memory behavior. Furthermore, a stride extracted
from the model for the stride-based prefetching is used and the system found a prefetch distance
yielding a speed-up. The load remains in this state until the system re-evaluates the load. The
decision to re-instrument the load is explained in greater detail in section 5.2.2. When this
happens, the load returns to the monitoring state and the cycle starts over.

Like the system presented in chapter 4, this state machine does not contain a Prefetched
and Monitored state that tests if the chosen stride and prefetch distances are still correct. Since
the state of each load is handled internally, the system can directly recalculate the current
best prefetch distance for a load without adding too much overhead. This gives the system a
possibility to maintain the best distance throughout the execution.
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5.2.2 The monitoring thread

In order to re-evaluate an optimization or re-instrument a uninstrumented load, a second thread
periodically checks the current state of each load. Figure 5.2 shows the global framework. The
main program is instrumented and jumps from the original code to the instrumented code using
unconditional jumps. In the instrumentation pool, the code corresponding to the state of the
load is executed. At the same time, the code updates the load information structure associated
to that load. This lets the monitoring thread periodically check the state of each load.

However, once the original code containing a load is restored or once the code is optimized,
it is unable to automatically re-instrument itself. Therefore, when the load is de-instrumented
or optimized, a wake up field is updated in the load information structure. This wake up field
is periodically checked by the monitoring thread. Once the wake up time is elapsed, the load is
re-instrumented. The re-instrumentation is done by using a signal handler to halt the execution
of the main thread while the code is being updated. The use of a signal handler presents two
advantages: first, the code is halted and code modification can be done without any difficulties;
second, function calls can easily be used to modify the code since the signal handler performs
an implicit context switch.

As for the system in chapters 2 and 4, to further reduce the overhead of the system, con-
fidence levels are added to each load. These confidence levels determine how long the loads
remain without instrumentation. For example, if a load remains non-delinquent after multiple
instrumentations, the system considers it will probably remain non-delinquent and wait a longer
period of time before re-instrumenting it. The same is done for delinquent loads that the sys-
tem is able to optimize. If the system is able to optimize a load, then it will at first remain
optimized for a short period of time. Then, if the instrumentation determines that the load is
still delinquent and is again able to optimize it, the load will remain optimized longer without
any instrumentation. This lowers the overhead since loads that are always non-delinquent will
almost never be instrumented at the end of the execution and loads that are optimized will
remain so for long periods of time. Therefore, each load is associated to two confidence levels,
one that is incremented when the load is de-instrumented and one that is incremented when the
load is optimized.

Finally, as we can see, the monitoring thread of this system has less work to do. Instead of
handling each state transition, the purpose of this monitoring thread is only to re-instrument
dormant loads or to de-optimize prefetched loads.

5.2.3 Code abstraction for low memory overhead

As we have seen in the previous chapters, dynamic systems must handle at least three issues
before performing dynamic code modifications. Let us summarize each issue:

• The use of a second thread in order to handle modifications of the target program code. For
example, when a load has been sufficiently monitored, the system can decide to calculate
an average and restore the original code to lower the overhead. The system waits until
the second thread wakes up, polls the different counters and then decides to modify the
instrumentation.

• To instrument and study the behavior of each load, the system creates an instrumentation
pool. This code region contains the instrumentation code needed and the system inserts
unconditional jumps between the original program and the instrumented code. However,
each load must go through a certain number of states before being correctly optimized.
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Figure 5.3: Code abstraction. From left to right, the original code enters a load specific code,
jumps to the associated function code then jumps to one of the instrumentation code before
returning

This means that the code executed for each load must be changed accordingly and the
code region associated to the load must be at least as big as the largest instrumentation
code. This is not possible when the number of loads is too important.

• The final issue is the register allocation scheme that needs to be handled correctly to allow
the instrumentation code to use free registers. A practical solution is to use a trampoline
between the original code and the instrumentation code. This trampoline saves internal
registers, spills scratch registers and, when the instrumentation is over, restores those
registers. However, a trampoline for each load uses a lot of memory. Instead, another
layer of abstraction can be used to factorize the spill/fill code.

