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Abstract

This deliverable consists consists of 5 parts. The first two parts are concerned with optimising
non-scientific or numerical programs. Part 1 examines DSP based applications and develops a
mechanism to convert pointer based accesses in C into array references. Part 2 examines the
particular characteristics of multi-media programs and examines how they may be optimised for
the SIMD instructions now found in many general purpose processors.

Parts 3,4 and 5 examine advanced techniques for optimising applications. Part 3 examines a
genetic algorithm to determine padding and tiling factors using the cache miss equations as an
evaluation criteria. Part 4 extends this theme by using a variety of algorithms to search through a
transformation space using actal execution time as the selection criteria. Finally Part 5 examines
reodering methods as a means of improving data locality.
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Part I

Program Analyses and Transformations

Exploiting Parallelism in DSPs
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1 Introduction

In 1995 the New York Times has estimated that the avarage American comes into contact with about
60 microprocessors every day, and some of today’s top-level cars include at least 100 microprocessors
[40]. Most of these microprocessors are part of Embedded Systems rather than of familiar Desktop
PCs. Although ubiquitious, frequently these Embedded Systems are not even realised as present.
The typical application domains of Embedded Systems are Automatic Control and Digital Signal
Processing (DSP) which is the area this report focuses on.

Digital Signal Processing is the main task of many video, audio, graphics and communication
systems. Although on the first sight these fields may appear as very different in their nature, they
have a lot in common. They are all dominated by high performance requirements and rapid changes
of specifications. Not at least the quickly growing number of Multimedia applications with their
excessive resource consumptions and frequently changing standards underpin this statement. The
required flexibility in the DSP domain can often only be fulfilled by programmable processors rather
than application-specific integrated circuits (ASICs). Programmable processors with specialised
features for Digital Signal Processing are called Digital Signal Processors (DSPs). Often real-time
constraints of the applications and the short time-to-market make software development for DSPs
a very hard task. Other obstructions to program development for DSPs are the strict limits of code
and data size imposed by fixed-size on-chip memories, instruction sets with specialised instructions,
complex addressing modes and the need for low power dissipation in battery-driven devices.

In order to meet the performance constraints of the application, many DSP programs are
implemented in assembly languages. Although the required performance can be achieved with this
approach, it contradicts the goals of flexibility, portability, low cost and short development times.
In general-purpose computing the well-known solution to meet these goals is the use of High-Level
Languages (HLL) and Compilers. Unfortunately, the quality of code generated by many available
compilers for DSPs is very poor [31]. The gap between the commonly used programming language
C and the underlying DSP architecture is quite big and cannot be bridged sufficiently by ordinary
compilers. The importance and the growth of the DSP market on the one hand side, and the
immature state of software development tools, in particular compilers, on the other side, motivate
the research into new and more powerful optimisations for DSP compilers.

One way of optimising DSP applications is to exploit their parallelism. Different DSPs show very
different levels of available hardware parallelism. Fine-grain parallelism is available on instruction
level in many DSPs, whereas Multiprocessor DSPs provide additional Coarse-grain parallelism.
The highly challenging task for the compiler is to identify the parallelism in the application and to
map it onto the architecture such that performance is maximised and the other constraints are not
violated.

DSP applications have been found to be numerically intensive, spending most of their their
processing time in loop code with very high degrees of Instruction Level Parallelism (ILP) [59].
A transformation technique that is suitable for exploiting ILP in loops is Software-Pipelining.
Software-Pipelining seeks to overlap consecutive loop iterations in such a way that instructions
from different loop iterations are in state of execution simultaneously. Usually, software-pipelining
is a technique that is applied in the backend of a compiler at a very machine-specific level of inter-
mediate representation. Because by far not all commercially available compilers perform software-
pipelining, it is desirable to integrate it. Since the source codes of commercial DSP compilers are
usually not available, software-pipelining cannot easily integrated into such compilers. But there
are possibilities to perform this loop transformation as a Source-to-Source transformation before
the actual compiler is used. Although not no specific machine knowledge is available at source
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level, software-pipelining at that level can make the instruction scheduling easier and more efficient
for the DSP manufacturers’ compilers. During this project a software-pipelinig approach on source
level has been implemented and evaluated. Although empirical results showed that for simple loops
there is little or no improvement, for some more complex loops performance gains of up to 50%
have been observed.

Because early DSP compilers were not able to generate efficient addressing code, programmers
tend to use pointers for array traversals. The presence of pointers prevents many program analyses
to be applied, which in turn prevents many optimisations of more recent DSP compilers. During
this project an algorithm for the conversion of a certain class of pointer-based array accesses into
explicit array accesses has been developed and implemented. This Pointer Clean-up Conversion is
applied in combination with the software-pipelining approach and alone. Since many of the built-
in optimisations of the comparatively sophisticated TriMedia compiler that is used for generating
object code become applicable after pointer clean-up conversion, performance improvements of up
to 68% can be achieved. On average, these figures are lower but still significant.

2 Overview

Section 3 gives an overview of DSP Architectures, Applications and Compilers and introduces
fundamental concepts. In section 12 a Pointer Clean-up Conversion is described which supports
the Software-Pipelining algorithm, but additionally it can applied successfully in combination with
other optimising transformations and their analyses. Software-Pipelining and its implementation as
a part of the Octave compiler is explained in section 19. In section 46 empirical results achieved with
Software-Pipelining and Pointer Clean-up Conversion are documented. Finally, the conclusions of
this work are summarised in section 30.
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3 Related Work

Digital Signal Processing is a wide field of research. Unlike some other Computer Science related ar-
eas, it cannot be studied as separate subjects corresponding to applications, hardware and compiler
technology. Because of the strong interactions of the requirements of the applications, idiosyncratic
features of the hardware and the resulting hard task of the compilers to map the applications onto
the hardware efficiently, it is obvious to think of DSP systems rather than of single components.

The following sections present fundamentals of DSP Architectures, Applications and Compil-
ers characterising problems and possible attempts to solutions. Because of the huge quantity of
available publications on the topic, a selection of subjects with special consideration of the main
contribution of this thesis has been made rather than giving a comprehensive survey.

4 DSP Architectures

Since the first specialised DSP architectures became commercially available in the early 1980s, a
large number of manufacturers has developed an even larger variety of DSPs. Nowadays, DSPs for
very different fields of application and widely varying requirements are offered. The only common
requirements are the demand for high performance at typical DSP applications (see section 5) and
low power consumption at the same time [55].

Due to the diversified nature of the applications, several different approaches of DSP archi-
tectures have been constructed in order to fulfil the specific requirements. Although the trend to
ever-increasing clock rates as it is known from the domain of general purpose CPUs can be ob-
served in the world of DSPs, too, this way of achieving the required performance has its distinctive
drawbacks. The power consumption of CMOS-based switching circuits is directly and linearly de-
pendent on the frequency of the clock. Therefore, clock rates must be kept low in order fulfil the
design goal of low power consumption which is in some applications at least as important as high
performance. Another strategy to meet the performance criteria is to execute as many tasks as
possible at the same time – without increasing the clock rate. Parallelisation is the key to trade off
performance and power consumption.

In the following sections two highly parallel concepts of DSP are introduced that can tackle
high-performance – often real-time – constraints imposed by many multimedia applications. The
first approach (TriMedia TM-1) is the use of a single DSP with a very high level of available
Instruction Level Parallelism (ILP). Rau [70] gives following statement to ILP processors:

An instruction-level parallel (ILP) processor is a parallel processor in which the unit
of computation, for which decisions such as scheduling and synchronization are made,
is the individual operation, e.g., an add, multiply, load or store. It is not necessary that
any or all of these decisions be made during the execution of the program; they could be
made at compile time. For instance, with VLIW processors ( . . . ), all these decisions
are made during compilation.

The second approach (TMS320C80) shows the integration of several independent DSPs together
with a sophisticated interconnection-network into a single chip.

Low-power low-performance DSPs are not the subject of this work and are left out from this
survey just as Multiprocessor DSPs consisting of network- or memory-coupled “ordinary” DSPs. For
more information on these subjects the reader is referred to Lapsley [26] and Koch [25], respectively.

- 4 -



MHAOTEU: Project No 24942

4.1 Single Processor DSP

This section introduces single processor DSP (SP-DSP) architectures and their characteristic fea-
tures. Register Sets, Arithmetic Logic Units, Instruction Level Parallelism and its support by the
Instruction Set, as well as Address Generation Units and Memory Organisation are covered in this
survey. A specific example of a SP-DSP – which was used for running simulations during this
project – will be explained in more detail in section 8.

4.1.1 Register Sets

Among available SP-DSP two different organisations of register sets are popular. On the one hand
heterogeneous registers sets can be found, i.e. registers are distributed and are integral parts of
the data paths. On the other hand, SP-DSP with homogeneous register sets become more and
more dominant and these register sets are organised as registers files in a similar fashion as known
from RISC architectures. Homogeneous register sets are usually bigger than their heterogeneous
counterparts and registers are freely available rather than having specific assignments to functional
units like adders and multipliers etc.

Heterogeneous Register Sets are tightly coupled to functional units of the DSP and its data
path. This kind of structural organisation of register sets support common and frequently used
operations of DSP applications. Many common used computations can be done efficiently. In a
variety of DSP applications, e.g. digital filters (see 5.1), more or less the same operations are
repeated again and again. These instruction sequences do not benefit from a general register set
architecture with random access opportunities. Hence, adaption of the register set to the applica-
tion characteristics not only serve the purpose of increasing the efficiency, but also of decreasing
complexity, power consumption and costs. An example of a DSP with a heterogeneous register is
the Analog Devices ADSP-21xx Family [5].

Homogeneous Register Sets support the requirements of more and more complex applications
that cause problems with very application specific heterogeneous register sets. The application do-
main of DSP has become very broad and requirements as well as typical computations can vary
widely. Thus, a domain-specific design of an DSP architecture can be a disadvantage, because of
its inflexibility to adapt to new domains. On the other hand, heterogeneous register sets challenge
assembly programmers as well as compilers. Compiler generated code for machines with heteroge-
neous register sets usually does not perform as good as manually tuned code. Generally available
registers, i.e. registers without fixed assignment to functional units, make code optimisation much
easier for existing register allocators and code generators. Therefore, virtually all modern high-
performance DSPs have homogeneous register sets. Examples of DSPs with homogeneous registers
sets are the Philips TriMedia TM-1 and the Texas Instruments TMS320C80 (see 8 and 4.2.1,
respectively).

4.1.2 Arithmetic Logic Units

Arithmetic Logic Units (ALU) of DSPs are tailored to the needs of Multimedia and Digital Signal
Processing applications. Because arithmetic computations are the dominant part of such applica-
tions, their efficient execution is a major design goal. In order to achieve a high efficiency, many
operations are implemented in hardware (short latencies) and Data Paths are duplicated (high
throughput).

- 5 -



MHAOTEU: Project No 24942

Among the most “popular” operations implemented in hardware in DSP data paths is the
Multiply-Accumulate (MAC) operation. A Multiply-Accumulate is a 3-address-operation for ac-
cumulating a sum of products. It efficiently supports the computation of sums of the form
∑N

i=0 ai × bi. Together with Zero-Overhead Loops initialised to the loop range N , the compu-
tation of finite product-sums becomes very efficient. The importance of such sums becomes more
apparent after some introduction in Digital Signal Processing Theory (see 5.1). A MAC operation
MAC acc,op1,op2 uses three registers as operands. One of the registers is used as an accumulator,
the others are operands corresponding to the terms to be multiplied. The product is added to the
value stored in the accumulator register. Often this operation is implemented in such a way that
it only takes a single cycle to finish.

