Appendix A

The LC-2 ISA

A.1 Overview

The Instruction Set Architecture (ISA) of the LC-2 is defined as follows:

e Memory address space 16 bits, corresponding to 26 locations, each consisting
of one word (16 bits). Addresses are numbered from 0 (i.e, x0000) to 65,535 (i.e.,
xFFFF). Addresses are used to identify memory locations and memory-mapped I/0O
device registers. For convenience, these locations are partitioned into 27 pages of 2°
words each.

¢ General purpose registers Eight 16-bit registers, numbered from 000 to 111.
e Program counter A 16-bit register.

e Bit numbering Bits of all quantities are numbered, from right to left, starting with
bit 0.

e Instructions Instructions are 16 bits wide. Bits [15:12] specify the opcode (op-
eration to be performed), bits [11:0] provide further information that is needed to
execute the instruction. Section A.3 provides further information on each of the 16
instructions.

e Condition codes The load instructions (LD, LDI, LDR, LEA) and the operate
instructions (ADD, AND, and NOT) set the three condition codes, depending on
whether the result is negative (N =1,Z=0,P =0),zero (N=0,Z=1,P =0), or
positive (N =0,Z =0,P =1).

e Memory mapped I/O Input and output are handled by standard load/store in-
structions using memory addresses to designate each I/0O device register.

Table A.1 lists each of the relevant device registers, along with the memory address it has
been assigned in the LC-2.

459

460 APPENDIX A. THE LC-2 ISA

Location I/0O Register Name I/0 Register Function

xF3FC CRT status register Also known as CRTSR. The ready bit (bit [15]) indicates if the video
device is ready to receive another character to print on the screen.

xF3FF CRT data register Also known as CRTDR. A character written in the low byte of this
register will be displayed on the screen.

xF400 Keyboard status register ~ Also known as KBSR. The ready bit (bit [15]) indicates if the
keyboard has received a new character.

xF401 Keyboard data register Also known as KBDR. Bits [7:0] contain the last character typed
on the keyboard.

xF402 Machine control register ~ Also known as MCR. Bit [15] is the clock enable bit. When cleared,

instruction processing stops.

Table A.1: Device register assignments

A.2 Notation

The notation in Table A.2 will be helpful in understanding the descriptions of the LC-2
instructions (Section A.3).

A.3 The Instruction Set

The 16 LC-2 instructions are summarized in Figure A.1 (page 432). On the following pages,
the instructions are described in greater detail. For each instruction, we show the assembly
language representation, the actual format of the 16-bit instruction, the operation of the
instruction, an English-language description of the operation, and one or more examples of
the instruction.

A.3. THE INSTRUCTION SET 461

Notation Meaning

xNumber The number in hexadecimal notation.

#Number The number in decimal notation.

Allix] The field delimited by bit[l] on the left and bit[r] on the right, from the
datum A. For example, if PC contains 0011001100111111, then
PC[15:9] is 0011001. PC[2:2] is 1. If 1 and r are the same bit
number, the notation is usually abbreviated PC[2].

AQ@B Concatenation of A and B. For example, if A is 0011 001 and B is
111001100, A @ B = 0011 0011 1100 1100.

BaseR Base Register; one of R0..R7, used in conjunction with a six-bit offset to
compute Base+toffset addresses.

page The set of 29 consecutive memory locations whose addresses share the
same high seven address bits.

DR Destination Register; one of R0..R7, which specifies where the result of
an instruction should be written.

immb A five-bit immediate value; bits [4:0] of an instruction, when used as a
literal (immediate) value. Taken as a 5-bit, 2’s complement integer,
it is sign-extended to 16 bits before it is used. Range: —16..15.

index6 Six-bit immediate value; bits [5:0] of an instruction, when used in a
Base-+toffset instruction. Taken as a six-bit unsigned integer, it is
zero-extended to 16 bits before it is used. Range: 0..63.

LABEL An assembler construct that identifies a location symbolically (i.e., by
means of a name, rather than its 16-bit address).