Figure 5.3 shows the general layout of the system. In order to reduce the overhead of the
global system, the second thread does not handle modifications code since everything is directly
handled using an associated state integer.

As we can see, the code is divided vertically into four parts. On the left is the original code.
Each load is replaced by an unconditional jump to its specific load trampoline code. This small
piece of code sets a register to the address of the associated structure and a second register to
the address that will be used by the load instruction.

The code then jumps to the associated function abstraction code. Although it is possible
that the system uses the same function abstraction code for multiple functions, generally each
function needs a specific code to correctly spill and fill the registers needed by the final level.
The function code starts by spilling and filling a few registers for the instrumentation code. The
function code then also loads the current state of the load which is represented as an index to
a code address table. From the table, the instruction flow is redirected to the associated state
handling code.

The specific state code is the column on the right in figure 5.3. This instrumentation level
contains the different instrumentation modules needed for the framework. Currently there are 4
modules: the monitoring code that detects delinquent loads, the memory access code that stores
the loaded addresses, the distance learning code that tests different distances and the resume
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Program Nbr of Loads Program Nbr of Loads Program Nbr of Loads

treeadd 77 art 622 vpr 6860

swim 219 lucas 666 ammp 7349

ft 311 equake 745 crafty 7633

facerec 312 applu 1335 parser 8011

ks 366 bzip2 1493 twolf 12759

anagram 451 gzip 1664 mesa 23940

mcf 480 bc 2311 fma3d 38166

Table 5.2: Number of loads instrumented per benchmark program

code that restores the original code and sends the load into the uninstrumented state. Since the
function abstraction level spills and fills the same registers, this last level of code is only present
once in memory. Also, when a state needs to be updated, instead of rewriting portions of code,
a simple update to the state integer in the associated load structure is required.

This new infrastructure is of course very different from the version presented in chapter 2. In
the previous version, the second monitoring thread had to handle each state transition whereas
now the state integer is simply modified and the code abstraction layer will directly take the
change into account.

This is not the only advantage. If there was no code abstraction, such a complex system
would not have been possible since the memory consumption would be too great. Though the
solution adds three levels of indirection, it uses the same code for multiple loads. Table 5.2 gives
the number of loads instrumented by our system for each benchmark program. Figure 5.4 shows
a comparison of the memory overhead used depending on the number of loads in a program and
depending on three allocation schemes. The X-axis of the figure represents the number of loads
in a program by sorting the benchmarks that were studied.
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The most naïve technique to dynamically instrument the code would be to calculate the size
of the largest instrumentation module and use that size for each code region associated to a load.
This is not an interesting technique since certain instrumentation modules are relatively large
and the modification of the instrumentation pool at each state change would be prohibitively
expensive. Therefore, this solution is not possible for a dynamic optimizing framework. A
second possibility is to merge the load specific code with the function abstraction code in order
to make a single abstraction code. This would use more memory than the proposed solution and
increase the risk of instruction cache pollution but would reduce the number of jumps during the
instrumentation. Of course, the memory overhead would be an affine function and is represented
in figure 5.4 as the top line of the figure. This affine function is the memory usage of the system
presented in chapter 2.

The middle curve represents the current memory usage of our system depending on the
number of loads. Since the function abstraction code is being reused for multiple functions, the
curve resembles a logarithmic function. Finally, to show the amount of memory used by the
function abstraction code and the instrumentation levels, the load specific curve represents the
amount of memory needed for the load specific code. The difference between the two lowest
curves gives the memory overhead used for the function abstraction code and the code for the
different modules. As we can see, it is relatively low and when the number of loads grows, it
can be considered negligible.

5.3 Integrating Esodyp

Once a load has been executed enough to extract an average latency and, if the system considers
the load as being delinquent, the state integer is updated and the load enters the memory access
state. In this state, the memory addresses that are used by the load are stored in a buffer with
the index of that load. When the buffer overflows, the program is halted and the system checks
the buffer. It first finds the load that is the most present in the buffer and creates a model using
the Esodyp framework presented in chapter 3 of the current access behavior of that load.

