
Productivity via Automatic Code Generation for
PGAS Platforms with the R-Stream Compiler

Benôıt Meister, Allen Leung,
Nicolas Vasilache, David Wohlford, Cédric Bastoul and Richard Lethin
{meister, leunga, vasilache, wohlford, bastoul, lethin}@reservoir.com

Reservoir Labs, Inc.

Abstract. Emerging computing architectures present concurrent, het-
erogeneous, and hierarchical organizations. Explicit management of dis-
tributed memories, bulk communications, and the careful scheduling of
data and computation for locality of reference appear to be necessary
to achieve high efficiencies relative to the peak performance. In some
cases, the architectures present mixed execution models. We present the
design of a software mapping tool, the R-Stream R© High-Level Compiler,
which permits a simplified programming model in terms of abstracted,
programmer-friendly expressions of algorithms by providing an auto-
matic procedure for producing a mapping that conforms to the require-
ments for the emerging architectures. This mapping procedure includes
phases that can produce a variety of communication models provided by
PGAS (specifically, asynchronous bulk communications) covered by a va-
riety of automatically generated synchronization methods, and includes
provisions for addressing the challenges of employing accelerators such as
GPUs. The approach of targeting Asynchronous PGAS from a high level
description of the algorithm simplifies mapping challenges, by simplify-
ing the challenge of “raising” algorithm descriptions that are obscured
by programmer-provided physical mapping details.

1 Programming Model

The next step up in absolute computational performance and in computational
efficiency for envisioned next-generation architectures [KBC+08] will entail pro-
gramming problems that are much thornier than just the traditional challenges of
parallelization or vectorization. Locality of reference, to avoid burning power for
moving data unnecessarily has always been important, but it will become much
more important. Architectures will be composed of many levels of hierarchy and
mixed computing models (e.g., clusters of multi-core). Computational acceler-
ators (e.g., GPGPU, ClearSpeed, FPGA) will provide application class specific
performance boosts, but will further complicate the programming model. Some
researchers are providing evidence that the best processor utilization can be
achieved by explicit programmer management of architectural features, vs. dy-
namic reactive hardware management[DKW+09]. PGAS languages reflect this
trend by allowing the programmer to indicate a rich set of options for organiz-
ing the placement of data with varying degrees of explicitness (e.g., in terms of



specific processors in UPC [CBD+03] or in terms of a less concrete “locale” in
Chapel [CCZ07]).

This has led to research into compilers and tools for taking programs ex-
pressed in a PGAS language and transforming them to incorporate the important
aspects of explicit control (e.g., bulk communications, overlapped communica-
tions/computation) needed for good performance. The challenge in doing this
is that when an algorithm has been rendered to a PGAS language, aspects of
the original intent of the programmer in terms of the logical constructs of the
algorithm e.g., the high-level arrays and the fundamental algorithm, are not
necessarily present. Furthermore, reasoning (automatically or manually) about
concurrency is an intractable problem in both a formal and practical sense. This
reduces the scope of optimization of a section of a program written in a PGAS
language.

One approach to addressing this dilemma would be to refine the existing
PGAS programming models for these explicitly managed hardware mechanisms,
extending the programming languages with new keywords, semantics or defining
particular idioms in the existing languages to indicate the more detailed map-
ping. This does allow programmers to “get their hands on the knobs” of the
machine. But it reduces portability and productivity. It also further obscures
the logical intent.

An alternative, which we are investigating, is to allow the programmer to
express their algorithm at a high level, as abstracted as possible from the final
machine and execution model. A compiler takes this abstract description and
generates the mapping. This does mean, for every explicitly managed mecha-
nism of machine execution that is removed from the programming model, that
the compiler’s job grows. However, it also makes the job of the compiler sim-
pler. First of all, there is less work to do in trying to “raise” the program to
semantics closer to the original programmer intent. The compiler starts with
something that it can map readily. Second, the input program is smaller - de-
tails expressing physical control of the machine are not present in the original
program. With extraneous constraints removed, the space of target mappings
that the compiler can choose from is expanded. But while the space is greater,
it is also simpler - the description is compact, and in forms that are tractable as
analytical mathematical optimizations. In this approach, the PGAS language is
the target language for the compiler.