Encoding and decoding of video/audio streams take up a considerable amount of CPU time
[23]. Because these operations are key Multimedia operations, special hardware solutions can often
be found in DSPs. Hardware support ranges from special bit-field instructions implemented with
barrel-rotators and masking registers to dedicated functional units like Variable Length Decoders
that are relief the actual CPU from all bit-stream manipulations.

A further idiosyncrasy of DSPs (and Multimedia Extensions of General-Purpose Processors)
are Single Instruction Multiple Data (SIMD) operations. The idea is to split up wide registers
into smaller segments capable of holding smaller data types like bytes or half-words and to apply
arithmetical operations on all segments in parallel. Figure 1 shows an example of the UME8UU

operation of the Philips TriMedia TM-1 processor. Two 32-bit registers serve as source registers.
Both registers are divided into four parts each containing a byte value. The operation subtracts
corresponding operands before the product of the intermediate differences is computed. The final
result is then stored in the destination register. SIMD operations are a way to exploit Data Level
Parallelism and are a simple form of vector operations that can usually only can be found in usually
considerably larger vector computers.

DSPALU
Functional Unit

A B C D E F G H

Result

Source Register 1 Source Register 2

Destination Register

UME8UU: Sum of absolute values of
unsigned 8-bit differences

The ume8ee operation, commonly used for motion estimation in
video compression, implements 11 simple operations in one
Trimedia special op.

|A-E| * |B-F| * |C-G| * |D-H|

Figure 1: Multimedia SIMD instructions [49]
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4.1.3 Architecture Model

Two different approaches of exploiting Instruction Level Parallelism are common among modern
processors. Whereas many general-purpose processors use Super-scalar Architectures and Dynamic
Instruction Scheduling, DSPs rely heavily on Very Large Instruction Word (VLIW) Architectures
and Static Instruction Scheduling, i.e. scheduling is done entirely by the compiler.

VLIW architectures have wide instruction words that contain several fields for controlling dif-
ferent functional units at a time. The difference to typical super-scalar architectures is the total
control of utilisation of the functional units by the program that is generated by the compilers.
Rather than having a control unit that co-ordinates the different functional units depending on
the stream of instruction to execute, VLIW architectures rely on a compiler to co-ordinate their
functional units already at compile time. No dynamic scheduling, i.e. the re-ordering of the exe-
cution order of issued instructions at run-time, is performed. The lack of hardware support makes
the task of code generation for the compiler considerably harder. Not only the compiler has to do
a further task, it has also less information at its disposal. Some information about the program
behaviour is not earlier available than at program execution. Although it may appear that the
VLIW approach of DSPs has some distinctive drawbacks, this design decision is backed by some
good reasons that can only be understood in context of whole DSP systems. An additional unit
for Dynamic Scheduling and several queues for instructions waiting for different functional units
increase the hardware complexity substantially. But more complex hardware increases the power
consumption and the chip size. An increased chip size on the other hand, results in increased
prices. For embedded systems an increased price and a higher power consumption are often not
tolerable. Additionally, dynamic scheduling techniques introduce some hardly predictable timing
behaviour. In time critical applications, predictability and worst-case guarantees are essential con-
straints. Therefore, static scheduling and VLIW execution models are the preferred architecture
models for DSPs.

Although hardware complexity, power consumption and costs are important issues, one of the
main design goals still remains processor performance. In order to meet the high performance
constraints, many DSPs use pipelining. The execution of operations in their functional units is
divided into stages and consecutive operations can overlap partially. For every single instruction
the actual execution time stays the same, but for a sequence of instructions the total time can be
reduced drastically. This technique and its effects are well-known from general-purpose processors.

The number of operations that can be issued as a single instruction at a time – the Issue
Width – lies in a range from 2 to ≈ 8. Earlier DSPs only allowed for issuing an integer- and a
floating-point operation simultaneously which often resulted in unbalanced workloads between the
two units. Modern DSPs are much more flexible and offer in addition more functional units of
the same type. A further increase of the issue width is not necessarily recommendable, because
in the interest of a high utilisation of available resources an corresponding number of operations
that can be executed in parallel must be found by the compiler. Not all applications offer enough
fine-grained parallelism, i.e. data independent operations, in order to utilise a high number of
functional units. Because the characteristics of different applications vary widely, approaches of
scalable DSP architectures [56, 14] have been developed and become more popular.

4.1.4 Address Generation Units

Typical DSP programs (see section 5) contain many array data structures with regular access pat-
terns. In order to relief the arithmetic logic units of the load of address computations, modern DSP
utilise dedicated Address Generation Units (AGU). An AGU can perform address computations
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independently and at the time as the data paths do their tasks.
AGUs support post-/pre-increment/decrement addressing modes and additionally circular ad-

dressing. Therefore, a memory access and the determination of the address of the next access
according to some offset can be done simultaneously. Efficient addressing of array elements [7, 28]
becomes feasible because of overlapping address and user data arithmetic. Circular addressing
modes support the implementation of ring-buffers that are often used in DSP applications (com-
pare 5.1).

Figure 2 (based on [28]) shows the structure of an AGU with Address, Modify and Length
Register Files. With help of the block diagram a post-increment operation, for example, looks like
this. The Address Register Pointer selects a single register from the Address Register Set. Its value
reaches the Address Bus as effective address which is used for accessing the memory. Additionally,
the value serves as input of an adder/subtracter whose result is put into the modulus logic. For
non-circular addressing modes the modulus logic is not effective and passes the unchanged input
value on. Finally, the value is is written back into the register file via its input multiplexer. The
other operand that is added or subtracted comes either from the Modify Register File or is an
immediate value or the constant 1. The Modify Register File contains a set of possible modifiers;
a single one can be selected by the Modify Register Pointer. The Modulus Logic becomes active
for circular addressing modes and is supplied with an additional modulo operator that comes from
the Length Register File. Then, the Modulus Logic passes on the remainder of the division of its
input value by the supplied length value.

1

Length
Register
File

Address
Register
File

Modify
Register
File

Modulus Logic

+ / -

Effective Address

Address Register Pointer Length Register Pointer Immediate Value Modify Register Pointer

Address Generation Unit (AGU)

Figure 2: Address Generation Unit (AGU) with Address, Modify and Length Register Files
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For the traversal of an short int array at memory address 100 an address register is loaded
with the value 100 and a modify register is loaded with 2. This value 2 corresponds to the distance
expressed in bytes of two consecutive 16-bit values in memory. After the first post-increment
operation the value in the address register will be replaced by 102. Succeeding element addresses
are 104, 106, . . . . If there is another array with long int elements from memory address 0 on,
another address register must be initialised to 0 and a modify register to 4. The addresses in
ascending order are 0, 4, 8, . . . . If the long int array is a circular buffer with 10 elements, a length
register contains the value 10 × 4 = 40. After the 9th element has been addressed at address 36,
the address written back to the register file is 0 rather than 40.

4.1.5 Memory Organisation

Often DSPs are organised as Harvard Architectures with separate data and instruction buses. Both
buses can be used simultaneously and therefore they can transfer data and instructions at the same
time. This results in higher utilisation of DSP internal resources and increases efficiency. Sometimes
these buses are multiplexed at their interface to external components.

Several DSPs contain internal memory (On-Chip-RAM). Additionally, they can access external
memory via a bus system. On-Chip-RAM is mostly quite small (2 . . . 64kB) compared to the
overall address space (up to 4 GB), but it is fast because it can be accessed with only small
latencies. Effectively, single cycle accesses are possible in pipelined memory systems. The external
memory can have considerable size (several MB) and performance is dependent on the memory
technology (SRAM, DRAM, . . . ) and the bus system. Internal and external memory often share
the same address space, i.e. there is no need for special instructions for accessing the one or the
other memory and neither there are segments registers etc. that have to loaded.

Since the internal memory is often too small to keep all the data, only the most frequently
accessed objects should be stored in it in order to make utilise it best. Otherwise, the high memory
bandwidth is not used efficiently. Methods for partitioning data between On-Chip and external
RAM can be found in [46, 57, 54].

Dual Memory Execution is the ability of some DSPs to access two operands at a time. Two
memory accesses can be executed in parallel in such a way that e.g. two operands for a operation
can be transfered from memory to registers simultaneously.

4.2 Integrated Multiprocessor DSP

Integrated Multiprocessor DSP contain multiple DSPs, micro-controllers and other devices together
with some interconnection-network on the same chip. The number of integrated Processing Ele-
ments (PE) varies widely (2 . . . ≈ 1500) and also their characteristics. Because of the limited space
available on a chip, the complexity of a single PE can be higher when their total number is small.
This work focuses on Integrated Multiprocessor DSP with individual processing elements being full
and independent DSPs, rather than comparatively simple elements like data-paths under central
control (e.g. FUZION 150 or HiPAR-DSP, see [19] and [65], respectively, for more information).

DSPs integrated on a single chip can be differentiated between homogeneous and heteroge-
neous Multiprocessor DSP (MP-DSP). In a homogeneous MP-DSP all DSPs are of the same type
and cannot be distinguished by their architectural properties, whereas in heterogeneous MP-DSPs
structurally completely different elements can be found. An example of a homogeneous MP-DSP
is the Analog Devices Quad-SHARC DSP Multiprocessor Family (see [4]), and typical examples of
heterogeneous MP-DSP are the Texas Instruments TMS320C8x [61] and the Philips R.E.A.L. [47].
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The usual application domains of MP-DSP are either high-performance Digital Signal Process-
ing (Quad-SHARC, TMS320C8x) or highly specialised areas which the MP-DSP is adapted to
(R.E.A.L.). The more general perspective of the former domain is much more interesting from a
compiler developer’s point of view and, therefore, prioritised in this thesis.

MP-DSP aim for exploiting Task-Level Parallelism, i.e. coarse grain parallelism that can be
found at the level of tasks or execution threads in a program. Different tasks can be e.g. the stages
of a pipelined algorithm or a problem instance of a bigger problem in a task-farming approach.
Different tasks of the application are distributed to the DSPs which co-operate in order to speed
up the overall computation. The high bandwidth and low latencies of the internal interconnection-
network of MP-DSP can keep the communication costs that arise in addition to computation costs
low.

MP-DSP can provide enough performance for executing algorithms under real-time constraints,
where no single DSP is capable enough, and additionally, clock rates – and total power consumption
– can be comparatively low.

4.2.1 Texas Instruments TMS320C80

The 5-processor Integrated MP-DSP TMS320C80 was presented by Texas Instruments in 1995.
Although a little bit aged by now, it still serves as a good example of an architecture combining
several DSP on a single chip.

Basically, the TMS320C80 contains three different types of components. These are

• processors and controllers,

• memory,

• and an interconnection network.

All the processors, controllers and memory banks are connected to a crossbar. Each DSP has its
own local memory bank, but the address space is shared, i.e. every processor can access every
memory bank. For an overview of the processor architecture see figure 3.

The TMS320C80 is a heterogeneous MP-DSP in the way that it contains structurally different
processors. These are a video controller, a transfer controller, a master processor and four DSPs.
The video controller has the task of controlling video input and output simultaneously and therefore
has two ports to the environment. The transfer controller enables the TMS320C80 to access external
memory and to interact with its environment. The actual processing elements are a RISC-like
master processor and the four DSPs.

The master processor is tailored for common tasks like packing and unpacking of data streams,
but it can also be used for floating-point calculations. However, its main purpose is the coordi-
nation tasks among the all the components of the TMS320C80. It is connected to the crossbar
interconnection network via two ports, i.e. a 32-bit wide instruction port and a 64-bit wide port to
a data cache.