Once a load has been selected, its associated memory accesses are passed to Esodyp. The
model is created and, during the construction, the model remembers what nodes were visited
last. When the construction is finished, the model starts predicting from the latest node by
following the edge with the highest label. If the next address corresponds to the prediction
then an internal counter is incremented. On the other hand, a misprediction increments another
counter. Comparing both counters gives an indication on the accuracy of the model for the
studied load behavior.

Once the whole buffer is handled, the system must decide whether to optimize the load or
not. Since the optimization scheme uses a stride-based predictor, it is important to check if the
memory behavior of the load is totally stride based or if it contains a cycle. If the load behavior
is stride based then the optimizer will use that stride to prefetch the data. However, if there is
a cycle in the behavior, the cycle is easily noticed in the graph. Then a correct stride must be
calculated in order for each access to be correctly prefetched.

5.4 Technical issues

As for the system presented in chapter 2, certain technical aspects of this system are the same
since both were implemented on the Itanium-2 processor. This section will briefly summarizes
each important aspect, certain of which section 2.4 page 66 explains in greater detail.
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The system was implemented as a shared library on Linux for IA64 that is automatically
linked to the target application at startup. The __libc_start_main function is redefined to
achieve this. It makes the operating system call our code before starting the target program,
giving our system the possibility to handle initialization issues. First, the system parses the
code by reading the ELF header and extracting the function information. The framework was
implemented on the Itanium-2 processor and certain aspects of this section only apply to this
architecture.

5.4.1 Register allocation

The allocation scheme for each function is studied at start-up. The need for free registers in
order to implement correctly a dynamic optimization systems needs to be handled correctly as
it is shown in [31]. On the Itanium-2 processor, register allocation is performed using the alloc
instruction. There are also 32 global registers, most of which are scratch registers which can be
used by any function. If a function does not have any alloc instruction, the system modifies the
first bundle of the function by creating a patch code that adds such an alloc instruction. Of
course, another instruction has to be added to set the state of the register file correctly at the
end of the function.

However, if an alloc instruction exists, the system modifies the instruction to add 4 registers
that will act as scratch registers for the instrumentation. Since no call instruction exists in
the instrumented code, there is no risk of a register being used or read inappropriately. In the
case of multiple allocation instructions in the same function, the system ignores the function.
Finally, if the single allocation instruction requests every register, then the system also ignores
the function since no extra register can be used.

5.4.2 Calculating the latency

The latency of a load can be calculated on most modern processors by accessing the internal clock
register before and after the load. Though the Itanium processor is an in-order processor, using
synchronization schemes would give the framework the possibility to monitor loads on out-of-
order architectures. Since the number of executions that are monitored are negligible compared
to the total number of loads executed, it would not have a high impact on performance.

5.4.3 Speculative loads and predicates

The Itanium-2 processor contains two special components that need to be addressed correctly.
Speculative loads lets the program load data from an address that can possibly lead to an illegal
memory location. However, these loads are handled exactly in the same way as other loads
except that a speculative load is used instead of a normal load to calculate the latency. The rest
of the algorithms are exactly the same.

The second particularity of the Itanium instruction set is the possibility to add a predicate
in front of almost any instruction. If the predicate is set at true, the instruction is executed
normally. Otherwise, it is executed but the result does not change the state of the processor.
For semantics reasons, if the predicate is false, the system cannot let the load be executed.
Therefore, the system adds the same predicate to the jump instruction in the load specific code.
When the predicate is false, the jump from the specific load code to the function abstraction
code is not performed.



154 Chapter 5 - Code abstraction for a dynamic optimization framework

5.4.4 Returning to the code

The final technical issue that needs to be resolved is how to return to the original code once
the instrumentation code has been executed. Figure 5.3 shows the different levels of code the
program must go through to finally execute the instrumentation code. The Itanium processor
contains branch registers that contain instruction addresses that can be used as destinations for
jumps. For example, these registers are used for performing function returns.

The Itanium processor contains branch registers that are used for indirect jumps. These are
often used for returning from the callee function code to the caller function code. The same
registers are used by our system to perform the return jumps. In the function abstraction code,
before performing the jump, one of the branch registers is spilled and is used to store the return
address to the function abstraction code. At the end of the instrumentation code, that register
is used to return to the function abstraction code.