The high-level compiler, R-Stream, that we have built, illustrates the merit
of this approach. Accepting the algorithms at a high-level, in this case, as se-
quential loop nests in C1, facilitates the abstraction of the program in a manner
such that the objectives of PGAS mapping are more naturally formalized and
implemented. Section 2 describes the R-Stream compiler. In Section 3, we show
how the approach facilitates the mapping of the algorithm to the PGAS abstrac-

1 That our compiler accepts and emits the mapped algorithms in C is a practical
choice. The mapping algorithms are orthogonal to the C implementation; it might
well be easier to accept the algorithms in an even higher-level language, e.g., a matrix
language such as Flame [GGHvdG01].



tion. We illustrate the relevance of R-Stream by focusing on an algorithm for
rearranging computation and explicit asynchronous communication operations
which implements multi-buffering automatically in R-Stream . We end by giving
our conclusions in Section 4.

2 An overview of polyhedron-based parallelization
techniques

R-Stream accepts a domain-specific class of programs, which consists of “regular”
loop nests that work on multi-dimensional arrays of data. This is good for HPC
and HPEC linear algebra and signal processing applications.

R-Stream uses a particular mathematical model to represent programs, pre-
sented in Section 2.1. The model offers a way to manipulate a representation of
those programs under the form of multi-dimensional polyhedra whose definition
depend on symbolic constants. The polyhedra reflect the iteration space of the
loops, the coordinates of the array elements they access and the order in which
they are accessed. The symbolic constants represent program expressions that
are constant during the execution of the loop. We call those symbolic constants
“parameters.” Polyhedron-based optimization differs from “classic” loop opti-
mization [KA02] in offering a means for finding and using perfect dependence
information and for subsuming many of the classic transformations into single
“uber” steps, (e.g., “parallelization”) framed as mathematical analytic optimiza-
tion steps. Also, by supporting imperfect loop nests, the polyhedral model allows
much larger scopes of loops, i.e., interesting kernels, to be considered jointly in
optimizations.

The R-Stream compiler, presented in Section 2.2, leverages this model and
some of the compiler theory literature for polyhedral optimization, to proceed to
automatically parallelizing sequential C programs to different multi-core target
machines. R-Stream is unique, we believe, in offering (1) a robust implementation
of the polyhedral optimization algorithms in the literature, with improvements to
make them practicable (e.g., scalable to interesting kernels) (2) a foundation of a
state of the art, type-preserving scalar C infrastructure (3) a “pure” polyhedral
approach, whereas all significant parallel mapping steps are performed within the
polyhedral representation, (vs. e.g., intermediate re-renderings and raisings from
syntactic or scalar representations.) and (4) several new algorithms, specifically
associated with emerging architectures. While many of the new algorithms would
possibly be of interest to this workshop audience, this paper focuses on one
of these new algorithms, in particular, the re-scheduling of computations and
explicit communications to automatically put a multi-buffering scheme in place
(in Section 3).

2.1 The polyhedral model of loop nests

The requirements of the polyhedral model shape the set of input programs that
R-Stream accepts. They must be close to “regular” static control program form,
according to this strict definition:



– the loop counters must be integer, and they must be incremented by constant
steps

– the loop counters must be bounded, and the bounds of a loop counter must
be an affine expression of the value of the outer loop counters and of the
parameters.

– the statements enclosed within the loops access multi-dimensional arrays2

through multi-dimensional affine functions of the loop counters and the pa-
rameters.

When considering the loop counters as variables in a vector space, the set of
iterations of the loop nest is defined as a parametric polyhedron. An example of
such a loop nest is illustrated in Fig. 1. The considered iteration domain can be
described by the following polyhedron:

P1(n) = {(i, j) ∈ Z2 | ∃k ∈ Z, i = 2k, 5 ≤ i ≤ n, 0 ≤ j ≤ i}

Similarly, the set of points of array A that are accessed through the illustrated
reference is defined as:

D1(n) = {x, y ∈ N2 | x = i + 2j + n, y = i + 3, (i, j) ∈ P (n)}

Fig. 1. Polyhedral representation of a loop’s iteration domain

R-Stream extends this strict model to a larger application domain of less reg-
ular programs by using approximate – but conservative – models of the loops’
execution. For instance, while only conditionals whose predicates are affine con-
straints on the loop counters are supported in the strict model, R-Stream sup-
ports the presence of arbitrary and data-dependent conditionals. We call our
larger (and increasing) set of input programs the “extended static control pro-
gram” form.
2 which include scalars and one-dimensional arrays



2.2 The R-Stream compiler

The basis of our mapping tool is Reservoir Labs’ proprietary compiler, R-Stream.
DARPA funded development of R-Stream by Reservoir between 2003 and 2007
in the Polymorphous Computing Architectures (PCA) Program [LLM+08].