Each of the four DSP of the TMS320C80 has three ports connected to the crossbar. With
their 32-bit wide global data port they can access every memory bank in the system, whereas
the other 32-bit wide local port only allows for accesses to their own local memory bank. It is
possible to access data in two different memory segments over the local and the global port at
the same time. Each DSP reads its instructions over a 64-bit wide instruction port. These wide
instruction words have several fields that independently control different functional units within
each DSP. Here some VLIW principles are used in order to exploit ILP. Additionally, these DSP

- 10 -



MHAOTEU: Project No 24942

Figure 3: TI TMS320C80 DSP Architecture [62]
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support certain SIMD instructions, i.e. a single operation can be applied to several different pairs
of operands simultaneously (compare 4.1.2).

Each of the memory banks (10K Bytes each) is split up into smaller segments, because every
segment can only handle a single access at a time. With more segments the probability of two
or more processors accessing the same segment is lower than with just one big memory bank. In
addition to the data RAM, there is an instruction cache for each DSP. This is another means of
reducing network access conflicts and speeding up the execution of small loop constructs.

The crossbar itself is more than just a switched network, it contains some additional logic to
resolve and serialise access conflicts automatically. The crossbar operates in pipelined fashion. Each
pipeline stage takes one machine cycle to complete. In the first stage, a processor sends a request
containing the most significant part of the address of the next memory access to the crossbar. In
case of a conflict, i.e. more than one processor requesting access to a single memory segment, the
crossbar logic determines which units is granted access. In the second stage, the processor that was
granted access send the LSBs of the address over the crossbar to the RAM in order to perform the
actual memory access. The second stage finishes when the memory access has been finished.

Figure 4: Architecture of an individual DSP of the TI TMS320C80 [62]

Figure 4 shows a block diagram of a single DSP of the TMS320C80 with its components.
Basically, these components are the Register Set, the Data Unit, the Address Units and the Program
Flow Control Unit.

The Register Set contains 44 registers. All of them are visible to the user and can serve as sources
and destinations of ALU and memory operations. The register set is homogeneous, although
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it is divided into files. By dividing the register set into files the number of register ports and
multiplexers can be kept low. This reduces hardware complexity and therefore decreases costs and
power consumption and increases the maximal possible clock rate. However, registers in the data
unit support over eight accesses in a single cycle whereas most other registers still allow for more
than one access in a cycle. Register Files can be found in the Data Unit, the Address Unit and the
Program Flow Control Unit.

The Data Unit contains Data Registers, Status Registers, a Multiplier Data Path and a ALU
Data Path. The ALU and Multiplier Data Path can be used simultaneously in order to exploit
ILP. Special operations that are frequently used in DSP like Multiply-Accumulate, Barrel Shifting,
Type Expansion and Bit-Field Masking are supported by special hardware of the ALU Data Path.
Most of the operations do not take more than a single cycle to complete.

Each DSP contains two Address Units. Although nearly identical, the first unit is dedicated to
local memory accesses whereas the second one addresses global memory. Both units can perform
independent and simultaneous memory operations. Not only the Address Units are independent
of each other, they are also independent of the Data Unit. Possible address generation operations
are similar to those explained in Section 4.1.4. An immediate index or a register index can be
added to an address register in order to generate the address of a memory load or store. Memory
arrays can be traversed by using the result of an address computation to modify the content address
register. Whenever an Address Unit is not used for address computations, it can be used for general
arithmetic computations on register data. At such occasions, it behaves like a component of the
data path.

A DSP support pipelined instruction execution under control of the Program Flow Control
Unit. Its tasks are instruction fetch and decode, co-ordination of handshaking with the Transfer
Controller, handling of interrupt requests and their prioritisation. More important from a compiler
writer’s point of view are the instruction controller, the program counter registers, the cache con-
troller and three hardware loop controllers. The latter support Zero-Overhead Loops by hardware
– initiated by dedicated instructions of the instruction set.

5 DSP Applications

This section is dedicated to DSP applications and their specific properties. DSP applications differ
substantially from ordinary kernel code or scientific computations. With the intention to provide
an overview of the subject, first a short survey of the theoretical background of Digital Signal
Processing is given. The real applications on the example of the MPEG-2 algorithm are discussed.
Finally, existing benchmarks suites (DSPstone and MediaBench) are introduced as a feasible way
for obtaining comparable and reproducible performance figures.

5.1 Theoretical Background

In order to understand the specific requirements to DSP systems, some background knowledge of
the theoretical foundations of Digital Signal Processing is – at least – useful. It only supplies a
brief and by far not comprehensive overview. For more details the reader might find [63, 8] – on
which this section is based on – and [45, 17, 11] an interesting further reading.

The process of generating a sequence of numbers from an analog, or continuous, waveform is
known as sampling. The amplitude of an input is measured periodically at a regular interval. The
resulting values are represented as numbers over the points in time of taking the measure. Figure
5 shows the input waveform – a sine wave –, the periodic sampling pulses with frequency f = 1

T ,
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and the resulting discrete-time sampled signal.

t

V

V

V

t

t

Input Signal

Sampling Times

Sampled Signal

T

Figure 5: Sampling of a sine wave

Another way to look at sampling is a multiplication process of two signals, i.e. the input signal
and the sample pulses. The sample pulses are actually Dirac pulses δ with infinite amplitude and
infinitesimal pulse width, but with well-defined pulse area which corresponds to strength of the
pulse. Sampling as a multiplication is shown in figure 6.

More formally, the resulting equation of multiplying the input signal Ui(t) by a series of Dirac
impulses δ at sampling times tµ and sampling interval Ts is

Ũi(t) =

∞∑

µ=0

Ui(tµ)Tsδ(t− tµ). (1)

Figure 7 shows a spectrum of an input signal before and after sampling. In order to distinguish
the different “replications” of the original signal after sampling, the maximum frequency of the input
signal must not be higher than half the sampling frequency. This is known as Nyquist theorem or
Sampling theorem

fs ≥ 2fmax. (2)

If the input signal contains frequencies > 1
2fs, the replicated hulls of the original spectrum overlap

in the spectrum of the sampled signal. Therefore, frequency components cannot be identified

- 14 -



MHAOTEU: Project No 24942

*

Input Signal Sampled Signal

Sample Pulses

Figure 6: Sampling as a multiplication

unambiguously anymore. This effect is known as Aliasing and is highly undesirable, because signals
become distorted. The original signal can easily obtained by low-pass filtering the sampled signal
if the sampling frequency is high enough. The remaining signal, i.e. the signal passing the filter,
corresponds to the original signal.

fmax-f max 0

|X(jf)|

1/2 f a fa-1/2 f a-f a
0

|X(jf)|
~

Figure 7: Spectrum of a signal before and after sampling

Transformation of a signal from the time domain into the frequency domain is done by Fourier
Transformation. Using the frequency domain is very helpful for operations concerning the spectrum
of a signal, e.g. filtering, modulation and demodulation. Application of the (Discrete) Fourier
Transformation on equation 1 results in

X̃(jf) = Ts

∞∑

µ=0

Ui(µTs)e
−2πjµf/fs . (3)

By using Euler’s rule, equation 3 can be transformed into

X̃(jf) = Ts

∞∑

µ=0

Ui(µTs)[cos(2πµ
f

fs
)− jsin(2πµ

f

fs
)] (4)
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Any particular value of X̃(jf) is a complex number representing the amplitude and the phase of
signal at some given frequency f . Each component can be obtained according to following rule

X̃(jf) = a + jb

|X̃(jf)| =
√

a2 + b2

θ(X̃(jf)) = tan−1 b

a
(5)

Usually, after performing the desired operation on the signal in the frequency domain, the
modified signal is converted back to the time domain. This corresponds to retaining the waveform
from the spectrum. The process of reversing the Fourier Transformation is called Inverse (Discrete)
Fourier Transformation (IDFT). Mathematically, the IDFT can be expressed as

Uo(n) =
1

N

N−1∑

k=0

X̃(k)e−2πjnk/N (6)

or

Uo(n) =
1

N

N−1∑

k=0

X̃(k)[cos(2πnk/N) + jsin(2πnk/N)] (7)

for a finite number N of spectral lines.
A component of a Digital Signal Processing system can be treated as a black box that is

supplied with a signal and responds with a characteristic output signal. The characteristic function
describing its behaviour is the Transfer Function H(z). If x(n) is the input signal and y(n) is
the output signal of a DSP component, then X(z) and Y (z), respectively, are the corresponding
z-transforms. The transfer function is then defined as

H(z) =
Y (z)

X(z)
. (8)

In z-transforms one-sample delays are written as z−1, or in general, n-sample delays as z−n.
Another important concept in digital signal processing is the notion of Impulse Response. A

unit-impulse sequence δ(n) is put into a component as input signal, whereas its response is denoted
h(n). Responses to can be either finite or infinite, resulting in Finite Impulse Response (FIR) or
Infinite Impulse Response (IIR) systems. Infinite impulse responses come from feedback path from
the output back to the input of a system. If no feedback exists in the system, the impulse response
will be finite.

Transfer functions and impulse responses are closely related. It is possible to determine the
response of a linear system to an input signal exactly, if the impulse response is known. A particular
input sample will cause an output that is equal to the input signal times the impulse response. If
the input sample is equal to the unit pulse, the output will be the impulse response. Otherwise, if
the input sample is scaled by some factor, the output will also be scaled by the same factor. When
now the entire input sequence is modelled as a superposition of scaled unit pulses, the output is
the linear superposition of scaled impulse responses. More formally, this can be written as

y(n) =

∞∑

k=−∞
x(n− k)h(k) (9)
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or

y(n) =
∞∑

k=−∞
x(k)h(n − k). (10)

Equation 10 is known as Convolution Sum and the process of taking this sum is Convolution.

5.1.1 Digital Filters

Important and ubiquitous applications of Digital Signal Processing Theory are Digital Filters.
Based on the introductory theory, this section attempts to give a short summary of Digital Filters
with special emphasis on the consequences for DSP hardware and software.

Figure 8 shows the structure of an FIR filter. Because there exists no feedback path in the filter
structure, it has a finite impulse response. The input is scaled by filter coefficients αk before passing
a delay element, or tap. After a single-cycle delay, the value is added to the result of the next stage.
Finally, the accumulated sum leaves the system. The difference equation and the transfer function
of the shown filter are

yN = α0xN + α1xN−1 + · · · + αN−1x0, yN =

N∑

k=0

αkxN−k (11)

and

H̃(z) =
Y (z)

X(z)
=

N∑

k=0

αkz
−k , respectively. (12)

z -1 z -1 z -1

*

+

* * *

+ +

X

Y

α α α αN 2 01

Figure 8: Structure of an FIR filter

More suitable for implementation in a serial IC or as a piece of software is the filter shown in
figure 9. This implementation is based on two ring-buffers that are used cyclically. Instead of a
series of delays, adders and multipliers, two ring-buffers, one adder and one multiplier are sufficient.
Its function in time domain is

y(tN ) =
N∑

k=0

αkx(tN−k) (13)

FIR filters directly implement convolution, as can be seen by comparing equations 13 and 10.
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Figure 9: Serial implementation of an FIR filter

After all this theory, it becomes clear how characteristic features of DSP introduced in section
4.1 related to the requirements of the application domain. Many sums are accumulations of prod-
ucts. Therefore, a hardware implementation of a Multiply-Accumulate operation can speed up the
computation drastically. The unusual addressing modes supported by the AGU, in particular cir-
cular modulo addressing, support software implementation of ring-buffers without further software
overhead.

5.2 Real Applications

As the most widely used multimedia application the MPEG-2 audio and video encoding and de-
coding algorithm is selected as an example for the discussion of characteristics of multimedia ap-
plications in general. A summary of the properties is given at the end of the section.