Once the return is performed, the function abstraction code must return to the load specific
code. This is performed by adding the return address into the load information structure. Once
the other registers have been restored, the code retrieves the return address, sets it to the branch
register and jumps back to the load specific code. However, the branch register must still be
restored before returning to the original code and this is performed once back in the load specific
code. Finally, the return to the original code is done by a fixed unconditional jump since this
portion of code is specific to each load.

Though the same spilling/filling mechanism could be used already at the load specific code
instead of just at the function abstraction level, the choice of setting the information into the
load information structure was made to reduce at a minimum the size of the load specific code.

5.5 Experiments and performance evaluation

As for the system in chapter 2, the current implementation of this system requires a load to be
monitored 1000 times before an average is calculated. If the average latency is above 15 cycles,
the load is considered delinquent. Once the memory access buffer is filled, the Markovian model
creates a fourth order model, meaning that the last 4 accesses are used to calculate the next
one. When detecting cycles in the model, the maximum length of a cycle is set to 10. Finally,
the prefetch distances tested ranged from 1 to 64. Though these are arbitrary values, better
settings probably exist; however, since the results are considered good, we feel that on a different
architecture, correct parameters would not be difficult to obtain.

The operating system is Linux with a kernel version 2.6.9-42. The version of glibc is 2.3.4
and we used both gcc version 4.1 and intel icc version 8.1 with optimization option O3 to
compile the benchmark programs. Our system was tested on nine SPECFP2000 benchmarks,
seven SPECINT2000 benchmarks with reference inputs, four Pointer Intensive benchmarks (ft,
bc, anagram and bc) and one Olden benchmark (treeadd). Finally, every result is the average
of 3 distinct runs.

5.5.1 System overhead

The system overhead was measured by removing the prefetch instruction of the instrumentation.
Though this modifies the general behavior of the system, it is impossible to perfectly calculate
the overhead incurred. Figures 5.5 and 5.6 shows the overhead of the system using both compil-
ers. Finally, for every statistical information given, the information cannot reflect exactly what
happens during the optimized version of the system since the instrumentation version slightly
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Figure 5.5: The overhead of the system using the gcc compiler
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Figure 5.7: Acceleration achieved for the benchmark programs using the gcc and icc compilers

modifies the results. The average overhead is 3% of the execution time and is mostly due to the
instrumentation of the code.

5.5.2 Performance analysis

Figure 5.7 shows the performance of our system on the different benchmark programs using both
gcc and icc compilers. Ten benchmark programs out of the 21 tested show speed-ups ranging
from 2% to 163%. The worst case scenario is the twolf program. However, simply modifying
the register allocation system already had an important impact on its performance. Since the
system is unable to find a load that can be optimized correctly, it is unable to lower that cost
or even reach a speed-up.

In the cases where the system does not find a single load it can optimize correctly, all the loads
enter the uninstrumented state and are slowly never instrumented again. This implicitly shuts
down the general system. For programs such as ks or bc, the cost is important in percentage
but these are very short programs. The initial cost of parsing the code and instrumenting it is
not entirely hidden compared to the case of gzip for example.

When comparing the code generated by both compilers, we notice some differences. The
icc version of art obtains a better speed-up than the gcc version. Some fortran codes such as
lucas or fma3d obtain speed-ups with gcc but not with icc. Though both compilers used the
optimization level O3, icc uses more aggressive optimizations and inserts prefetch instructions.
Our system then works as a complementary prefetching system instead of a competitor.

For mesa and ammp, the results can be explained by the fact that our system does not
instrument every function since the most important ones use all the processor registers.

Finally, for program swim, a big difference in execution time was noticed between the codes
compiled with gfortran -O3 and ifort -O3. With gfortran, the execution lasted about 11
minutes, compared to the 90 seconds of the ifort version. A significant speed-up was obtained
using the gfortran compiled code as expected for such an execution time.