Fig. 2. R-Stream compiler flow

The flow for the R-Stream high-level compiler is shown in Fig. 2. An EDG-
based front end reads the input C program (1), and translates it into a static
single assignment intermediate form, where it is subject to scalar optimizations
(2) and (3). Care is taken to translate the C types into a sound type system,
and to preserve them through the optimizations, for later syntax reconstruction
in terms of the original source’s types.

The part of the program to be mapped is then “raised” (4) into the geometric
form based on parametric multidimensional polyhedra for iteration spaces, array
access functions, and dependencies.

In this form, the program is represented as a “Generalized Dependence
Graph” over statements, where the nodes represent the program’s statements
and are decorated by the iteration spaces and array access functions (polyhe-
dra), and the inter-statement dependences are represented as labeling of the
edges.

Kernels that meet certain simple criteria, “mappable functions” that can be
incorporated into the model, are raised. No new syntactic keywords or forms in
the C program are involved in this criteria for raising; R-Stream raises various
forms of loops, pointer-based and array based memory references, based on their
semantic compatibility with the model. We note here that the type of C that
R-Stream optimizes best is “textbook” sequential C, e.g., like a Givens QR
decomposition in a linear algebra text. If the programmer “optimizes” their C
(e.g. with user-defined memory management or by linearizing multidimensional
arrays), those optimizations typically interfere with R-Stream’s optimizations.3

3 So then we need to bring more ammo to the raising problem, e.g., we have in progress
the development of raising modules that de-linearize array accesses. We are op-



These mappable functions are then subjected to an optimization procedure
which (for example) identifies parallelism, tiles the iteration spaces of the state-
ments into groups called “tasks,” places the tasks to processing elements (PEs,
which correspond to the cores of a multicore processor or the nodes of a clus-
ter), sets up improvements to locality, generates DMA, adds synchronization and
organizes transfers of control flow between a master execution thread and the
mapped client threads.

Each of these mapping steps both reads (5) and writes (6) to the GDG. A
diagram of this mapping process is shown in 3.

After this process, the GDG is lowered (7) back to the scalar IR, through
a process of “polyhedral scanning” that generates loops corresponding to the
transformed GDG. This scalar IR of the mapped program is then subject to
further scalar optimization (8) and (9), for example to clean up synthesized
array access functions. The resulting scalar IR is then pretty-printed (10) via
syntax reconstruction to generate the resulting code in C form, but mapped in
the sense that it is parallelized, scheduled, and has explicit communication and
memory allocation.

Code that was not mappable is emitted as part of the master execution
thread, thus the R-Stream compiler partitions across the units of a heterogeneous
processor target. From this point, the code is compiled by a “low-level compiler”
(LLC), which performs relatively conventional steps of scalar code generation
for the host and PEs.

R-Stream supports generating code mapped for STI Cell and SMP with
OpenMP directives. There are projects in progress targeting R-Stream to Clear-
Speed, GPGPU (emitting optimized code in CUDA form), FPGA-accelerated
targets, and Tilera.

This mapping process is driven by a declarative machine model for the ar-
chitectures, using an XML syntax for describing hierarchical heterogeneous ac-
celerated architectures. The contents of the machine model provide the overall
architecture topology as well as performance and capacity parameters, a for-
malization and implementation of a Kuck diagram [Kuc96]. For example, it is
possible to describe a shared memory parallel computer with many FPGA accel-
erators, such as SGI Altix 4700 with RASC FPGA boards. It also can describe
the complex execution model for GPGPU, in terms of the complex distributed
memories and parallel execution engines [Gro09]; it can also describe (and we
have plans to map to) machines with multiple hosts and multiple GPGPU ac-
celerators. While this language (and a graphical machine model browser for it)
are human-understandable, they are also closely tied to the mapping algorithms,
providing parameters for different optimizations and driving the mapping tac-

timistic that it would be possible to raise some PGAS languages. For example,
Chapel with its ZPL background, is array-oriented, so the array constructs should
be retrievable from the language. Chapel’s language strategy of locales make the
physical considerations orthogonal to the logical algorithm. It would be interesting
to study what Chapel’s locale information means in terms of the analytical locality
optimizations in R-Stream.