L Link bit; differentiates JSR from JMP and JSRR from JMPR instructions.
IfL =1 (JSR, JSRR), the value of the PC will be saved in R7. If
L = 0, the PC is not saved in R7.

mem|address] Denotes the contents of memory at the given address.

PC Program Counter; 16-bit, processor-internal register which contains the
memory address of the nezt instruction to be fetched. For example,
during execution of the instruction at address A, the PC contains
address A+1.

pgoffset9 Nine bits that differentiate the 2° locations on a page. PC[15:9] is
concatenated with pgoffset9 to form a 16-bit memory address.

Range 0..511.

setce(X) Indicates that condition codes N, Z, and P are set based on the value of
X. If X is negative, N=1,Z =0,P =0. If X iszero, N=0,Z =1,
P = 0. If X is positive, N=0,Z=0,P = 1.

SEXT(A) Sign-extend A. The most significant bit of A is replicated as many times
as necessary to extend A to 16 bits. For example, if A = 110000, then
SEXT(A) = 1111 1111 1111 0000.

SR, SR1, SR2 Source Register; one of R0..R7 which specifies from where an instruction
operand is obtained.

trapvect8 Eight-bit trap number used in the TRAP instruction. Range 0-255.

ZEXT(A) Zero-extend A. Zeroes are appended to the left-most bit of A to extend

it to 16 bits. For example, if A = 110000, then
ZEXT(A) = 0000 0000 0011 0000.

Table A.2: Notational Conventions

462 APPENDIX A. THE LC-2 ISA

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

T T T T T T T T T T
ADD* 0001 DR SR1 0| 00 SR2

1 1 1 1 1 1 1 1 1 1

T T T T T T T T T T T
ADD* 0001 DR SR1 1 imm5

1 1 1 1 1 1 1 1 1 1 1

T T T T T T T T T T
AND* 0101 DR SR1 0| 00 SR2

1 1 1 1 1 1 1 1 1 1

T T T T T T T T T T T
AND* 0101 DR SR1 1 imm5

1 1 1 1 1 1 1 1 1 1 1

T T T T T T T T T T T
BR 0000 niz|p pgoffset9

1 1 1 1 1 1 1 1 1 1 1

T T T T T T T T T T T T
JSR 0100 L 00 pgoffset9

1 1 1 1 1 1 1 1 1 1 1 1

T T T T T T T T T T T
JSRR 1100 L| oo BaseR index6

1 1 1 1 1 1 1 1 1 1 1

" T T T T T T T T T T T T T

LD 0010 DR pgoffseto

1 1 1 1 1 1 1 1 1 1 1 1 1

T T T T T T T T T T T T T
LDI* 1010 DR offset9

1 1 1 1 1 1 1 1 pgI 1 1 1

T T T T T T T T T T T T
LDR* 0110 DR BaseR index6

1 1 1 1 1 1 1 1 1 1 1 1

T T T T T T T T T T T T T
LEA* 1110 DR pgoffset9

1 1 1 1 1 1 1 1 1 1 1 1 1

T T T T T T T T T T T T
NOT* 1001 DR SR 111111

1 1 1 1 1 1 1 1 1 1 1 1

T T T T T T T T T T T T T T
RET 1101 000000000000

1 1 1 1 1 1 1 1 1 1 1 1 1 1

T T T T T T T T T T T T T T
RTI" 1000 000000000000

1 1 1 1 1 1 1 1 1 1 1 1 1 1

T T T T T T T T T T T T T
ST 0011 SR pgoffset9

1 1 1 1 1 1 1 1 1 1 1 1 1

T T T T T T T T T T T T T
STI 1011 SR pgoffset9

1 1 1 1 1 1 1 1 1 1 1 1 1

T T T T T T T T T T T T
STR 0111 SR BaseR index6

1 1 1 1 1 1 1 1 1 1 1 1

T T T T T T T T T T T T T
TRAP 1111 0000 trapvect8

1 1 1 1 1 1 1 1 1 1 1 1 1

Figure A.1: Formats of the 16 LC-2 instructions. NOTE: + indicates instructions that
modify condition codes; * indicates that meaning and use of RTT is beyond the scope of this
book.