5.5.3 Prefetch distance

The prefetch distance selected for a load can need adjusting during the execution of a program.
Table 5.3 shows, for each benchmark program, the number of times a load changes its best
prefetch distance. Benchmark programs with no loads that used different prefetch distances
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Distance Loads changing Distance Loads changing
Program changes distances Program changes distances

gcc icc gcc icc gcc icc gcc icc

mcf 29.67 18.33 16 11 applu 44 0.33 17 0.33
equake 11 7 5.67 3.33 twolf 45.33 32 20.67 18.33

art 6.67 2 4 2 lucas 47 0 18.67 0
ammp 171.33 138 72.33 62.33 fma3d 188.67 4.67 76.67 3
bzip2 4.33 3 4.33 3 vpr 23.33 18.33 15 12
parser 32.67 31.67 19.67 16.67 treeadd 10 1.67 6.67 1
swim 43.67 0 20 0

Table 5.3: Prefetch distance variations

were removed from the table. The second and third column are the number of distance changes
for each program depending on the compiler. The fourth and fifth column are the number of
loads that changed at least once their prefetch distance. On average, each load changed about
2 times its prefetch distance with our system.

5.6 Conclusion

In this chapter, we presented a dynamic optimization system using the Esodyp model from chap-
ter 3 to decide whether to optimize the delinquent loads. Though this may seem to have a high
overhead for memory usage and for the CPU, we have shown how to minimize both. To minimize
the memory usage, we use two abstraction levels to limit the size of the instrumentation. This
abstraction gives the system the possibility to use complex systems such as a Markovian model
to understand the memory behavior. To lower the CPU overhead, we continuously instrument
and de-instrument the code and obtain an average overhead of only 3%. This can be seen as
a load-independent sampling technique since every load is considered separately compared to
most trace-based sampling techniques.

Though the comparison of the overhead of this system with other works is difficult, we will
still try to assess its possibilities. However, this is difficult since the underlying architectures, the
compilers, and the usage or not of hardware mechanisms make each system unique. The overhead
of each method can still be compared in the sense that a too high overhead will never permit
an optimizer to obtain a speedup. From the highest overheads to the least, an enumeration
starts with the dynamic instrumentors such as Pin [76] that have an overhead prohibitively high
to dynamic optimizers such as Dynamo [5] and Deli [35] that, on average, have an overhead of
13%. For example, UMI [121] is a lightweight system using DynamoRIO [16] as a backend. The
system gathers short memory reference profiles that are used to simulate cache behavior before
integrating stride prefetching to obtain a speed-up. UMI has an overhead of an average of 14%
compared to the 3% of our system. On the other extreme, dynamic systems using hardware
components are able to maintain a very low overhead such as the 2% of Adore [73]. Our system
is totally software and obtains an overhead of 3%, making it a compromise between hybrid
methods and totally generic dynamic instrumentation systems.

Using the Esodyp model, the system is able to find stride-based and cycle-based loads and
tests a set of prefetch distances before inserting a prefetch instruction into the instruction flow.
The performance gain ranges from 2% to 163% on various benchmark programs.
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5.7 Contributions of this thesis

This thesis has presented some original approaches to dynamic data cache optimizations.Modern
dynamic frameworks are able to study, modify and optimize target programs with a low over-
head but most systems are trace-based and do not target instructions directly. Furthermore,
dynamic prefetchers rarely consider each load independently which generally hinders the adopted
solutions.

The first part of this thesis presents, in chapter 2, a dynamic optimization system. In this
chapter, we show that a simple stride-based predictor, with the right dynamic instrumentor, can
achieve significant speed-ups. The system has no prior knowledge of the target programs and is
initialized using a dynamic C-library entry point. Furthermore, the system uses a state machine
that considers each load independently and, with the use of confidence levels, dynamically de-
instruments and re-instruments loads. Each load is assigned a state in the state machine and,
depending on its behavior, a transition is performed by a second thread called the Monitoring
thread. This second thread periodically checks the states of the loads and updates them when
necessary. If the load is non-delinquent and remains so throughout the execution, it is rarely
instrumented. On the other hand, if the load is delinquent, the system tries to find a stride and
a prefetch distance that lowers its latency. If it is found, the prefetch instruction is inserted into
the code and the program is generally accelerated. The framework dynamically modifies the
binary code in order to handle state transitions and has an average overhead of only 5%. On a
large set of benchmark programs compiled with either gcc -O3 or icc -O3, the system is able
to speed up some programs by 2%-143%.