MPEG, which stands for Moving Picture Expert Group, is the name of a family of international
standards for coding audio-visual information in a digital compressed format. Members of the
MPEG family of standards are MPEG-1, MPEG-2 and MPEG-4. MPEG-1 is suited for coding
audio-visual signals at bit rates of ≈ 1.5 Mb/s and is suitable for storing of video signals with a
quality comparable to VHS. MPEG-2 extends MPEG-1 to support higher bit-rates and therefore
higher quality. It aims to applications like digital TV. MPEG-4 is a protocol for transmission and
storing of video signals at low bit-rates and lower quality than MPEG-1.

MPEG-1/2 are lossy video compression standards using the Discrete Cosine Transformation
(DCT), run-length coding and motion compensation. MPEG-2 supports different image sizes and
coding schemes which are classified by profiles and levels. Main Profile at Main Level (MP@ML)
is the most common profile and level, and can be used for many different application domains
like Broadcast Satellite Service or Digital Video Disk (DVD). Motion compensation allows for
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higher compression rates than ordinary compression because temporal redundancy in video streams
resulting from minor changes in subsequent frames is efficiently exploited.

An MPEG stream has a hierarchical data structure for storing its information content. Figure
10 shows the levels video sequence, group of pictures (GOP), picture (frame), slice, macroblock and
block. The MPEG standard differentiates between three different types of pictures. The first picture
type of pictures are Intra (I) pictures. All macroblocks of intra pictures are stored without motion
compensation. Intra pictures are independent in such a way that no further pictures are needed
for decoding and therefore they can serve as starting points in the MPEG stream for decoding.
In Predicted (P) and Bidirectionally predicted (B) pictures some macroblocks are encoded using
motion compensation based on previous I- or P-pictures (P), or either on previous or succeeding I-
or P-pictures (B), respectively. However, some macroblocks might be still encoded without motion
compensation.

I B B P B P

GOP 0 GOP 1 GOP 2 GOP 3 . . . . . . . . GOP nGOP n-1

Video Sequence

Group of Pictures (GOP)

Slice 0

Slice 1

Slice 2

Slice n

. . . . . 

Picture (frame)

Slice

MB 0 MB 1 MB 2 MB 3 . . . . MB n

Macroblock

Y Cb Cr

Block (8x8)

Figure 10: MPEG video stream data structure [23]

In 11 a block diagram of an MPEG-2 encoder is shown. This encoder consists of several
stages which are Motion Estimation (ME), Forward Discrete Cosine Transformation (FDCT),
Quantisation (Q), Variable Length Coding (VLC), Inverse Quantisation (IQ), Inverse Discrete
Cosine Transformation (IDCT), Motion Compensation (MC) and Rate Control and Mode Decision.
The encoder which can be implemented either in hardware or in software takes video data as its
input and the output is a serial bitstream.

The MPEG-2 decoder in figure 12 performs the inverse operation to the decoder. It takes a
serial bitstream as an input and outputs video data. Its stages are Variable Length Decoding (VLD),
Inverse Quantisation (IQ), Inverse Discrete Cosine Transformation (IDCT), Motion Compensation
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Image
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FDCT Q VLC

IQ

IDCT

Encode Control

MC

Bitstream

Figure 11: Block diagram of an MPEG-2 encoder [23]

and a stage for co-ordinating the Decode Control.

Image
OutputVLD IQ IDCT

Decode Controller MC

+Bitstream

Figure 12: Block diagram of an MPEG-2 decoder [23]

The MPEG-2 algorithms contain high levels of coarse-grain and fine-grain parallelism. Coarse-
grain parallelism stems from its structure as composition of individual building blocks. Each of the
blocks can operate in parallel and e.g. in a pipelined approach of parallelisation each block can
correspond to a stage. Fine-grain parallelism can be exploited within each of the blocks. The pre-
ferred technique for exploiting this parallelism is the use of ILP processors. Iwata [23] presents some
highly interesting results of parallelising the MPEG-2 algorithm for single-chip multiprocessors.

General characteristics of multimedia applications are their need for high computational capac-
ities to accommodate the computational intensity and high data rates. Whereas many applications
show processing regularity that can be efficiently utilised, some more modern applications (MPEG-
4) are less regular. Generally, multimedia and DSP algorithms are often complex and contain
extensive computational demanding parts. On the other hand, there is often a high degree of
parallelism on all levels to be found. Liao [36] gives theoretical upper bounds of parallelism of
some multimedia applications (some of them are part of the MediaBench benchmark suite, see
5.3) and showed possible speed-up from exploiting ILP (using an ambitious machine model) in
a range of 32.8 to 1000. Many multimedia applications have multiple computational phases and
deeply nested multi-level loops. Both are suitable targets for exploiting coarse-grain parallelism.
A further property of multimedia applications worthwhile mentioning is their high speed of change
and new developments. Because multimedia is an active area of research and development, new
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applications and protocols with higher performance requirements emerge constantly.

5.3 Benchmarks

Real Applications are often too large and too complex to serve as tools for benchmarking systems.
Additionally, often input data can change the results substantially. Therefore, agreed benchmark
suites are more preferable for compiler development and performance comparison.

Most ILP compilers have been tested and developed in the context of general-purpose applica-
tions. Rather than taking embedded applications, other more general benchmarks have been used
for the development of optimisation passes and their performance testing. As seen earlier, DSP and
multimedia applications differ enough from other applications to justify an own set of benchmark
programs.

Two major benchmark suites have been developed for benchmarking DSP and Multimedia ap-
plications. The DSPstone suite [66] contains several smaller programs that contain the actual kernel
parts and loops of DSP applications. The MediaBench benchmark [50, 43] takes a more “whole
application” point of view and contains a set of programs like JPEG, MPEG, GSM, G.721 encod-
ing/decoding, PGP encryption/decryption, Ghostscript PostScript interpretation, Mesa OpenGL
graphic rendering and some more.

DSPstone is a benchmark suite consisting of small programs written in C. The programs rep-
resent small kernel loops and are written in a C style 1 that can often be found in “real” DSP
applications. A description of the programs of the DSPstone benchmark suite is shown in table 1.

MediaBench benchmark applications aim to be representative workloads of multimedia and
communications systems. MediaBench contains 19 full applications from different domains like
image and video processing, audio and speech processing, encryption and computer graphics. Table
2 gives some brief descriptions of the individual applications of the MediaBench suite.

According to Lee [50] the initial goals of MediaBench are to:

1. Accurately represent the workload of emerging multimedia and communications systems.

2. Focus on portable applications written in high-level languages, as processor architectures and
software developers are moving in this direction.

3. Precisely establish the benefits of MediaBench compared to existing alternatives, e.g. integer
SPEC.

4. Develop a tool that is effective for system evaluation as well as system synthesis.

The applications in table 2 labelled with an asterisk (*) are not actual part of the MediaBench 1.0
benchmark suite. Nonetheless, often these applications are added to test series in order incorporate
some more computational intensive applications that represent emerging multimedia applications.

1This style tends to be completely incomprehensible and it seems reasonable to suspect that the programmers
actually were electronic engineers rather than computer scientists.
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ADPCM Adaptive Differential Pulse Code Modulation

complex multiply Multiplication of two complex numbers

complex update Update of a complex number; similar to Multiply

Accumulate with complex numbers, but with arbitrary

destination

convolution Computation of a convolution sum (see 5.1)

dot product Dot-product of a (1, 2) and a (2, 1) vector

fir FIR filter with parameterisable number of taps (see 5.1)

fir2dim FIR filter for image filtering, i.e. the filter is applied to

matrix data rather than a sequence of values

biquad N sections IIR biquad filter with parameterisable number of sections

biquad one section Computations for one section of an IIR biquad filter

lms Implementation of an adaptive DLMS filter

matrix Two programs (matrix1, matrix2) for the multiplication

of two matrices of arbitrary dimensions

matrix1x3 Multiplication of a (3, 3) matric by a (3, 1) vector

n complex updates Updates of n complex numbers in a way similar to

Multiply-Accumulate

n real updates Updates of n complex numbers with values coming from

three different arrays and multiplication and addition

as operators

real update A single real update

Table 1: Description of the DSPstone benchmark suite
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ADPCM A simple adaptive differential pulse code modulation coder

(rawcaudio) and decoder (rawdaudio)

EPIC An image compression coder (epic) and decoder unepic)

based on wavelets and including run-length/Huffman entropy

coding

G.721 Voice compression coder (encode) and decoder (decode) based

on the G.711, G.721 and G.723 standards

Ghostscript An interpreter (gs) for the PostScript language; performs file I/O

but no graphical display

GSM Full-rate speech transcoding coder (gsmencode) and decoder

(gsmdecode) based on the European GSM 06.10 provisional

standard

H-263 (*) A very low bitrate video coder (h263enc) and decoder (h263dec)

based on the H.263 standard; provided by Telenor R&D

JPEG A lossy image compression coder (cjpeg) and decoder (djpeg)

for colour and grayscale images, based on the JPEG standard;

performs file I/O but no graphical display

Mesa A 3-D graphics library clone of OpenGL; includes three demo

programs (mipmap, osdemo, texgen); performs file I/O but no

graphical display

MPEG-2 A motion video compression coder (mpeg2enc) and decoder

(mpeg2dec) for high-quality video transmission, based on the

MPEG-2 standard; perform file I/O but no graphical display

MPEG-4 (*) A motion video compression coder (mpeg4enc) and decoder

(mpeg4dec) for coding video using the video object model; based

on the MPEG-4 standard; perform file I/O but no graphical

display; provided by the European ACTS project MuMoSys

PEGWIT A public key encryption and authentication coder (pegwitenc)

and decoder (pegwitdec)

PGP A public key encryption coder (pgpenc) and decoder (pgpdec)

including support for signatures

RASTA A speech recognition application (rasta) that supports the PLP,

RASTA and Jah-RASTA feature extraction techniques

Table 2: Description of the MediaBench benchmark suite [18]
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6 DSP Compilers

For a long time, compilers for embedded systems, in particular DSPs, have been neglected whereas
compiler research for general-purpose CPUs and parallel computers was flourishing. Lately, re-
searchers have realised specific requirements of DSP compilers and focused their work on embedded
systems as targets of compilation and optimisation [37, 39, 34]

Because there are many more limitations during code generation for DSP processors than for
general purpose processors, code generation for DSPs is much harder. Not only there are more
constraints to observe in DSP code generation, there are also other priorities in the goals to achieve.
Whereas for general-purpose processors power consumptions is no issue at all – at least from the
compiler developer’s point of view – one of the most important goals for DSP system developers is
to minimise power consumption. At the same time, programs must meet tight timing constraints
and must fit into small on-chip ROMs. Gebotys [20] characterises one of the challenging problems
of DSP code generation as follows:

Assume we are given a sequence of operations, represented by an ordered list of op-
erations. The objective is to select instructions, compact code, allocate registers, and
perform memory addressing for the target processor. The set of operations is mapped
into a set of instructions (assembly code). The resultant code must meet code size, and
energy dissipation constraints.

The following sections give brief introductions to some specific problems of compilation for
DSPs. Further, some introduction to data flow analysis is presented because data flow information
is needed at various compilation stages. For a more comprehensive overview of the highly interesting
topic of DSP compilers the reader is referred to [40, 9, 30, 31, 28, 32].

Compilers for general-purpose processors are expected to be fast. Generally, algorithms with
bigger than linear computational complexity are considered to be unsuitable for compilers. The
situation is different for DSP compilers. Often, DSP software is developed manually on assembly
level. Therefore, every support by a compiler that can ensure roughly the same code quality
(performance, code size) is considered as a valuable contribution to decrease the time-to-market.
In this context, it is permissible for DSP compilers to take up large CPU resources. Software
prototyping can be done without sophisticated optimisations, just to get the program running.
The final version can then be optimised in a last step that might take longer. Compilation times
for that last step of up to several hours are acceptable [30]

A few experimental compilation systems (LANCE [12], SUIF [2]) specifically developed for
DSPs are available and form a basis for further research and development [51].