Fig. 3. The R-Stream mapper flow



tics. For hierarchical targets, the mapper can perform a recursive partitioning of
the source kernel that is refined at lower levels for the child PEs. The final code is
emitted for the target in terms of the task invocations, explicit communications,
and synchronizations among parent and child PEs and among the PEs at any
level.

For some targets, R-Stream uses existing APIs, e.g., OpenMP pragmas for
SMP, Cn for ClearSpeed [cle07], or a proprietary assembly API for the Mitrion
Virtual Processor for FPGA; in other cases, for example Cell, R-Stream tar-
gets a more abstracted API for explicit operation on the machine that over-
lays DaCS/ALF, and which is portable to other targets. It is easy to change
the syntax from one target to another. For example, it would be easy to make
R-Stream target the PGAS language UPC or (perhaps better) the underlying
execution abstraction layer, GASNet. What matters more than the syntax is the
particular target execution model; R-Stream can target a variety, e.g., with vari-
ations in where DMA is dispatched, in how tightly host processors are coupled
with their accelerators, or in even whether there is a host at all.

A full accounting of the capabilities of the individual mapping phases (Fig. 3)
is beyond the scope of this workshop paper and will be submitted for publica-
tion elsewhere. As mentioned earlier, Section 3 focuses on the multi-buffering
algorithms for overlapping communications and computation, which is a focus
of this workshop. Briefly, we give some description of the other phases. For the
affine partitioning step (or parallelization) we provide implementations of some
algorithms described in the literature [Fea92,LL97,BBK+07], though by default
R-Stream uses new parallelization steps that jointly balance locality considera-
tions. Tiling is implemented as a guided search that hierarchically groups and
tiles iterations that respect scratchpad memory capacities into tasks, and that
carves boundaries according to considerations such as SIMD alignment. Place-
ment distributes tasks across the physical processor space. For SMP architec-
tures, steps of communication and synchronization generation are then skipped
(since communication is implicit in memory accesses and, at least for OpenMP,
synchronization comes for free at the exit of parallel constructs). For distributed
memory machines, though, the local memory compaction stage begins the forma-
tion of abstract communication operators in the GDG, and later steps progres-
sively form them into concrete operators such as DMA calls. Various architecture,
thread generation and synchonization generation phase sequences further refine
the schedule depending on the degree of coupling of the host to accelerators.
Code generation is done via an improved polyhedral scanning algorithm. Data
layout optimization is via optimized “reshapings” using the synthesized DMA
operations as data is moved from one place (e.g., main memory) to the scratch-
pad and results are written out, and via the use of periodic polynomial access
functions [CM00].

R-Stream is several hundred thousand lines of Java, which we find improves
our productivity in implementing new representations and optimizations. Math-
ematical optimization problems are solved with our proprietary libraries for ma-
nipulating Z-Domains that include new algorithms for rapid exact and approx-



imate counting [MV08] that are used, for instance, to estimate bandwidth and
data footprint, and which are significantly more robust than and competitive
with the open source versions which they subsume.

3 Hiding distant memory access through automatic
multi-buffering

Multi-buffering is a well-known high-level software pipelining technique whose
objective is to hide the latency of asynchronous communications by starting the
fetching of the input data of future tasks, and by postponing the check for termi-
nation of the sending of output data on full-duplex asynchronous communication
channels.

In this section, we contribute an algorithm for automatically modifying paral-
lel loop-intensive codes based on bulk one-sided communications. The algorithm
is relevant to distributed-memory systems which have access to a common mem-
ory, such as in the PGAS programming model.

We give conditions for the presented algorithm to be applicable, and explain
why R-Stream’s mapping components expose opportunities for optimizing multi-
buffering.

