DUT Informatique
Module Systéme S4-L

I M T 2010/2011

Orsay

‘ Travaux Dirigés n°5 : Threads ‘

Obijectifs : apprendre a créer, travailler avec et arrétersdareads (ou proces-
sus légers). Savoir reconnaitre les données partagées difttrents threads.
Etre capable d’orchestrer la synchronisation de threadstayen des primi-
tives de terminaison ou de sémaphores d’exclusion mutuelle

1 Notes de cours

11

Rappels sur le contexte d’'un processus

Le contexte d’'un processus est I'ensemble des structureemieées nécessaires au systeme
pour assurer le contrdle de ce processus. Elles se répattes deux catégories :

1.

1.2

Structures dédiées au contrdle des ressources :

— Masque de création des fichiemgsk) qui spécifie les bits de permission a exclure
lors de la création de fichiers ou répertoires.

— Propriétaires et groupes propriétaires réels (correlpuna celui qui a demandé la
création du processus) et effectifs (qui détermine lesslohi processus par rapport
aux fichiers du systéme, souvent identité du propriétairctlier contenant le binaire
exécuté).

— Liste des descripteurs des fichiers ouverts.

— Répertoire de travalil.

— Implantation en mémoire des données et du programme, gurend le segment
de code ouext segmenfle code objet et exécutable du programme), le segment de
données odata segmendles variables globales stat i ¢), et letasou heap segment
(la mémoire allouée dynamiguement pat | oc()).

Structures dédiées a I'exécution du processus :

— Informations nécessaires a I'ordonnanceur (prioritéitigoe d’ordonnancement...).
Valeur des registres, en particulier le compteur ordinal.

Informations relatives aux signaux.

Pile d’exécution owstack segmer{contenant la pile des appels de fonction, les argu-
ments et les variables locales).

Threads

La création d’'un nouveau processus par la primifioek() nécessite la copie compléte du
contexte du processus pére. Cela a I'avantage de la simpligiis est d’'une part particu-
lierement colteux en temps d’exécution pour le systéemearttid part pas toujours adapté
aux applications avec beaucoup de parallélisme.the=sads qu’'on appelle ausgirocessus
légersou activités sont des unités d’exécution des processus : ils travaillieectement avec
les structures de données dédiées au contrdle (voir Sectipnatégorie 1) du processus pére,
gu’'on appellera plus justemeattivité initiale Leur temps de création est minimal pour le



Travaux Dirigés n°5 Threads 217

systéme (qui n'a plus besoin que de copier les structuresmieées dédiées a I'exécution, voir
Section 1.1, catégorie 2). Cependant leur manipulatioplastdélicate pour les programmeurs
qui doivent étre parfaitement conscients des problemsslidravail en mémoire partagée et a
I'aise avec les solutions telles que les sémaphores d'sweclumutuelle.

En particulier, on notera gue code, les variables globales et la mémoire allouée dynami
guement sont partagés entre les différentes activités d’'uméme processusDe méme, bien
gu’elle ne soit connue directement que d’'une actiuitde variable locale dans la pile d'une

activité peut étre lue ou modifiée par une autre activité si é& en connait I'adresse

1.2.1 Création

#include <pthread .h>
int pthread_create (

pthread_t « p_tid, [« Pointeur sur identite du threadx/
pthread_attr_t« p_attr, /x NULL : attributs par defaut x/
void * (xfonction)(void x arg), /*« Fonction executee par le thread/
void * arg I/« Parametre de << fonction >>x/

La primitive pt hread_creat e crée une nouvelle activié et renvoie son identité a I'adress
p_tid (il s’agit d’'un numéro entier non signé qui servira par laesai la gestion du thread).
Son argumerdt t r définit les attributs du thread (nous utiliserons toujdlulsL, qui donne les
attributs par défaut),oncti on est un pointeur sur la fonction qui sera exécutée par I'étiv
(cette fonction retourne nécessairementvand * et prend nécessairement un unique argu-
ment de typevoi d *). Enfin, le dernier argumentr g correspond a I'argument transmis a la
fonctionf onct i on. Cette primitive retourne 0 en cas de succés, un code diesigon.

1.2.2 Identité

Chaque processus a un numéro uniquegileé, qui est renvoyé par la primitivget pi d() .
Tout processus est lui-méme décomposé en threads qui antrcleaur identifiant unique pour
un méme processus, téd. On notera l'activitét i d (par exempled) du processusgi d (par
exemplel234) sous la formei d. ti d (par exemplel234. 5). Deux primitives sont dédiées a
la manipulation des identités des activités :

#include <pthread.h>
pthread_t pthread_selfid);
int pthread_equal (pthread_t tid_1, pthread_t tid_2

1. pthread_sel f() retourne l'identificateur du thread courant dans le praces®urant
(letid).