However, this first system has a few drawbacks. First, the stride and prefetch distances are
calculated without any real knowledge of the memory access behavior. This trial-and-error
solution is practical since it does not need any complex algorithms to decide which load to
optimize. However, the fact that each delinquent load must be tested, greatly reduces the
remaining execution time ressources of the system. For example, the current system can only
test each power of 2 between 21 and 26 for the prefetch distances. If we add more distances, the
overhead incurred increases.

In the second part of this thesis (chapter 3), we address this issue. This is achieved by
creating a Markovian model named Esodyp. We present the theory behind Markovian models
and, since the purpose of Esodyp is the integration into a dynamic framework, the overhead of
the construction and the use of the model are taken into account. A Markovian model considers
past elements in a sequence in order to calculate and predict the future elements. This is
possible since it considers that the information retrieved from past elements can help determine
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future elements in the case of relative constant behavior in the sequence. The number of past
elements used to predict is called the depth or the order of the model. We also show that a table
representation is not possible with such constraints since the memory overhead and the time
used to correctly maintain and predict with such a representation is too important. Therefore,
Esodyp dynamically creates a graph representation of the current memory access behavior. An
advantage of the graph representation is the fact that Esodyp can, without any additional costs,
handle the lesser depths of the graph while maintaining the depth.

Since the construction and maintenance of the model has a high cost, the it is divided into
two phases. First, the construction phase creates the graph that will be used by studying a
certain number of memory accesses. Then, when the model is created, the system uses the
model as a predictor. In this stage, the model is no longer updated except for the edge labels
that are used to prioritize the different sons of each node. When the model is no longer accurate,
it is flushed and a new model is created to represent the new memory behavior.

Finally, using precalculated predictions, priority links to determine the most probable next
element in the sequence, the overhead is lowered enough to give correct predictions and even
achieve speed-ups for certain benchmark programs.

The problem with the Esodyp model is that, even with the different optimization techniques
used to reduce the overhead of the system to a minimum, the continuous use of the model has
an impact on performance. However, depending on the integration of the model, the system can
still be used. The third part of this thesis studies the application of the Esodyp model in two
cases.

First, in chapter 4, the Esodyp system is integrated into a Distributed Shared Memory (DSM)
system called Jackal. Compiling Java code into native executables, the Jackal compiler adds
access checks to ensure that the data is in the local memory when required. If not, the system
halts the execution and requests the data from the distant node that contains its master copy.
Since, in a DSM, the cost of messages outweighs the overhead incurred by calculations, the use
of Esodyp is opportune. The integration was divided into two steps.

First, a new system Esodyp+, which extends Esodyp, was implemented. Using an internal
structure to handle the Global Address References of the Jackal system, Esodyp+ is able to
modelize and predict the next accesses a program would make. By predicting the next N
accesses in the form of bulk transfers, the number of messages of a given program is reduced.
Finally, the Esodyp model is compared to two other known predictors. The Stride predictor
is a simple stride-based predictor. The Delphi predictor uses a hashtable and the last three
elements to calculate the hash-key. This predictor can also be considered as a Markovian model
but only considers the fixed depth of 3. The graph representation of Esodyp gives the model
the possibility to handle every inferior depth at the same time. The results showed that Esodyp
generally maintained the highest accuracy while having a relatively low overhead. The Stride
predictor suffered from the simplicity of the model but maintained a low overhead. Delphi,
though it is able to keep a good accuracy level, suffered from a high overhead due to the
continuous calculations needed for the hash-keys.

Second, an automatic binary rewriting mechanism was added to the Jackal RunTime System
(RTS) in order to automatically de-instrument and re-instrument access checks. Each access
check is associated to a state in a finite state machine that resembles the one presented in
chapter 2. Though certain technical details from the Jackal RTS implied differences between
both state machines, the underlying theory is the same. The access checks are thus handled
independently and depending on their memory access behavior, they are sent to the prefetching
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state.