3.1 Algorithm

Our algorithm is applicable to codes that contains loops, possibly complex (hi-
erarchy of imperfectly nested loops) and irregular, which iterate on a number
of computational entities, which we call “tasks”, and for which communication
commands associated to these tasks are present. Those communications include
all the possible data transfers that can be done asynchronously, whether they
are transfers from and to remote memory or local copies.

Without loss of generality, we will assume that the incoming communica-
tions are already expressed as asynchronous communications, i.e., as a pair of
operations: (recv, recv wait), where the “recv” operation initiates the incom-
ing transfer and the “recv wait” waits for the transfer to complete. Similarly,
outgoing transfers are assumed to be written as a pair (send, send wait). One
frequent optimization, supported here, is to have one “wait” operation to wait
for the completion of several incoming and outgoing transfers.

Putting a multi-buffering execution scheme in place requires duplicating the
data structures whose transfers are optimized and re-scheduling the transfers.
We will call a “buffer” any of the B locations to hold a copy of a data set. The
determination of the desired number B of buffers, and the number a of tasks
executed between a recv and the execution of the task that needs the data, is
out of the scope of this report.

Let us call l = B−a−1 the number of tasks executed between the termination
of a task that uses a given buffer and the execution of the send wait operation
for that buffer. At a high level, our algorithm proceeds as follows:



1. Select a number of “pipeline-prone” loops, in which multi-buffering will be
implemented. Let D be the data set transferred within those loops.

2. Select an “appropriate” enclosing loop to iterate over B buffers. Let us call
that loop the “buffer loop”.

3. Sink the inner resulting loop down to the pipeline-prone loop level(s).
4. Produce B copies of the data sets.
5. Re-schedule the iterations of the recv operations by shifting them by −a

iterations along the buffer loop.
6. Re-schedule the iterations of the send wait operations by shifting them by

B − a− 1 along the buffer loop.
7. Insert one “buffer rotation” operation in every buffer loop involving the data

set.

Multi-buffering has a cost in terms of control flow overhead and memory
footprint. Hence in step 1, only loops whose bodies have the largest number of
occurrences are selected. We call pipeline-prone loop levels the set of loops along
which a set of coarse-grained communications and computations are repeated.
They are the loop levels along which it is possible to perform multi-buffering.
To define them more precisely, they are “the level immediately outer to the
outermost loops or statements that enclose either only communications or only
computations.”

The buffer loop is chosen so as to respect the following constraints: if it en-
closes communications for one data set, it has to enclose all the communications
for that data set. Three types of loops are valid as buffer loops, as soon as their
trip count is at least as large as B:

– loops that do not carry dependences (also called “doall” loops),
– loops whose read-after-write dependences on D have a maximum non-negative

dependence distance of l and do not enclose inter-processor synchronizations.
This latter class of loops relies on the ability for the system (whether it is
the compiler or the runtime) to detect this dependence and turn the multiple
accesses to the same data, which are materializing the dependence, to be op-
timized to use the locally-defined data rather than to re-load (a stale version
of) it. The fact that the loop does not contain any inter-PE synchronization
ensures that the dependences carried by the loop is intra-PE, and that this
optimization is correct.

– loops whose dependence distances are all greater than B. We believe that
this case is very rare, unless artificially produced by loop restructuring, and
hence we will ignore it.

An additional constraint for the latter two types of loops is that it must be legal
to sink those loops down to the pipeline-prone levels.

Notice that choosing a non-doall buffer loop enforces a strict order of exe-
cution of the multi-buffered loop. Using a doall loop as the buffer loop makes
it possible to dynamically schedule the execution of the loop iterations, based
on the arrival of their input data, in the flavor of what GPGPUs do. But the
program may not have enough doall parallelism available, and the use of the



second type of loops significantly increases the opportunities for overlapping
asynchronous communications with computations.

3.2 Trade-offs

When determining the multi-buffering characteristics of the program, a number
of sometimes conflicting constraints appear. Ideally, a should be large enough
for the execution of a iterations of the buffer loop to cover the average commu-
nication latency of the input data. The greater l, the more loops may have a
dependence distance of less than l and become buffer loop candidates. Increasing
a or l increases B, which brings up two issues. When the amount of storage for
temporary data is limited, the size of the buffers is limited as well, which in turn
decreases the amount of computations that can be done on each buffer and the
granularity of communication. Also, the trip count of buffer loops must be at
least B, hence the number of candidate buffer loops decreases when B increases.