A.3. THE INSTRUCTION SET

ADD

Assembler Formats

ADD DR, SR1, SR2
ADD DR, SR1, imm5

Encodings
15 12,11 9,8 2
T T T T T T T T T T
0001 DR SR1 00 SR2
1 1 1 1 1 1 1 1 1 1
15 12 11 9 , 8
T T T T T T T T T T T
0001 DR SR1 imm5
1 1 1 1 1 1 1 1 | 1 1
Operation

if (bit[5] == 0)
DR = SR1 + SR2;
else

DR = SR1 + SEXT(immb5);

setcc(DR);

Description

If bit [5] is 0, the second-source operand is obtained from SR2. If bit [5] is 1, the
second-source operand is obtained by sign-extending the imm5 field to 16 bits. In both

463

Addition

cases, the second source operand is added to the contents of SR1, and the result stored in
DR. The condition codes are set, based on whether the result is negative, zero, or positive.

Examples

ADD R2,R3,R4 ; R2« R3+R4

ADD R2, R3, #7 ; R2<R3+7

464

AND

Assembler Formats

AND DR, SR1, SR2

AND DR, SR1, imm5

Encodings

APPENDIX A. THE LC-2 ISA

Bitwise logical AND

Operation

if (bit[5] == 0)

DR = SR1 AND SR2;

else

DR = SR1 AND SEXT(imm5);

setcc(DR);

Description

If bit [5] is 0, the second-source operand is obtained from SR2. If bit [5] is 1, the
second-source operand is obtained by sign-extending the immb field to 16 bits. In either
case, the second-source operand and the contents of SR1 are bitwise ANDed, and the
result stored in DR. The condition codes are set, based on whether the binary value
produced, taken as a 2’s complement integer, is negative, zero, or positive.

Examples
AND R2, R3, R4
AND R2,R3, #7

R2 < R3 AND R4
R2 <+~ R3AND 7

A.3. THE INSTRUCTION SET 465

BR Conditional Branch

Assembler Formats

BR LABEL
BRn LABEL
BRz LABEL
BRp LABEL
BRnz LABEL
BRop LABEL
BRzp LABEL

BRnzp LABEL

Encoding
15 12 11 10, 9, 8 0
T T T T T T T T T
0000 nlzj|p pgoffset9
| | | | | | |
Operation

if (n AND N) OR (z AND Z) OR (p AND P))
PC = P(C[15:9] @ pgoffset9;
Description

Test the condition codes specified by the state of bits [11:9]. If bit [11] is set, test Nj; if bit
[11] is clear, do not test N. If bit [10] is set, test Z, etc. If any of the condition codes tested
is set, branch to the location specified by pgoffset9 on the same page as the branch
instruction,

Example

BRzp LOOP ; Branch to LOOP if the last result was zero or positive.

466 APPENDIX A. THE LC-2 ISA

JSR Jump to Subroutine
JMP Jump

Assembler Formats

JSR LABEL L=1)
JMP LABEL (L =0)

Encoding

15 12,11,10 9, 8 0

T
0100 L| o0 pgoffsetd
| | | | | | | |

Operation

if (L==1)
R7 = PC;
PC = P(C[15:9] @ pgoffset9;

Description

Unconditionally jump to the location specified by pgoffset9 on the same page as the
JSR/JMP instruction. If the link bit L is set, the PC is saved in R7, enabling a
subsequent return to the instruction physically following the JSR instruction.

Examples
JSR FOO ; Jump to FOO, put return PC into R7.
JMP FOO ; Jump to FOO.