6.1 Code Generation

Code generation algorithms for DSP processors can be based on Data Flow Trees [40]. For a
data flow tree, e.g. of an expression, the goal is to cover the whole tree with tree patterns that
correspond to available instructions of the processor. Each pattern is assigned a cost equivalent to
the cost of the represented instruction. The optimum tree covering is the one is the lowest total
cost. Starting from a data flow tree and a set of instruction patterns with their associated costs (i.e.
the instruction set of the target machine), the covering can be done by a Dynamic Programming
algorithm. For machines with complex instructions like the MAC-instruction of DSPs, it is often
a hard task to find the optimum covering. Sometimes the number of possible coverings is large,
and also there might be several different optimal coverings. Figure 13 shows an example of an
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expression and some available instruction patterns. The nodes of the trees represent operations
and the edges data flows. Each dotted circle or oval represents an instruction. As it can be seen in
the figure, there are different possibilities to cover the add and mul operations. Implementing all
operations of the expression is equivalent to finding a cover of of that expression by instructions.
It quickly becomes clear that the task of determining the cover for which the cost is minimal is not
trivial. For more information on code generation see [41, 17, 33].

Mem Mem Mem Mem

* *

+

load load load load

mul mul

mac mac

add

Instr. Cost Pattern
load 1 t1 := Mem
mov2 1 r2 := r1
mov3 1 r3 := r1
add 2 r1 := r1 + r2
mul 2 r1 := r1 * r2
mac 3 r1 := (r1 * r2) + r3

Figure 13: Expression (a× b) + (c× d) and instruction patterns [40]

The instructions sets of modern DSPs support Multimedia SIMD instructions (see 4.1 and 8).
Whereas a machine word is 32-bit wide, many Multimedia applications require only 8- or 16-bit
data types. The idea is to split up a 32-bit data path in to 2 or 4 segments of each 16 or 8 bit and to
perform identical operations on these parts simulaneously. For a compiler the generation of SIMD
operations is quite difficult. As described above, usual code generation techniques use tree pattern
matching to cover expression trees with small fragments corresponding to available instructions. A
SIMD operation is not a single fragment of a tree anymore, but it consists of several tree patterns
corresponding to each partial operation the entire instructions performs. Additionally, alignment
constraints of the individual operations must be considered. Because of these difficulties, many
DSP compilers do not support automatic SIMD instruction generation. The user has the choice
of either using library functions that were manually coded using SIMD instructions or inlining its
own assembly routines. Both ways are not very flexible and not portable at all. A novel approach
has been developed by Leupers [30, 35]. It uses an extended graph covering algorithm in addition
to Integer Linear Programming methods to generate code utilising SIMD instructions. Alignment
constraints are respected automatically.

6.2 Address Code Generation

Typically, DSPs only have few addressing modes. Hence, there a only few influences on the code
quality by the choice of the addressing mode. However, opportunities for code optimisations arise
from the availability of pre/post-increment/decrement modes (see section 4.1.4). For an efficient
use of the AGU the way data variables are arranged in memory and how the address registers
correspond to memory reference is essential.

The problem of Address Code Generation can be divided into sub-problems. The first problem
is to arrange the data layout in memory, and the second problem is concerned with the optimal
use of available address and index registers of the AGU. Based on graph algorithms the address
code generation problem can be solved for scalar variables as well as for subscripted variables.
The available algorithms [7, 31] can find optimal or near optimal solutions, respectively, and are
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efficient. By using these algorithms that are not yet included in all commercially available DSP
compilers the use of pointer-based array accesses for array traversal becomes superfluous.

Another problem related to address code generation is the data partitioning between different
memory banks. Since some DSPs support Dual Memory Execution (see section 4.1), two memory
accesses to different banks can be issued simultaneously. In order to achieve the best performance,
variables that need to be accessed at the same time should be placed in different memory banks.
For this problem some approaches to solutions can be found in [46, 57].

6.3 C specific problems

Problems so far dealt with specific properties at machine level. But at the other end, the processing
of high-level programming languages, some problems typical for DSP applications can be found.

Since the only high-level programming language used for DSP programming is C, the program-
mers do not have any language constructs specifically designed for their application domain and are
forced to use C elements that are actually adapted to different kind of processor architectures. This
gap between the programming language and the underlying architecture makes it often difficult for
a compiler to generate optimal code from its input. Sometimes programmers attempt to gives hints
to a specific compiler they are familiar with by using certain constructs. If this code is compiled
by a different compiler, this coding style may prevent successful optimisation.

An example of the abundant use of pointers is given in section 11. Usually, DSP compilers
do not perform any pointer or alias analysis. Therefore, pointer use can be a major obstacle
on performing compiler-directed program optimisations. Interesting starting points for a further
reading on pointer analysis of C code are [38, 64, 21].

Many DSPs support fix-point arithmetic. Unfortunately, there are no corresponding data types
in C. Originally, programmers used the available integer data types as objects for storing and
manipulating fix-point values, but the use of constants was unconvenient. In order to express a
constant, the corresponding bit patterns must be used. In the meantime, an extended DSP-C has
been standardised. It contains a frac data type for fix-point values and corresponding operators.

6.4 Scalar Data Flow Analysis

Data Flow Analyses for scalars are a well researched subject and methods found their way into
common Compiler Textbooks [1, 6, 59]. Nonetheless, a brief overview is given in order to present
the basics of their application and possible extensions.

Data Flow Analysis aims to determine properties, e.g. concerning data dependences, for a given
program. These properties are represented by values of a domain D. During and after the analysis,
all nodes of the Control Flow Graph corresponding to the program to be examined, are labelled
with values from D. The values at some node n represent the properties before and after execution
of the instruction represented by n. The effects of that instruction on the properties are modelled
by a Transfer Function f : D → D. Whenever control flow passes the node n, its transfer function
is applied to the data valid at its entry. The output data is then passed on to its control flow
successors. In this context, the transfer functions of a control flow graph form a special equation
system, the Data Flow Equation System. With formal methods this equation system can be solved,
the resulting values can be used to extract information about the properties of interest.

The domain D of properties the analysis aims to determine is usually realised by some Lattice L.
A lattice offers next to a set of values – corresponding to the properties – some operators working
on these values. These allow for combining of different properties coming from different control
flow predecessors of a node.
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Definition 6.1 A lattice L consists of a set of elements, the Carrier Set, and two operators ⊓
(meet) and ⊔ (join) such that:

1. Closedness:
∀x, y ∈ L : ∃z,w ∈ L : x ⊓ y = z ∧ x ⊔ y = w

2. Commutativity:
∀x, y ∈ L : x ⊓ y = y ⊓ x ∧ x ⊔ y = y ⊔ x

3. Associativity:
∀x, y ∈ L : (x ⊓ y) ⊓ z = x ⊓ (y ⊓ z) ∧ (x ⊔ y) ⊔ z = x ⊔ (y ⊔ z)

4. Supremum, Infimum

• ∃⊥ ∈ L : ∀x ∈ L : x ⊓⊥ = ⊥

• ∃⊤ ∈ L : ∀x ∈ L : x ⊔⊤ = ⊤

The elements ⊥ and ⊤ are called bottom and top, respectively.

Definition 6.2 A lattice L is a Distributive Lattice, if in addition

∀x, y, z ∈ L : (x ⊓ y) ⊔ z = (x ⊔ z) ⊓ (y ⊔ z) ∧ (x ⊔ y) ⊓ z = (x ⊓ z) ⊔ (y ⊓ z)

hold.

Definition 6.3 The partial order (L,⊑) induced by some lattice is defined by ∀x, y, z ∈ L : x ⊑
y ⇐⇒ x ⊓ y = x. An equivalent definition is possible based on the ⊔-operator. �, A and ⊒ are
defined analogously.

Definition 6.4 The height of a lattice L is defined as

height(L) = max{n|∃x1, . . . , xn : ⊥ = x1 � x2 � . . . � xn = ⊤}.

Properties modelled by data flow lattices are subject to change on instruction execution. Hence,
a formalism that can model this change is required. Transfer function as described above are a
suitable formalism for this purpose. Formally, transfer functions are function f : L → L that are
assigned to each node of a Control Flow Graph CFG = (N,E, s, e), with set of nodes N , set of
edges E, start node s and end node e. The mapping of nodes to transfer functions has the form
tf : N → (L → L). The specific form of a transfer functions depends on the instruction to be
modelled, its operands and the data flow property to be modelled. Most of the times, the specific
operation of an instruction is less important than the way its operands are accessed. Reading the
value of a variable is a Use, whereas writing a value into it is a Definition. Uses and Definitions
are commonly termed as References. Depending upon whether a property initially holds or does
not hold anymore after some reference, this reference is called generating or killing reference. The
determination of generating and killing references is only possible in context of a specific data flow
problem.

An important properties of a data flow framework are the monotony of its transfer functions
and the effective height of its data flow lattices. Both properties have strong influence on the
computational complexity and even on termination itself of data flow analyses.
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Definition 6.5 A function f : L→ L is monotone, iff

∀x, y ∈ L : x ⊑ y ⇒ f(x) ⊑ f(y)

holds.

Definition 6.6 The Effective Height of a lattice L with respect to some function f : L→ L is

heightfeff (L) = max{n|∃x1, x2 = f(x1), x3 = f(x2), . . . , xn = f(xn−1) ∈ L :

x1 � x2 � x3 � . . . � xn ⊑ ⊤}.

The effective height denotes the longest, strictly monotone ascending chain of iterated applications
of the function f on elements of the lattice L.

In general, a node n is reachable not only on a single path, but there a several path from the
start node s to the node n. Hence, a valid solution has to include all these alternative paths.
Depending on the following use of the analysis, the user might be interested in properties that may
hold or that must hold over all paths. The difference is that a may-solution includes values that
may hold on a single path, whereas the must-solution includes on values that are valid on all paths.
Information coming from different preceeding nodes into some node of meeting control flow edges,
are combined with the meet-operator of the lattice. According to “may” or “must” there are two
different representations of properties holding at some node n.

• Let π(n) the set of all paths s ; n for a node n ∈ N . Then, the Merge-over-all-path
(MOP)-solution for the May-problem is

MOPMay(n) =
⊔

p∈π(n)

fp(ι) (14)

for some initial value ι ∈ L.

• Let π(n) the set of all paths s ; n for a node n ∈ N . Then, the Merge-over-all-path
(MOP)-solution for the Must-problem is

MOPMust(n) = 180
⊔

p∈π(n)

fp(ι) (15)

for some initial value ι ∈ L.

The MOP-solutions are exact solutions to data flow problems. If the transfer functions are
not monotone, the number of different control paths in the program is (potentially) infinite or the
effective height of the data flow lattice is unbounded the MOP solutions cannot be determined.
In such a case, an approximation solution can be computed. The precision of the approximation
is the quality of the approximation solution, i.e. the difference to the actual solution. Though,
more important is the kind of permissible error. To ensure correctness of optimisation using the
data flow approximation solution, in case of must-problems must underestimate the actual solution
whereas in case of may-problem an overestimation is safe.

Safe approximations can be computed for monotone transfer functions and bounded data flow
lattices. Starting from some initial value the transfer functions can be applied iteratively until
after some iterations the data flow values do not change anymore. In this case a Fixpoint has been
reached.
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Definition 6.7 A Fixpoint of a function f : L→ L is an element x ∈ L such that f(x) = x.