Typically, the user has no handle on communication latencies, nor (arguably)
on the amount of temporary data storage available. Hence, in order to keep B
reasonably low while keeping a good coverage of the communication latency, the
user’s only option is to restructure the code in order to keep l low, by exposing
either doall loops or loops with short maximum dependence distance.

In addition to forming parallel tasks and their related bulk communications,
R-Stream produces loops whose carried dependences have a short maximum dis-
tance, which maximizes the number of candidate buffer loops in the resulting
program. Additionally, the depth down to which a loop is sinkable is implicitly
encoded in the polyhedral mapper’s representation of the code. We have lever-
aged those properties and implemented automatic multi-buffering components
in R-Stream.

3.3 Experiment

The issue of PGAS-based PEs storing data from other PEs in a coarse-grained
manner poses identical problems to a compiler as it does for distributed systems
which have access to a common memory, with the main difference that in the
PGAS paradigm, the common memory is purely distributed across the PEs.

We have chosen to illustrate the multi-buffering algorithm on such a set-
ting offered by the Cell processor, for a 1024× 1024 matrix multiply code with
B = 2, a = 1, l = 0, in Figure 5 (with minor cosmetic modifications). The orig-
inal algorithm , on the left side, is parallelized by R-Stream across 8 PEs. The
“PROC0” parameter to the function represents the identifier of the running PE.

The algorithm chooses loop k as pipeline-prone loop, which contains only
communication statements (128 of them) and pure-computation loops. Commu-
nications on C are deemed negligible as compared to communications on both
A and B. The algorithm selects k, which does not carry any read-after-write
dependence on A or B. Its maximum read-after-write dependence distance of
zero, which is less than or equal to l, makes it eligible. Its trip-count of 64 also
makes it the only eligible loop worthwhile for multi-buffering, since 2 (for the i



loop) and 4 (for the j loop) iterations are not enough to amortize the initiation
cost.

Shifting the iterations of the dma get operations is trivial in R-Stream’s poly-
hedral mapper, since it consists in a simple translation of their iteration domain
along k. In R-Stream, all the code transformation, the generation of communica-
tions, synchronizations and transfer of control operations, and their subsequent
optimizations happen in a polyhedral representation. All the burden of producing
C code whose execution corresponds to the polyhedral program definition is left
to a final phase, sometimes called “polyhedral code generation” or “polyhedral
scanning” [QRW00,VBC06].

The performance measurements over five runs for three versions of the code
are reported on Figure 4: the original as provided by R-Stream, the multi-
buffered version, and the multi-buffered version in which the DMA operations
were removed.

Version Exec. time (s) GFLOP/s

original 0.0299± 0.0003 71.9± 0.8

multi-buffered 0.0217± 0.0006 98.8± 2.8

multi-buffered, no DMA 0.0216± 0.0005 99.4± 2.3

Fig. 4. Performance measurements over five runs

The overlapping performance numbers of the multi-buffered version and the
version without DMAs confirm that the 27 GFLOP/s performance improvement
obtained with multi-buffering is due to communication-computation overlap (as
opposed to tile sizes or DMA shape, for instance). Their slight difference is most
likely explained by the fact that transfers of array C were not multi-buffered.
No additional processor-specific optimization (SIMDization, register tiling) was
performed in this experiment, which explains why these numbers are still 45%
of the peak performance of the Cell chip.

4 Conclusion

We have demonstrated how explicit communication management can be opti-
mized to overlap communication and computation in a PGAS execution model
through a multi-buffering algorithm. The technique is enabled by the program-
ming strategy of separating the logical expression of the algorithm (i.e., the
programming model) from the physical expression of the algorithm (i.e., the ex-
ecution model). This strategy facilitates the implementation of automatic paral-
lelization and communications management in a high-level compiler, by removing
the problem of reasoning about the physical details at the input and undoing
the original programmer’s (probably incorrect) physical bindings. There is a vir-
tuous circle: removing physical details from the programming model makes it
easier to automate their production for the execution model.