A.3. THE INSTRUCTION SET 467

JSRR Jump to Subroutine, Base+Offset
JMPR Jump, Base-+}Offset

Assembler Formats

JSRR BaseR, index6 (L=1)
JMPR BaseR, index6 (L=0)
Encoding
15‘ ‘ ‘12 11 10‘9 8‘ ‘6 5‘ ‘ ‘ ‘ ‘0
1100 L 00 BaseR index6
1 1 1 1 1 1 1 1 1
Operation
if (L==1)
R7 = PC;

PC = BaseR + ZEXT (index6);

Description

Unconditionally jump to the location specified by adding ZEXT(index6) to the contents of
the base register. If the link bit L is set, the PC is saved in R7, enabling a subsequent
return to the instruction physically following the JSRR instruction.

Examples

JSRR R2, #10 ; Jump to R2 + #10, put return PC into R7.
JMPR R2, #10 ; Jump to R2 + #10.

468 APPENDIX A. THE LC-2 ISA

LD Load Direct

Assembler Format

LD DR, LABEL

Encoding

15 12,11 9,8 0

0010 DR pgoffset9
| | | | | | | | |

Operation

DR = mem[PC[15:9] @ pgoffset9];
setcc(DR);

Description

Load the register specified by DR from the location specified by pgoffset9 on the same
page as the LD instruction. The condition codes are set, based on whether the value
loaded is negative, zero, or positive.

Example

LD R4, COUNT ; R4+ mem[COUNT].

A.3. THE INSTRUCTION SET 469

LDI Load Indirect

Assembler Format

LDI DR, LABEL

Encoding

15 12 111 9,8 0

I
1010 DR pgoffset9
| | | | | | | |

Operation

DR = mem[mem[PC[15:9] @ pgoffset9]];
setcc(DR);

Description

Load the register specified by DR as follows: Construct an address by concatenating the
top seven bits of the program counter with the pgoffset9 field of the LDI instruction. The
contents of memory at that address is the address of the data to be loaded into DR. The
condition codes are set, based on whether the value loaded is negative, zero, or positive.

Example

LDI R4, POINTER ; R4 < mem[mem[POINTER].

470 APPENDIX A. THE LC-2 ISA

LDR Load Base + Index

Assembler Format

LDR DR, BaseR, index6

Encoding

15 12,11 9,8 6,5 0

0110 DR BaseR index6

Operation

DR = mem[BaseR + ZEXT(index6)];
setcc(DR);

Description

Load the register specified by DR from the location specified by a base register and index,
as follows: The index is zero-extended to 16 bits and added to the contents of BaseR to
form a memory address. The contents of memory at this address are loaded into DR. The
condition codes are set, based on whether the value loaded is negative, zero, or positive.

Example

LDR R4,R2,#10 ; R4 « contents of mem[R2 + #10].

A.3. THE INSTRUCTION SET 471

LEA

Assembler Format

LEA DR, LABEL

Encoding

15 12,11

Load Effective Address

DR

pgoffset9
| | | |

Operation

DR = P(C[15:9] @ pgoffset9;

setcc(DR);

Description

Load the register specified by DR with the address formed by concatenating the top seven
bits of the program counter with the pgoffset9 field of the instruction. The condition codes
are set, based on whether the value loaded is negative, zero, or positive.

Example

LEA R4, FOO

I’

R4 « address of FOO.

472 APPENDIX A. THE LC-2 ISA

NOT Bitwise Complement

Assembler Format

NOT DR, SR

Encoding

15 12,11 9,8 6,5 0

1001 DR SR 111111
! ! ! ! ! ! ! ! ! !

Operation

DR = NOT(SR);
setcc(DR);

Description

Perform the bitwise complement operation on the contents of SR and place the result in
DR. The condition codes are set.

Example

NOT R4,R2 ; R4+ NOT(R2).

A.3. THE INSTRUCTION SET 473

RET Return from Subroutine

Assembler Format

RET

Encoding

15 12,11 0

Operation
PC =R7;
Description
Load the PC with the value in R7. This causes a return from a previous JSR or JSRR
instruction.
Example

RET . PC « RT.