2. pthread_equal (tid_1,tid _2) retourne O siles deux identités transmises en argument
sont identiques et une valeur non nulle sinon.

1.2.3 Terminaison

Tous les threads d’un méme processus prennent fin si I'ectiitiale prend fin ou si une des
activités fait appel a la primitivexi t () (ou_exit()). Une activité seule prend fin automati-
guement quand la fonction passée en argument de la primithreead_cr eat e retourne. Les

ressources allouées pour une activité ne sont jamais déibérgétomatiquement. Les primitives

IUT d’Orsay — DUT Informatique 2010 / 2011 Module Systeme S4-L



Travaux Dirigés n°5 Threads 3/7

de terminaison d’'un thread (sans affecter les autres tEs)vet de libération de ses ressources
sont les suivantes :

#include <pthread.h>
void pthread_exit{oid * p_status);
int pthread_detach (pthread_t tid);

1. pthread_exit(p_status) termine I'activité qui I'a appelée en indiquant une valeer d
retour a I'adresse_st at us. Cette primitive ne peut jamais retourner dans le thread qui
I'a appelée.

2. pthread_detach(tid) indiqgue au systéme qu’il pourra récupérer les ressources al
louées au thread d’'identifiani d lorsqu’il terminera ou qu'il peut récupérer les res-
sources s'il est déja terminé. Cette primitive ne provogag lp terminaison du thread
appelant. Elle retourne 0 en cas de succeés, un code d’'eimeur. s

1.2.4 Synchronisation

Les threads disposent dans les grandes lignes des ménisslewdynchronisation que les pro-
cessus. Le premier d’entre eux est I'attente passive de W@idire autre activité qui rappelle
les primitiveswai t () ouwai t pi d() liées aux processus. La primitive permettant ce compor-
tement est la suivante :

#include <pthread.h>
int pthread_join (pthread_t tid ,yvoid *x status);

Cette primitive suspend I'exécution de l'activité appédajusqu’a la fin de l'activité d’iden-
tifiant ti d. Si l'activité d’identifiantt i d est déja terminée, cette primitive retourne immédia-
tement. En cas de succes, elle retourne 0 et place a I'adresaeus la valeur de retour de
I'activité attendue. En cas d’echec elle retourne un coderelr.

L'autre principal outil de synchronisation entre threasfsle sémaphore d’exclusion mutuelle.
On manipule les sémaphores pour les threads a l'aide deseguaimitives fondamentales
suivantes qui retournent toutes 0 en cas de succés et un ‘epdBudsinon :

#include <pthread.h>

int pthread_mutex_init(pthread_mutex_t p_mutex, NULL);
int pthread_mutex_lock (pthread_mutex_« p_mutex);

int pthread_mutex_unlock (pthread_mutex xt p_mutex);

int pthread_mutex_destroy(pthread_mutexxtp_mutex);

1. pthread_mutex_i nit (p_nut ex, NULL) réalise l'initialisation d’'un sémaphore d’exclu-
sion mutuelle de typet hread _nut ex_t dont on aura passé I'adresse en premier argu-
ment. Le second argument indique les attributs du sémapborimdiqueraNULL pour
avoir les attributs par défaut qui initialisent le sémaghavec un droit (le sémaphore
n'est pas bloqué).

2. pthread_nutex_| ock( p_nut ex) réalise I'opération P (demande d’un droit) sur le sé-
maphore dont I'adresse est passée en argument.

3. pthread_mut ex_unl ock(p_nut ex) réalise I'opération V (restitution d'un droit) sur le
sémaphore dont I'adresse est passée en argument.

4. pthread_nut ex_destroy(p_nut ex) rend le sémaphore dont I'adresse est passée en ar-
gument inutilisable & moins d’un nouvel appeltér ead_nut ex_i ni t (p_mut ex, NULL) .

IUT d’Orsay — DUT Informatique 2010 / 2011 Module Systeme S4-L



Travaux Dirigés n°5 Threads a7

2 Exercices

2.1

Exercice 1 : partage des données et terminaison

On considére le code suivant ou plusieurs threads sont, @ié&sun ayant pour unique travail
d’afficher son identité :

#include <stdio.h>
#include <stdlib.h>
#include <pthread .h>

#define NB_THREADS 3

int thread_execute = 0;
pthread_t tid [NB_THREADS];

/x Fonction executee par les threads. Le type de retour et |'wangnt sont
x obligatoirement de type void«, ce qui necessite souvent des casts.
*/
void x fonction (void = i) {
int n = x((int %)i);
printf ("Thread,numerq%d, _identite %d.%u\n" ,n, getpid (), pthread_self());
thread_execute = 1;

}

int main () {
int i;
/x Boucle de creation des threadssx/
for (i=0; i<NB_THREADS; i++) {
if (pthread_create(&tid[i],NULL,fonction ,¢oid *)&i) == —1) {
fprintf(stderr ,"Erreur,creation thread_ numerq%d.\n",i);
exit(1);
}

}
printf ("Thread,initial _d’'identite _%d.%u\n",f getpid (), pthread_self ());
if (thread_execute)
printf("Des_ threads annexesont_ete_executes .\n");
else
printf ("Aucun_thread annexe,n’a_ete_execute.\n");
return O;

Questions :

1.