The final part of this thesis returns to the data cache optimization for the Itanium processor.
The system presented in chapter 2 has its strong points but also its drawbacks. The major
drawback is the selection of the loads it tried to optimize. Each delinquent load is tested by
selecting a stride and testing various prefetch distances. Though this solution is able to determine
if the memory behavior of a load is stride-based, it wastes time testing loads that have more
complex behaviors.

Using the Esodyp framework, the system presented in chapter 5 tries to optimize this selec-
tion phase. However, a direct inclusion of the Esodyp framework into the system would increase
the overhead of the system. To compensate this problem, a code abstraction level is created,
allowing the overall system to handle state transitions internally without the use of the moni-
toring thread. Furthermore, this code abstraction level lowers the overall memory consumption
of the system while allowing multiple optimizations. For example, more complex code is added
into the instrumentation pool to better handle the selection of the loads. Another example is
the fact that every distance ranging from 2 to 64 is tested instead of only considering certain
powers of 2.

This final system obtains an overhead of 3% which is lower than the system described in
chapter 2. However, using the Esodyp model, the system is more accurate and is able to
determine which loads to optimize. This brings the system to a performance gain up to 163%
on various benchmark programs.

5.8 Future work

The various state machines can be modified to handle different architectures or to be integrated
into different systems. This was noticed when the system from chapter 2 was adapted to include
Esodyp into the Jackal RunTime System (RTS). The same finite state machine could not be
used since adding a monitoring thread is impractical in the Jackal RTS. Instead, the access check
is sent to a waiting state that tests if it is time to re-monitor the check. These differences are of
course dependent of the architecture of the machine and of the system in which we are trying
to implement our optimization framework.

Since the systems are totally software, we are currently working on porting the system to
other architectures such as the x86 architecture or embedded systems. Optimization frameworks
on embedded systems must use limited amounts of memory. The code abstraction system is a
good solution in order to use complex algorithms on such architectures. Though this demands
a lot of implementation efforts, we are also trying to abstract the core code from the more
general framework in order to have a back-end dependent of the underlying architecture, while
the front-end remains identical. The system Pin [76] includes a similar separation to allow the
use of common PinTools to be used on different architectures. The separation of the core code
from the user code will probably necessitate a special form of intermediate language using a
just-in-time compiler that will be dependent of the target architecture.

The integration of Esodyp into the Jackal RTS gave some interesting results and we are working
on extending the system. For example, instead of using the Global Object Representation of the
accesses, we are trying to find solutions to modelize the structural information of the memory
accesses. For example, if we know that a sequence of code m = o.p; q = m.n; occurs, it can
be interesting to prefetch the objects o.p and o.p.n. However, the object o.p.n is not known
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before-hand, therefore a structural representation is needed in order to perform such requests.
This kind of work is already complex with mono-threaded applications, it is even more so with
multi-threaded applications.

Another direction this research has provided is the implementation of a dynamic optimizer
in the domain of multi-core or many-core processors. Using one or more idle cores to execute
complex models, it is possible to predict and optimize the code with virtually no overhead.
Though this requires a certain knowledge and precautions in order to maintain the semantics
of the program, it is possible that a dynamic optimizer can achieve good results where static
compilers are unable to create optimal binaries. The complexity of these processors will likely
bring interesting problems and be handled with equally interesting solutions.

Finally, since the Esodyp code is a single-entry C code and is integrated into the system
presented in chapter 5, we intend to write a user-friendly system that can integrate any type
of statistical model to help study the memory behavior of programs. This will give a chance
for any user to directly plug in his mathematical model and see if it represents correctly the
behavior of the program. Memory access behaviors are not the only elements our systems can
handle. For example, it can easily be extended to study branches and function calls.

We are also working on writing another abstraction level of the system presented in chapter
5. This abstraction will allow users to implement their state machine using the C language. At
startup, the system will load a configuration file and dynamically compile the user state machine.
By using a quick register allocation system, it is possible to directly use this state machine at
run-time.

These different extensions will allow users define exactly what elements of a program will
be modelized, how the state machine is to be programmed and what mathematical model to
use. Though frameworks such as Pin, DynInst, DTrace exist, they are generally instrumentation
frameworks with relatively high overheads. It is difficult to find an optimization framework that
allows a user to perfectly define what he wants to achieve and this summarizes the next step of
this work.
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