474 APPENDIX A. THE LC-2 ISA

RTI Return from Interrupt

Assembler Format

RTI

Encoding

15 12 11 0

Operation

NZP = mem[R6];

R6 = R6 - 1;

PC = mem[R6];

R6 = R6 - 1;
Description

Pop the top two elements off the stack; load them into NZP, PC.

Example

RTI ; NZP, PC « top two values popped off stack.

Notes

On an external interrupt, the initiating sequence pushes the current PC onto the stack
before loading the PC with the starting address of the service routine. The last instruction
in the service routine is RTI, which returns control to the interrupted program by popping
the stack and loading the value popped into the PC. (This instruction is included in this
appendix for completeness. Its purpose and use are beyond the scope of what is normally
covered in an introductory textbook.)

A.3. THE INSTRUCTION SET 475
ST Store Direct

Assembler Format

ST SR, LABEL

Encoding

Operation

mem[PC[15:9] @ pgoffset9] = SR;

Description

Store the contents of the register specified by SR into the memory location specified by
pgoffset9 on the same page as the ST instruction.

Example

ST R4, COUNT ; mem[COUNT] + R4.

476 APPENDIX A. THE LC-2 ISA

STI Store Indirect

Assembler Format

STI SR, LABEL

Encoding

15 12,11 9, 8 0
T T T T T T T T T T T

1011 SR pgoffset9
1 1 1 1 1 | | 1 |

Operation

mem[mem[PC[15:9] @ pgoffset9]] = SR;

Description

Store the contents of the register specified by SR into the memory location whose address
is obtained as follows: Construct an address by concatenating the top seven bits of the
program counter with the pgoffset9 field of the STT instruction. The contents of memory
at that address is the address of the location to which the data in SR is to be stored.

Example

STI R4, POINTER ; mem[mem[POINTER]] < R4.

A.3. THE INSTRUCTION SET 477

STR Store Base-}Offset

Assembler Format

STR SR, BaseR, index6

Encoding

15 12 11 9,8 6,5 0

T
0111 SR BaseR index6
|

Operation

mem[BaseR + ZEXT(index6)] = SR;

Description

Store the contents of the register specified by SR into the memory location whose address
is specified as follows: The six-bit offset is zero-extended to 16 bits and added to the
contents of BaseR to form a memory address. This is the address of the location into
which the contents of SR is to be stored.

Example

STR R4, R2, #10 ; mem[R2 + #10] « R4.

478 APPENDIX A. THE LC-2 ISA
TRAP Operating System Call

Assembler Format

TRAP trapvector8

Encoding

15 12,11 8 , 7 0

Operation

R7 = PC;
PC = mem|[ZEXT (trapvect8)];

Description

Load the PC with the contents of the memory location obtained by zero-extending
trapvector8 to 16 bits. This is the starting address of the system call specified by
trapvector8. Load R7 with the PC, which enables a return to the instruction physically
following the TRAP instruction in the original program after the service routine has
completed.

Example
TRAP x23 ; Direct the operating system to execute the
; IN system call.
Notes

Memory locations x0020 through x00FF, 192 in all, are available to contain starting
addresses for system calls specified by their corresponding trapvectors. This region of
memory is called the trap vector table. See Table A.3. Memory locations x0000 through
x001F are not part of the trap vector table; therefore, x00 through x1F may not be used as
trapvectors.

A.3. THE INSTRUCTION SET 479

TRAP Number Assembler Name Description

x20 GETC Read a single character from the keyboard. The
character is not echoed onto the console. Its
ASCII code is copied into RO. The high eight bits
of RO are cleared.

x21 ouT Write a character in RO[7:0] to the console.
x22 PUTS Write a string pointed to by RO to the console.
x23 IN Print a prompt on the screen and read a single

character from the keyboard. The character is
echoed onto the console, and its ASCII code is
copied into R0. The high eight bits of RO are
cleared.

x25 HALT Halt execution and print a message on the console.

Table A.3: TRAP vector table