Combien au maximum, avec ce programme, y-a-t-il de tisregkécutant en paralléle
(ou en concurrence s'il N’y a pas assez de ressources) ?

Listez toutes les variables et dire par quels threads sdlet directement utilisables.

3. Comment un thread pourrait lire ou modifier la variablun autre thread ?

Expliquez le résultat d’exécution suivant ou le numérallaque thread est le méme.
Proposez une solution.

Thread numero 3, identite 13033.3084860304
Thread nunero 3, identite 13033.3076467600
Thread numero 3, identite 13033.3068074896
Thread initial didentite 13033.3084863168
Des threads annexes ont ete executes.

Expliquez le résultat d’exécution suivant ou aucun tthr@a réalisé son affichage. Pro-
posez une solution.

Thread initial didentite 13433.3084601024
Aucun thread annexe n'a ete execute.

IUT d’Orsay — DUT Informatique 2010 / 2011 Module Systeme S4-L



Travaux Dirigés n°5 Threads 5/7

2.2 Exercice 2 : parallélisation de la multiplication matrice x vecteur

L'opération de multiplication d’une matrice par un vectest I'une des plus utiles en infor-
matique (calcul scientifique, infographie...). Il est tiggressant de la paralléliser pour en
améliorer la performance. Elle est réalisée simplementgsadeux boucles montrées en Fi-
gure 1 ou on voit comment le vecteur résultagst calculé a partir de la matriéest du vecteur
x. Plus précisément, on voit queif@€élément du vecteur est calculé & partir seulement de
la i®™eligne de la matricel et de tout le vecteux. PuisqueA etx restent constants, on peut
calculer chaque élément du vectgundépendamment les uns des autres.

Proposez un programme utilisant les threads pour le calcuédteuly tel que chaque élément
de ce vecteur soit calculé en paralléle par rapport auxsutre

)

— ()
for (i=0; i<NB_LIGNES, i++)
for (j=0; j<NB_COLONNES; j++) ) _
y[i] += Alil[ji] * x[il;
A X y

FIGURE 1 — Noyau de la multiplication matrice vecteur

2.3 Exercice 3 : synchronisation de threads

Le but de cet exercice est d’écrire un programme dans leguiiréad initial et un thread
annexe, chacun de leur c6té, incrémentent une variablagéartinitialisée a. Le thread ini-
tial affiche la valeur finale de la variable partagée avanedwinher. Discutez les risques d’'un
manque de synchronisation dans un tel programme. Ecrivgzagramme réalisant ces opé-
rations de maniére sdre (avec les synchronisations adgjuat

2.4 Exercice 4 : client-serveur

On désire simuler un mécanisme client-serveur de résenvet places. Il y a 100 places qui
sont représentées par un tablgaace de 100 entierspl ace[i] vaut O si la place est libre et
vaut la valeur du numéro du client sinon. Les requétes destslsont recues au clavier par le
thread initial du serveur qui attend la frappe d'un entiéce® entier est supérieur ou égal a 0,
il indique le nombre de places demandées par le client, sinodique I'arrét des demandes
de réservation et provoque l'affichage final du tableau deeglaAprés chaque demande de
réservation, le thread initial créera un thread annexe paiier la demande et se remettra en
attente d’une nouvelle requéte. Les clients sont numépateésrdre d’arrivée.

Implantez un programme respectant cette spécifications Veillerez en particulier & mettre
en place les synchronisations nécessaires.

IUT d’Orsay — DUT Informatique 2010 / 2011 Module Systeme S4-L



Travaux Dirigés n°5 Threads 6/7

3 Entrainement : exercice corrigé

3.1 Enoncé : le nombre fuyant

On cherche a implanter un jeu de « nombre mystére fuyant sadltsd’'une variante du jeu
du nombre mystére ou l'ordinateur choisit un nombre enti@atairement et ne répond aux
propositions d’'un joueur que pdrop petit! Trop grand ! ou Gagné! Dans cette variante,
toutes leg secondes l'ordinateur change le nombre mystére en luiajbwiu en lui retirant
un nombrex. Le joueur en est informé par un message (par exemipienombre mystére a
été augmenté de 1R!Les nombreg et x sont définis aléatoirement et changent a chaque
fois qu'on les utilise (par exemple aprés 5 secondes de gedifiateur ajoute 32 au nombre
mystére, puis au bout de 11 secondes, il lui retire 13, die.joueur n'aura de plus qu’un
temps limité pour trouver le nombre fuyant.