static void _matmult_PE(float (* A)[1024], float (* B)[1024],

float (* C)[1024], int PROC0) {
float C_l[64][512] __attribute__((aligned(128)));

float A_l[64][16] __attribute__((aligned(128)));

float B_l[16][512] __attribute__((aligned(128)));

int i;

for (i = 0; i <= 1; i++) {
int j;

for (j = 0; j <= 1; j++) {
int k;

int k_1;

for (k = 0; k <= 63; k++) {
int i1;

for (i1 = 0; i1 <= 511; i1++) {
C_l[k][i1] = 0.0f;

} }
for (k_1 = 0; k_1 <= 63; k_1++) {

int i1;

int i1_1;

int i1_2;

int i1_3;

CELL_dma_get(

&B[16 * k_1][512 * j],

&B_l[0][0],

512*4, // bytes

1024*4, // src stride

512*4, // target stride

16, // count

0); // tag (for the wait)

CELL_dma_get(

&A[512 * i + 64 * PROC0][16 * k_1],

&A_l[0][0],

16*4, // bytes

1024*4, // src stride

16*4, // target stride

64, // count

0); // tag (for the wait)

CELL_dma_wait(0);

for (i1_2 = 0; i1_2 <= 63; i1_2++) {
int j1;

for (j1 = 0; j1 <= 511; j1++) {
int k1;

for (k1 = 0; k1 <= 15; k1++) {
C_l[i1_2][j1] = C_l[i1_2][j1] +

A_l[i1_2][k1] * B_l[k1][j1];

} } }
CELL_dma_put(

&C_l[0][0],

&C[512 * i + 64 * PROC0][512 * j],

512*4, // bytes

512*4, // src stride

1024*4, // target stride

64, // count

1); // tag (for the wait)

CELL_dma_wait(1);

} } } }

static void _matmult_PE(float (* A)[1024], float (* B)[1024],

float (* C)[1024], int PROC0) {

float C_l[64][256] __attribute__((aligned(128)));

float A_l_buf[2][64][16] __attribute__((aligned(128)));

float B_l_buf[2][16][256] __attribute__((aligned(128)));

float (*A_l)[16], (*A_l_1)[16];

float (*B_l)[256], (*B_l_1)[256];

A_l = A_l_buf[0]; A_l_1 = A_l_buf[1];

B_l = B_l_buf[0]; B_l_1 = B_l_buf[1];

int i;

for (i = 0; i < 2; i++) {
int j;

for (j = 0; j < 4; j++) {
int k;

for (k = 0; k < 64; k++) {
int i1;

for (i1 = 0; i1 < 256; i1++) {
C_l[k][i1] = 0.0f;

} }
for (k = -1; k < 64; k++) {

int i1;

if (k >= 0) {
float (* _t1)[16];

float (* _t2)[256];

_t1 = A_l; A_l = A_l_1; A_l_1 = _t1; // buffer

_t2 = B_l; B_l = B_l_1; B_l_1 = _t2; // rotation

CELL_dma_wait(0);

}
if (k < 63) {

CELL_dma_get(

&B[16 * (k + 1)][256 * j],

&B_l_1[0][0],

256*4, // bytes

1024*4, // src stride

256*4, // target stride

16, // count

0);

CELL_dma_get(

&A[512 * i + 64 * PROC0][16 * (k + 1)],

&A_l_1[0][0],

16*4, // bytes

1024*4, // src stride

16*4, // target stride

64, // count

0);

}
if (k >= 0) {

for (i1 = 0; i1 < 64; i1++) {
int j1;

for (j1 = 0; j1 < 256; j1++) {
int k1;

for (k1 = 0; k1 < 16; k1++) {
C_l[i1][j1] = C_l[i1][j1] +

A_l[i1][k1] * B_l[k1][j1];

} } } } }
CELL_dma_put(

&C_l[0][0],

&C[512 * i + 64 * PROC0][256 * j],

256*4, // bytes

256*4, // src stride

1024*4, // target stride

64, // count

1);

CELL_dma_wait(1);

} } }

Fig. 5. Multi-buffered matrix multiply



5 Acknowledgements

We are grateful for the support from programs managed by DARPA, AFRL,
NRL, DOE, and other agencies, contracts F30602-03-C-0033, DE-FG02-08ER85149,
FA8650-08-M-1428, W9113M-08-C-0146, W31P4Q-08-C-0319 and FA8750-08-C-
0229.