Every fixpoint is a valid solution to the data flow equation system. Further applications of
transfer functions do not change any values anymore. This means that all dependences have been
propagated, even cyclically. The entire equation system is in state of equilibrium. The data flow
values at the nodes are ready for use.

A fixpoint can be determined in an iterative process starting with some initial values. The
following equation formalise the notions of Minimal and Maximal Fixpoints for may- and must-
problems, respectively.

• A Minimal Fixpoint (MFP) for a May-problem is

MFPMay(n) =







ι , if n = s
⊔

m∈pred(n)

fn(n)(MFP (m)) , otherwise (16)

for some initial value ι ∈ L.

• A Maximal Fixpoint (MFP) for a Must-problem is

MFPMust(n) =







ι , if n = s

180
⊔

m∈pred(n)

fn(n)(MFP (m)) , otherwise (17)

for some initial value ι ∈ L.

In general, i.e. without further assumptions, it is ∀n ∈ N : MOPMust(n) ⊇ MFPMust(n)
and ∀n ∈ N : MOPMay(n) ⊆ MFPMay(n), respectively. However, if all transfer functions are
distributive, the MOP in this special case can be computed and ∀n ∈ N : MFP (n) = MOP (n)
holds.

The most widely used algorithm for computing data flow fixpoints is the Iterative Data Flow
Analysis. This algorithm directly implements the concept of fixpoints for a given Control Flow
Graph. Each node n of the CFG = (N,E; s, e) is labelled with to values IN [n], OUT [n] ∈ L.
These values denote data flow reaching and leaving the node, respectively. The must-data flow
equations for a node n look like this:

IN [n] =







ι , if n = s

180
⊔

m∈pred(n)

OUT [m] , otherwise (18)

OUT [n] =fn(IN [n]) (19)

IN [n] is the greatest lower bound of the data flow values coming from preceeding nodes. Another
representation of OUT [n] which is based on sets of generating and killing references G and K is
possible and has following form:

OUT [n] = G[n] ∪ (IN [n]−K[n]) (20)

A Worklist Algorithm traverses the CFG in Reverse Postorder and applies the transfer function
each time a new node is encountered. The node is removed from the worklist and its OUT values
are computed and propagated to its succeeding nodes. If a nodes’ IN value is changed in course
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of the value propagation, it is added to the worklist. The algorithm terminates when there are no
more elements in its worklist.

For some data flow problems, so called Reverse Data Flow Problems, the role of the IN and
OUT sets must be interchanged. The data flow moves from OUT to IN .

A framework for scalar data flow analysis has been developed during this project and integrated
into the Octave experimental compiler.

6.5 Array Data Dependence Test

Data dependences not only occur among scalar variables, but also between subscripted variables,
i.e. array elements. The problem of determining whether or not there is a data dependence
becomes substantially harder for array elements, because a single array reference in the source code
is mapped to a set of memory locations dependent on the iteration space of enclosing loops and
index functions of the array access. In the following, a short introduction to the problem is given
before two different approaches (Memory Disambiguation and Array Data Flow Dependence) are
discussed based on two specific algorithms.

Data Dependences in loop can be distinguished by the number of iterations involved. A loop-
independent dependence exists regardless of the loop structure. Whereas loop parallelisation is not
inhibited, the statement order in the loop body is affected. On the other hand, there are loop carried
dependences which are induces by the iterations of a loop. Loop carried dependences restrict or
prevent safe loop parallelisation. Usually, when a statement S2 is dependent on another statement
S1, they are in a dependence relation δ to each other, or symbolically S1 δ S2.

Depending on the combinations of the types of memory accesses (use/definition), dependences
can be further differentiated. A True/Flow Dependence occurs when S1 writes a memory location
that S2 later reads, denoted as S1 δflow S2. An Anti Dependence S1 δanti S2 occurs when S1 reads
a memory location that is later written by S2. Two statements S1 and S2 are involved in an
Output Dependence, if S1 writes to a memory location that S2 writes later, too. Finally, an Input
Dependence exists, when S1 reads a memory location that later S2 reads. True, Anti and Output
Dependences restrict the execution order of the dependent statements, i.e. dependent statements
cannot be interchanged in their execution order without violating sematic correctness. On the
contrary, Input Dependences do not restrict execution order. True Dependences are the only
dependences imposed by some algorithm, the others are just artifacts of the actual programming
or code generation. By using the Static Single Assignment (SSA) Form for representing programs,
Anti, Output and Input Dependences can be removed.

Assume a loop nest as shown in figure 14. If there is a dependence between statement S1 and
S2, then the Source S1 must be executed before the Sink S2. It is not important when exactly S1

or S2 is executed, as long as it ensured that the value used by S2 is defined beforehand by S1.
The problem of Array Data Dependence Analysis is to determine whether or not there is a

dependence between two statements S1 and S2 containing array references. Mathematically, this
is the question if for vectors of integers α = (i1, . . . , in) and β = (i′1, . . . , i′n) with Lk ≤ ik, i

′
k ≤ Uk

following equation holds

∃α ≤ β , such that fk(α) = gk(β) ∀k, 1 ≤ k ≤ m. (21)

Most of the times, the index functions f1, . . . , fm and g1, . . . , gm are not formed arbitrary, but
they are of a simple structure. Usually, the index functions are linear functions in their induction
variable and the form f(i) = a × i + b for constants a and b. Such functions are called Affine
Functions. If there are no restrictions imposed to the index functions, the general Array Data
Dependence Problem is intractable.
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for(i1 = L1; i1 < U1; i1 + +)

{
for(i2 = L2; i2 < U2; i2 + +)

{
...

for(in = Ln; in < Un; in + +)

{
a[f1(i1, . . . , in), . . . , fm(i1, . . . , in)] = . . . ; S1

. . . = a[g1(i1, . . . , in), . . . , gm(i1, . . . , in)]; S2

}
}

}

Figure 14: Array Data Dependences in a Perfect Loop Nest

In order to solve the Array Data Dependence Problem for affine index functions, an integer
solution to a set of linear equations has to be found. This problem is known to be NP-complete.
Because of practical considerations an exponential run-time algorithm cannot be used in compilers.
Even for medium-sized problems the performance is too poor. Therefore, different approximations,
i.e. inexact solution methods, have been developed that need considerably less resources. A class
of algorithms that only take memory accesses into account regardless of the actual control and
data flow, is summarised under the name Memory Disambiguation. Two statements are considered
data dependent, when they potentially access the same memory location. A simple Memory Dis-
ambiguation algorithm is the Banerjee Test which is discussed in the next section. More precise
Array Data Flow Analyses that determine actual use-definition pairs of statements are subject of
the over-next section.

6.5.1 Banerjee Test

The Banerjee Test for data dependence testing is an inexact test. The basic idea is to test for
a real solution to the integer equations. Real solutions can be obtained much more easily than
integer solutions, i.e. the problem is not NP-complete anymore and the algorithm has therefore
lower computational complexity.

For two points I = (i1, . . . , in) and I ′ = (i′1, . . . , i′n) in the iteration space let

h(I, I ′) = αI − βI ′ (22)

and

h+
i (Ik, I

′
k) = maxRk

h(Ik, I
′
k) (23)

h−
i (Ik, I

′
k) = minRk

h(Ik, I ′k). (24)

Ik D I ′k is the relation imposed by the direction vector element (either “<”, “>” or “=”).
Then, the Banerjee inequality states, that for a given direction vector D

∃ real solution to αI − βI ′ ⇔
H∑

i=1

Hi −Di ≤ β0 − α0 ≤
H∑

i=0

Hi + Di. (25)
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The Banerjee test has been implemented for data dependence testing of array elements during
this project. It has been integrated into the software-pipelining framework as part of the data
dependence analysis.

6.5.2 Array Data Flow Analysis

More powerful, i.e. more precise, than Memory Disambiguation are Array Data Flow Analysis
algorithms. Array Data Flow Analysis is the extension of Scalar Data Flow Analysis to arrays.
Whereas in the case of scalars, a program variable directly corresponds to a single memory location,
an array reference in a program might correspond to several memory locations. In the following
one Array Data Flow Analysis algorithm that extends the Scalar Data Flow Analysis naturally is
presented. The description is based on [13, 16].

The algorithm works on Loop Control Flow Graphs (LCFGs). An LCFG is a control flow graph
of a loop with an additional Exit Node at the end of the loop body. A further extension is the
property that an inner loops can be contracted to a single summary node after it has been processed.
The output of the algorithm are the Iteration Distance Vectors of the data flow dependent array
accesses. Based on the Reaching Definitions problem (see [1, 59]) an Iteration Dependence can be
defined as follows:

Definition 6.8 A definition d reaches a point p with Iteration Distance δ, if all of the last δ
instances of d reach p. An iteration distance is maximal, if δ is the biggest value of the iteration
distance for which the definition d reaches the point p.

The property to be modelled by a data flow lattice is the iteration distance δ. Therefore, the
lattice must have at least as many elements as the loop has iterations and an additional element
to represent independence. A suitable carrier set of the array data flow lattice is {⊥, 0, 1, . . . ,⊤ =
UB − 1} with the upper loop bound UB. The lattice is a chain lattice, i.e. it forms a strictly
monotone ascending chain of elements ⊥ ≤ 0 ≤ 1 ≤ . . . . . .⊤ with the usual comparison operator
≤. The operators meet and join are chosen as maximum (max) and minimum (min). After all, the
data flow lattice L looks like this:

L = ([⊥, 0, . . . ,⊤ = UB − 1],⊥,⊤,⊑,∧,∨) (26)

such that

⊑: ∀xi ∈ [⊥, 0, . . . ,⊤ = UB − 1] : xi < xi+1 (27)

and

∧(x, y) =







⊥ , if x = ⊥ or y = ⊥

x , if y = ⊤

y , if x = ⊤

min(x, y) , otherwise

(28)

∨(x, y) =







⊤ , if x = ⊤ or y = ⊤

x , if y = ⊥

y , if x = ⊥

max(x, y) , otherwise

(29)
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Additionally, a further operation is needed for modelling the transition between iterations. This
operation is a modified increment operator that is defined for all elements of L:

x + + =







⊤ , if x = ⊤

⊥ , if x = ⊥

x + 1 , otherwise

(30)

In a similar fashion as with scalar data flow analysis, array data flow analysis needs transfer
functions to model the effects of execution an instruction. Corresponding to generating and killing
array references G[n] and K[n], there are Generate and Preserve Functions. Additionally, a new
class of Exit Functions is introduced. Exit functions represent the step from one iteration into the
next one. For detailed information on the construction of the Generate, Preserve and Exit Function
have at the original publication [13].

Each node n of the LCFG is labelled with two vectors of m lattice elements, if m is the
number of array references in the loop to be analysed. These vectors are IN [n] = (x1, . . . , xm)
and OUT [n] = (y1, . . . , ym) and have the same function as their scalar counterparts. After the
data flow analysis is finished, the data flow solution can be read from IN and OUT . The transfer
functions together with the IN and OUT vectors are the data flow equation system which must
be solved. The equation system can be solved with iterative worklist algorithm that is already
known from the previous section. For initialisation the nodes of the LCFG are traversed in Reverse
Postorder. For every node n and ∀d ∈ [1, . . . ,m] following assignment is performed:

IN [n, d]0 =







⊥ , if n = 1 Loop Entry
∧

m∈pred(n)

OUT [m,d]0 , otherwise (31)

OUT [n, d]0 =







⊤ , if d ∈ G[n]
∧

m∈pred(n)

IN [n, d]0 , otherwise (32)

The succeeding iteration steps that are also done in Reverse Postorder apply following equa-
tions2:

IN [n, d]i+1 =







∧

m∈pred(n)

OUT [m,n]i , if n = 1

∧

m∈pred(n)

OUT [m,d]i+1 , otherwise
(33)

OUT [n, d]i = fd
n(IN [n, d]i) (34)

Because all analysed loops are structured loops which are Single-entry/Single-exit loops, equa-
tion 33 can be simplified:

IN [n, d]i+1 =







OUT [Exit, n]i , if n = 1
∧

m∈pred(n)

OUT [m,d]i+1 , else (35)

2Because the original publications contains some errors in these equation, their correct form is given here. For
more extensions and improvements of the framework see [16].
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The shown framework takes no more than three passes over the loop body and is therefore a
linear-time algorithm. There are possibilities for parameterising the analysis in order to solve very
different array data flow problems. Additionally, perfect loop nests and multi-dimensional arrays
can be handled.