Réalisez I'application implantant le jeu du nombre fuyaribile de trois threads. Le thread
initial réalisera le jeu du nombre mystére classique. Umjee thread annexe se chargera
des modifications du nombre mystére dans le temps. Un sebogatitannexe se chargera du
respect du temps limite. Pour l'implantation, le nombre t@ges sera choisi entre 0 et 2Q0,
entre 5 et 10x entre 0 et 50 sera ajouté ou retiré (choix aléatoire) avearia@inte de préserver
le nombre mystére entre 0 et 200, enfin, le temps limite sedddecondes.

Note : pour les temporisations, utilisez seulement desifivies sl eep() . L'utilisation du si-
gnal S| GALRM est possible (c’est d'ailleurs ce que falteep()) puisque les informations sur
les signaux sont liées aux threads et non au processus. dappeéhn’est pas possible d'uti-
liser la primitivesi gnal () qui ne fonctionne pas comme elle le devrait avec les threslis (
s'applique & tous les threads d’un méme processus). A l@ flfudrait utiliser la primitive
sigaction() quin'est pas au programme (voir pages de man pour les cujieux

3.2 Correction (essayez d’'abord!!!)

Le programme est relativement simple : il faut commencegépere le code du jeu du hombre
mystére habituel. Ensuite on intégre un premier threadlsipqpur le temps maximal du jeu.
Quand le temps maximum est arrivé, ce thread peut quittefdqguogramme par un appel a la
primitive exi t () . Enfin on ajoute la dimension « fuyante » par un nouveau thieatesoin
en synchronisation est centré sur le nombre mystére. Opeutin sémaphore d’exclusion
mutuelle pour assurer qu’un seul thread pourra accédeceméecomme en écriture au nombre
mystére (le thread initial doit tester si la proposition dugur est correcte -acces en lecture-,
et le thread annexe modifie ce nombre -accés en écrituragque le joueur a gagné, le thread
initial termine, mettant ainsi immédiatement fin aux autesvités.

IUT d’Orsay — DUT Informatique 2010 / 2011 Module Systeme S4-L



Travaux Dirigés n°5

Threads

77

#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>

#define N_INF 0

#define N_SUP

200

#define X MAX 50
#define T_INF 5
#define T_SUP 10
#define TIMEOUT 40

int

mystere;

pthread_mutex_t mutex;

void x fuyeur () {

}

int t, x;

while (1) {
t =
x = rand ()% (X MAX + 1);
sleep (t);
pthread_mutex_lock (&mutex);
if (rand()%2) {

rand ()%(T_SUP— T_INF + 1) + T_INF;

5
[ *

[ *

[ *

/%

5
[ *

Nombre mysteresx/
Semaphore de protection«/

Fonction du thread fuyeursx/
Temps d’attentex/
Modification =/

Protection modification x/
On ajoute ou on retire x/

printf ("Le_nombre mystere,a ete_augmentede %d_!'\n" , x);

mystere = ((mystere + x) > N_SUP) ? N_SUP :

}

else {

mystere + X ;

printf("Le_nombre mystere a_ ete_diminue_de %d_!\n",x);

mystere = ((mystere- x) < N_INF) ? N_INF :

pthread_mutex_unlock(&mutex);

}

void * timeout () {

}

int

}

sleep (TIMEOUT);
printf ("Temps,ecoule, ! _Perdy,!'\n");
exit (1);

main (int argc, char =xargv[]) {
int proposition = N_INF— 1;
pthread_t t1, t2;

srand (getpid ());
pthread_mutex_init(&mutex ,NULL);

5

[ *

| *

[ *
[ *

mystere = rand ()% (N_SUMN_INF+1) + N_INF; /x

pthread_create(&tl ,NULL, fuyeur ,NULL);
pthread_create(&t2 ,NULL, timeout ,NULL);

/x Jeu classique du nombre mystere/
pthread_mutex_lock (&mutex);
while (proposition != mystere) {
pthread_mutex_unlock(&mutex);
printf("Proposition,?\n");
scanf(" %d",&proposition);
if (proposition > mystere)
printf("Trop_grand,!\n");
else {
if (proposition < mystere)
printf("Trop_petit_!\n");
else
break;

pthread_mutex_lock (&mutex);

}
printf("Gagne,!'\n");

return O;

[ *

[ *

/%

mystere— X ;

Fin de protection */

Fonction du thread timeoutx/

exit() termine tout x/

Initialisation generateur */
Initialisation du semaphorex/
Initialisation du nb mysterex/

Lancement des threads/

Protection du test du whilex/

Fin de protection du testx/

Protection du testx/

IUT d’Orsay — DUT Informatique 2010 / 2011

Module Systeme S4-L