References

[BBK+07] U. Bondhugula, M. Baskaran, S. Krishnamoorthy, J. Ramanujam,
A. Rountev, and P. Sadayappan. Affine transformation for communi-
cation minimal parallelization and locality optimization of arbitrarily
nested loop sequences. Technical Report OSU-CISRC-5/07-TR43, The
Ohio State University, May 2007.

[CBD+03] W. Chen, D. Bonachea, J. Duell, C. Iancu, and K. Yelick. A performance
analysis of the Berkeley UPC compiler. In 17th Annual International
Conference on Supercomputing (ICS), 2003.

[CCZ07] Bradford L. Chamberlain, David Callahan, and Hans P. Zima. Parallel
programming and the Chapel language. Journal of High Performance
Computing Applications, August 2007.

[cle07] ClearSpeed Software Development Kit Introductory Programming Man-
ual, July 2007.

[CM00] Ph. Clauss and B. Meister. Automatic memory layout transformation to
optimize spatial locality in parameterized loop nests. ACM SIGARCH,
Computer Architecture News, 28(1), 2000.

[DKW+09] Kaushik Datta, Shoaib Kamil, Samuel Williams, Leonid Oliker, John
Shalf, and Katherine Yelick. Optimization and performance model-
ing of stencil computations on modern microprocessors. SIAM Review,
51(1):129–159, 2009.

[Fea92] P. Feautrier. Some efficient solutions to the affine scheduling problem.
part II. Multidimensional time. International Journal of Parallel Pro-
gramming, 21(6):389–420, December 1992.

[GGHvdG01] John A. Gunnels, Fred G. Gustavson, Greg M. Henry, and Robert A.
van de Geijn. FLAME: Formal Linear Algebra Methods Environment.
ACM Transactions on Mathematical Software, 27(4):422–455, December
2001.

[Gro09] Khronos OpenCL Working Group. The openCL specification (version
1.0), 2009.

[KA02] Ken Kennedy and John R. Allen. Optimizing compilers for modern ar-
chitectures: a dependence-based approach. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 2002.

[KBC+08] Peter M. Kogge, Shekhar Borkar, William W. Carlson, William J. Dally,
Monty Denneau, Paul D. Franzon, Stephen W. Keckler, Dean Klein,
Robert F. Lucas, Steve Scott, Allan E. Snavely, Thomas L. Sterling,
R. Stanley Williams, Katherine A. Yelick, William Harrod, Daniel P.
Campbell, Kerry L. Hill, Jon C. Hiller, Sherman Karp, Mark A. Richards,
and Alfred J. Scarpelli. Exascale Study Group: Technology Challenges
in Achieving Exascale Systems. Technical report, DARPA, 2008.



[Kuc96] David J. Kuck. High Performance Computing. Oxford University Press,
1996.

[LL97] A. W. Lim and M. S. Lam. Maximizing parallelism and minimizing
synchronization with affine transforms. In Proceedings of the 24th An-
nual ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, pages 201–214, Paris, France, 1997.

[LLM+08] Richard Lethin, Allen Leung, Benôıt Meister, Peter Szilagyi, Nicolas Vasi-
lache, and David Wohlford. Final report on the the R-Stream 3.0 compiler
DARPA/AFRL Contract # F03602-03-C-0033, DTIC AFRL-RI-RS-TR-
2008-160. Technical report, Reservoir Labs, Inc., May 2008.

[MV08] Benoit Meister and Sven Verdoolaege. Polynomial approximations in the
polytope model: Bringing the power of quasi-polynomials to the masses.
In ODES-6: 6th Workshop on Optimizations for DSP and Embedded Sys-
tems, Apr 2008.

[QRW00] F. Quilleré, S. Rajopadhye, and D. Wilde. Generation of efficient nested
loops from polyhedra. International Journal of Parallel Programming,
28(5):469–498, October 2000.

[VBC06] N. Vasilache, C. Bastoul, and A. Cohen. Polyhedral code generation
in the real world. In Proceedings of the International Conference on
Compiler Construction (ETAPS CC’06), lncs, pages 185–201, Vienna,
Austria, March 2006. Springer-Verlag.