A prototype implementation of this algorithm has been used during this project. Although not
integrated into Octave, analysis results of the Banerjee Test and the Array Data Flow Analysis were
compared and evaluated. In the final version, the Array Data Flow Analysis is not used anymore,
because many of the quite simple test programs showed no or only little gain from this analysis.
Though, for more complex programs this analysis has its justification.
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7 Infrastructure

This section aims to show the hardware and software infrastructure used during this project. First,
an overview of the Philips TriMedia TM-1x00 which was used as hardware platform is given.
Then, a short description of the experimental Octave compilation system follows. Finally, some
benchmark programs from the DSPstone suited are explained in more detail than in the previous
overview section.

8 Philips TriMedia TM-1

The TriMedia TM-1 is a single processor DSP tailored for Multimedia applications. Figure 15
shows a block diagram of the TriMedia Architecture. Functional units for Video-In, Video-Out
and Audio-In and Audio-Out reflect its suitability for the multimedia domain. All components are
connected to an internal bus that allows for high-bandwidth transfers. For the communication with
peripheral devices there are interfaces such as an I2C interface, a synchronous serial interface and
a PCI interface. The main components for performing computations are the actual VLIW CPU,
the Image Coprocessor and a Variable-Length Decoder (VLD) that can decode Huffman-coded
bit-streams autonomously. These bit-streams occur e.g. in the MPEG-2 video/audio format that
was explained in section 5.2. The CPU itself is speeded up by an instruction and a data cache.
Additionally, the caches can help to reduce the bus traffic. Betweeen the internal bus and the
external SDRAM a main memory interface takes over control.

Figure 15: TriMedia TM-1100 Architecture [49]

The VLIW CPU has 32-bit registers and data paths. It contains 27 functional units that work in
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pipelined mode. Effectively, most operations take therefore only a single cycle to finish. Some more
complex operations may take longer. The register set is homogeneous and contains 128 general-
purpose registers. There are no register files and every register is freely available to all functional
units. The instruction execution is based on a VLIW model. So there is no need for any scheduling
hardware, because scheduling is done statically by the compiler. In each cycle up to 5 instructions
can be issued, and these instructions may access up to 5 different functional units simultaneously.
Figure 16 shows the available issue slot, their functional units and latencies. Certain restriction
exists in the choice of what operations can be packed into an instructions. For example, no more
than two memory operations can be started simultaneously, because their are only two available
memory units. The CPU supports SIMD Multimedia operations as explained earlier in section 4.1.

Figure 16: TM-1100 Issue Slots, Functional Units and Latencies [49]

The TriMedia TM-1 supports Conditional Execution. This means, that all operations can be
“guarded” by some condition, and only if the condition is fulfilled the operation is executed. If the
condition is not fulfilled, the operation is skipped and remains without effect. The guard expressions
are actually registers which hold results of previous comparision, . . . operations. Depending on their
outcome, the guarded operation is executed or not. The purpose of Conditional Execution is to
reduce penalties resulting from ordinary branch instructions, because guarded operations do not
cause pipeline stalls. For more information on exploiting conditional instructions in code generation
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see Leupers [29].

9 Octave

Octave is an experimental compilation system developed at the University of Edinburgh. Rather
than being a full compiler, it is a front-end supporting different input languages. At the moment
of writing, there is support available for Fortran, C, C++ and Java. Octave itself is written in
C++ and exploits the features of the object-oriented programming style. After parsing an input
file, Octave converts it into an Abstract Syntax Tree (AST) and offers methods for traversing and
manipulating its elements.

For this project, only parts of Octave relevant to the C input language were used. Other
programming languages are uncommon for DSP programming, although Java is an alternative for
low-performance embedded systems such as microcontrollers.

Mainly, methods for manipulating statements and expressions were used in this project. These
are encapsulated in Statement and Expression classes and unify data structures and methods.
Additional code that realises analyses and optimisations is based on the classes provided by Octave
and therefore easily access the entire AST.

Octave can be extended by other libraries available for C++. Nonetheless, the current version
of Octave sometimes clashes with libraries that use the same class names. Hopefully, in later version
this problem will be solved. One library that has been used to extend Octave is the Graph Template
Library that is described in the next section.

9.1 Graph Template Library

The Graph Template Library (GTL) [15] is a collection of data structures and algorithms which are
frequently used in graph algorithms. In its architecture and application program interface (API)
the GTL is is very similar to the Standard Template Library (STL). Because the STL does not
support graphs, the GTL attempts to fill this niche.

The most important data structure offered by the GTL is the Graph. A graph can be either
directed or undirected. Graphs support creation and deletion of nodes and edges, but also hiding
and restoring of nodes and edges, their traversal and labeling is actively supported. Nodes and
edges are modeled by separate classes. Further data structures are PQ-Trees and some elementary
container classes.

The GTL contains some basic graph algorithms like Depth-First-Search (DFS), Breadth-First-
Search (BFS), Biconnectivity-Test and Topological Sorting. Additionally, more complex algorithms
such as graph Bi-Partitioning (Fiduccia/ Mattheyses and Wei/Cheng), ST-Numbering, Maximum-
Flow algorithms (Edmonds/Karp and Malhotra/Kumar/Maheshwari) and Planarity-Test are of-
fered.

In this project the GTL has been used to implement Data Dependence Graphs and Control
Flow Graphs and algorithms operating on them.

10 TriMedia Software Development Environment

The TriMedia Software Development Environment (SDE) contains an optimising C/C++ compiler,
an assembler, a linker, a debugger, a profiler and a simulator. A VLIW scheduler is a separate
program that supports the compiler as well as the assmbler.
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The compilation system was used to create object files from C source files for the TriMedia TM-
1. The simulator that is able to provide cycle-accurate timings was used to obtain the performance
figures presented in later sections of this thesis.

The compiler offers the choice between four different optimisation levels. At the lowest level
(O0) no optimisation at all is performed. Level 1 (O1) enables decision-tree local optimisations, in
level 2 (O2) an addtional inter-decision-tree register allocation is enabled. Level 3 (O3) adds some
further global optimisations.

Local optimisations supported by the TriMedia compiler are

• Local Copy Propagation,

• Local Common Subexpression Elimination,

• Local Constant Folding, and

• Local Load Eliminations.

Global optimisation work within a single decision tree as well as between decision trees. The
global optimisations are

• Global Copy Propagation,

• Global Common Subexpression Elimination,

• Global Constant Folding,

• Global Load Elimination,

• Determination of Induction Expression,

• Expression Tree Height Reduction,

• Back Arc Common Subexpression Elimination,

• Back Arc Load Elimination,

• Loop Invariant Code Hoisting,

• Loop Redundant Stores Down Hoisting,

• Code Placement,

• Unreachable Code Elimination,

• Dead Code Elimination, and

• Load Pipelining.

Additionally, some alias analysis is performed. For more information on ordinary optimisations
see [59, 1, 6], and on specific optimisation of the TriMedia SDE see [50].
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11 DSPstone

The DSPstone benchmark suite supplied the set of test programs that were used for performance
evaluation during this project. This suite was used because its programs are typical for DSP
applications in their computational characteristics and their style of coding. On the other hand,
these programs are sufficiently small to be run on a (software-based) simulator in acceptable times.
Furthermore, correctness of analyses and optimisations can stil be checked manually. The small size
of the programs is unfortunately also their biggest disadvantage. Modern multimedia applications
are complex programs and contain much more code than a few lines of kernel loops. In this way,
performance data can only be obtained for small fractions of “real” code and small sets of data
rather than whole applications.

Figure 17 shows the source code of the Convolution program of the DSPstone benchmark suite.
It is a typical representative for the suite, although there are several more complex programs as
well. The program offers the possibility of parameterising the type of its data, its storage class and
the length. The length actually influences the total amount of used memory and the loop ranges
of its loops. The data type has a more indirect influence on the execution speed. By reducing
the data size to values smaller than a machine word, SIMD instructions might become feasible to
perform several operations simultaneously. The storage class can influence the work of the register
allocator. If no storage class is given, it is the task of the compiler to decide which values to keep in
registers and which to store at memory. The excessive use of pointers for traversing arrays becomes
apparent. Although pointer assignments and pointer arithmetic are simple, it is interesting to see
how a compiler can handle such constructs. For profiling purposes, additional instructions can be
inserted just before and after the loop in the main program.
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#define STORAGE_CLASS register

#define TYPE int

#define LENGTH 16

void pin_down(TYPE * px, TYPE * ph)

{
STORAGE_CLASS TYPE i;

for (i = 0; i < LENGTH; ++i)

{
*px++ = 1;

*ph++ = 1;

}
}

TYPE main()

{
static TYPE x[LENGTH];

static TYPE h[LENGTH];

STORAGE_CLASS TYPE y;

STORAGE_CLASS TYPE i;

STORAGE_CLASS TYPE *px = x;

STORAGE_CLASS TYPE *ph = &h[LENGTH - 1];

pin_down(&x[0], &h[0]);

y = 0;

for (i = 0; i < LENGTH; ++i)

{
y += *px++ * *ph--;

}

return ((TYPE) y);

}

Figure 17: Convolution program of the DSPstone benchmark suite
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12 Pointer Clean-up Conversion

This section presents a method for conversion of a restricted class of pointer-based memory accesses
into array accesses with explicit index functions. C programs with pointer accesses to array ele-
ments, data independent pointer arithmetic and structured loops can be converted into semantically
equivalent representations with explicit array accesses.

Using some motivating examples, we present the application of the pointer conversion as well
as the potential benefits for further compiler analysis and optimisation phases. In the next section
we give an overview of the basic idea of the method, before assumptions and restrictions are given.
Finally, the algorithm is presented and discussed.

13 Motivation

Pointer accesses to array data are quite common in typical DSP programs. Since early compilers
were not able to generate code that uses available AGUs efficiently from sources containing explicit
array references, programmers started to code their programs using pointer-based accesses and
pointer arithmetic in order to give “hints” to the compiler on how and when to use post-/pre-
increment/decrement addressing modes. A typical example is the kernel loop of the DSPstone
benchmark biquad N sections in figure 18. Each ordinary pointer access is translated into a simple
memory access. However, from pointer accesses with immediately following pointer increments
corresponding post-increment accesses are generated.

If there are no more optimisation passes to be applied by the compiler, in particular memory
access optimisations, use of pointer-based array accesses and their direct translation into assem-
bly/machine code utilising available AGUs is easy and efficient. On the other hand, the necessary
analyses supporting the optimisations with the required information become much more difficult
if there are further optimisations that need information on access patterns or on the availability
of values at certain nodes in the program. Techniques for analysing array accesses have a long
tradition in compiler construction and are well developed and therefore often incorporated in com-
mercially available compilers for general purpose computers and, more recently, for DSP. These
techniques rely on explicit array index representations and cannot cope with pointer references. In
order to maintain semantic correctness compilers use conservative strategies, i.e. many possible
array access optimisations are not applied in the presence of pointers. Obviously, this limits the
maximal performance of the produced code.

It is highly desirable to overcome this drawback, but without losing the benefit gained from using
the AGUs efficiently which was the initial reason for the introduction of pointer-based accesses. The
basic idea is to collect information from pointer-based code to regenerate the original accesses with
explicit indexes that are suitable for further analyses. The critical performance can be retained
by using methods for generating optimal AGU code even for code with the latter kind of array
accesses. Such techniques have been developed [7, 28] since early compilers tempted programmers
to “abuse” pointers.

Figure 19 shows a loop with explicit array indexes that is semantically equivalent to the previous
loop in figure 18. Not only it is easier to read and understand for a human reader, but also easier to
analyse by ordinary compilers. It is now easy to detect that array accesses to wi are involved in sev-
eral loop independent anti- and input-dependences and that there are no loop carried dependences
with respect to wi and coefficients. This information can be used for eliminating redundant
memory accesses as well as for software-pipelining or scheduling and many other optimisations.

After pointing out all the benefits of array access analysis as opposed to pointer analysis, it may
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int w, f ;

int *ptr_coeff, *ptr_wi1, *ptr_wi2 ;

int wi[2 * NumberOfSections] ;

int coefficients[5 * NumberOfSections];

int x,y ;

ptr_coeff = &coefficients[0] ;

ptr_wi1 = &wi[0] ;

ptr_wi2 = &wi[1] ;

x = pin_down(x, coefficients, wi) ;

y = x ;

for (f = 0 ; f < NumberOfSections ; f++)

{

w = y - *ptr_coeff++ * *ptr_wi1 ;

w -= *ptr_coeff++ * *ptr_wi2 ;

y = *ptr_coeff++ * w ;

y += *ptr_coeff++ * *ptr_wi1 ;

y += *ptr_coeff++ * *ptr_wi2 ;

*ptr_wi2++ = *ptr_wi1;

*ptr_wi1++ = w ;

ptr_wi2++ ;

ptr_wi1++ ;

}

Figure 18: Original pointer-based loop
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int w, f ;

int wi[2 * NumberOfSections] ;

int coefficients[5 * NumberOfSections] ;

int x, y ;

x = pin_down(x, coefficients, wi) ;

y = x ;

for (f = 0; f < NumberOfSections; f++)

{

w = y - coefficients[(5 * f + 0)] * wi[(2 * f + 0)] ;

w -= coefficients[(5 * f + 1)] * wi[(2 * f + 1)] ;

y = coefficients[(5 * f + 2)] * w ;

y += coefficients[(5 * f + 3)] * wi[(2 * f + 0)] ;

y += coefficients[(5 * f + 4)] * wi[(2 * f + 1)] ;

wi[(2 * f + 1)] = wi[(2 * f + 0)] ;

wi[(2 * f + 0)] = w ;

}

Figure 19: Loop after conversion of pointer-based accesses into explicit array accesses
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appear that array data dependence analysis is in general “easier” or “more powerful” than pointer
analysis. This is not the case! Both problems are without further restrictions intractable [42]. It is
just easier to find suitable restrictions of array data dependence problem while keeping the resulting
algorithm applicable to real-world programs, i.e. without restricting it to an overly small subset
of cases on the one hand and without consuming enormous amounts of resources (time, memory)
on the other hand. Hence, array analysis are well researched and developed and have found their
way into commercially available compilers whereas pointer analysis techniques are still uncommon,
although existent, and are mainly found in experimental prototype compilers.

14 Related Work

Allan and Johnson [3] use their vectorisation and parallelisation framework based on C as an
intermediate language for induction variable substitution. Pointer-based array accesses together
with pointer arithmetic in loops are regarded as induction variables that can be converted into
expressions directly dependent on the loop induction variable. This approach does not regenerate
the index expressions, but it supplies equivalent pointer expressions. Their main objective is to
produce loop representations that are suitable for vectorisation. Therefore, their method only
treats loops individually rather than in a context of a whole function. The approach is based on
a heuristic that mostly works efficiently, although backtracking is possible. Hence, in the worst
case this solution is inefficient. No information is supplied about treatment of loop nests and
multi-dimensional arrays.

In his case study of the Intel Reference Compilers for the i386 Architecture Family Muchnick [59]
mentions briefly some technique for regenerating array indexes from pointer-based array traversal.
Unfortunately, no more details including assumptions, restrictions or capabilities are given.

The complementary conversion, i.e. from explicit array accesses to pointer-based accesses with
simultaneous generation of optimal AGU code, has been studied by Leupers [28] and Araujo [7].

15 Basic Idea

Pointer clean-up conversion uses two stages during processing. In the first stage information on
arrays and pointer initialisation, pointer increments and decrements as well as loop properties is col-
lected. The second step then uses this information in order to replace pointer uses by corresponding
array accesses and to remove pointer arithmetic completely.

During data acquisition in the first stage the algorithm traverses the control flow graph of a
function and collects information when a pointer is given its initial reference to an array element
and keeps track of all subsequent changes. Note that only changes of the pointer itself and not
of the value of the object pointed to are traced. When loops are encountered, simple pointer
changes within the loop body have multiplied effects caused by repeated execution of the loop body.
Therefore, information on loop bounds and induction variables is compulsory for the following
reconstruction of array index functions. The program analysis step has similarities to abstract
program interpretation and creates summary information of pointer-to-array-mappings at each
node of the traversed CFG.

The main objective of the second phase is to replace pointer accesses to array by explicit array
accesses with affine index functions. Array accesses not only differ from pointer accesses by using
the array variable instead of the original pointer variable, but also they have an additional index
function. The mapping between pointers and arrays can be extracted from information gathered
from pointer initialisation in the first phase. Array index functions outside loops are constant,
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whereas inside loops they are dependent on the loop induction variables of the corresponding
loops. In order to determine the coefficients of the index functions, information on pointer changes
based on pointer arithmetic collected during the first stage is used. Finally pointer-based array
references are replaced by semantically equivalent explicit accesses, whereas expressions only serving
the purpose of modifying pointers are deleted.

The pointer conversion algorithm can be applied on whole functions and can handle one- and
multi-dimensional arrays, general loop nests of structured loops and several consecutive loops with
code in between. It is therefore not restricted to handling single loops. Loop bodies can contain
conditional control flow.

16 Assumptions and restrictions

As mentioned above the general problems of array dependence analysis and pointer analysis are
intractable. After simplifying the problem by introducing certain restrictions, analysis might not
only be possible but also efficient. In order to facilitate pointer clean-up conversion conversion and
to guarantee its correctness following assumptions must hold:

1. structured loops

2. no pointer assignments apart from – maybe repeated – initialisation to some array start
element

3. no data dependent pointer arithmetic

4. no function calls that might change pointers itself

5. equal number of pointer increments in all branches of conditional statements

Structured loops (see figure 20 are loops with a normalised iteration range going from the lower
bound 0 to some constant upper bound N . The step is normalised to 1. It is essential for a
structured loop that there are no statements within the loop body that change the value of the
induction variable i, or leave the loop prematurely, i.e. a goto to some jump target outside the
loop body as well as break are not permissible whereas continue is allowed. Structured loops are
common as do-loops in Fortran, but because C is less strict and does not prevent loops with side
effects, some extra caution is necessary when processing C loops.

for(i = 0; i < N; i++)

{
<Basic Block>

}

Figure 20: Simple, structured loop

Pointer assignments apart from initialisations to some start element of the array to be traversed
are not permitted. In particular, dynamic memory allocation and deallocation cannot be handled
because of the potentially unbounded complexity of dynamic data structures. On the contrary,
initialisations of pointers to array elements may be done repeatedly and even in dependence on
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some induction variable, i.e. within a loop construct. Figure 21 shows a program fragment with
initialisations of the pointers ptr1 and ptr2. Whereas ptr1 is statically initialised, ptr2 is ini-
tialised repeatedly within a loop construct and with dependence on the outer iteration variable
i.

int array1[100], array2[100];

int *ptr1 = &array1[5];

int *ptr2;

for(i = 0; i < N; i++)

{
ptr2 = &array2[i];

for(j = 0; j < M; j++)

{
...

}
}

Figure 21: Legal pointer initialisations

Data dependent pointer arithmetic is the change of a pointer itself (i.e. not the value pointed
to) in a way that is dependent on the data processed and which might change from one program
execution to the other. Because it is not known in advance which data will be processed by
future program runs, the compiler cannot know at compile time which final value the pointer will
eventually have. Although there are some powerful methods available e.g. [64] for this problem
of pointer or alias analysis, these kind of program constructs are not considered by the pointer
clean-up conversion algorithm and are therefore not permitted. In general, all pointer expressions
that can be evaluated statically can be handled.

In a similar way as data dependent pointer arithmetic, function calls might change pointers
involved in the conversion (see figure 22). If there are functions that take pointers to pointer as
arguments, the actual pointers passed to the function itself and not only their content can be
changed. Hence, it must be ensured that no function calls of this type occur within the program
fragment to be converted.

ptr = &array[0];

function1(ptr); /* OK */

function2(&ptr); /* not OK */

Figure 22: Function calls changing pointer arguments

The pointer conversion can only be applied if the resulting index functions of all array accesses
are affine functions. These functions must not be dependent on any other variables apart from
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induction variables of some enclosing loops. If all pointer increments/decrements are constant, this
can be ensured easily.

Finally, the number of increments of a pointer must be equal in all branches of conditional
statements. The compiler cannot determine during compile time which branch will actually be
taken during run-time, so no information on the total number of pointer increments after leaving
the condition statement is available. Situations with unequal number of pointer increments are
extremely rare and typically not found in DSP code.

After giving this long list of assumptions, it must be mentioned that overlapping arrays and
access to single arrays via several different pointers is explicitly allowed. Because pointer conversion
does not change the semantic meaning of a program, but only changes its representation these kind
of constructs that often prevent standard program analysis do not interfere with the conversion
algorithm.

Not all of the previously mentioned conditions must be necessarily as strict as given here. Some
constraints can be relaxed as described below, but for the purpose of clarity and simplicity of the
algorithm to be presented the stricter set of assumptions will be used in the outline of the algorithm.

So far, do-while and while-do loops have not been considered. The main reason for doing so is
the fact that termination criteria of these kind of loops often tends to be dependent on the content
of some variable different from a basic induction variable. In such a case the upper loop bound
can be data dependent and might not be evaluated during compile time. If the lower and upper
loop bounds can be determined and are known after preceding analysis at compile time, no further
obstacles prevent treatment of these loops. Even in case that the upper bound of the iteration space
is not known, the loop can be converted. But conversion of the pointer accesses cannot be applied
to any code following that loop because the final point in iteration space, which is the index of the
corresponding array at further replacements, is not known. If there is no code following the loop
or pointer clean-up conversion is only of interest for the code so far, the algorithm can be extended
easily to cover the given cases.

17 Algorithm

After the coarse outline on how the algorithm works given above a more precise and formal pre-
sentation is given in this section.

The presented algorithm is suitable for handling functions with simple loops, one-dimensional
arrays and conditional branches. In the interest of simplicity of presentation the algorithm does
not cover enhanced features like loops nests. These features will be introduced in the next section.

The algorithm 1 keeps a list of nodes to visit. This list of nodes is obtained by traversing
the control flow graph which is supplied as a parameter to the algorithm in preorder. As long
as there are nodes in this list, the next one will be taken and processed. Depending on the
type of statement, different actions will be started. If the statement is a pointer declaration and
initialisation or a pointer assignment, i.e. it has either the form TYPE *ptr = &array[index] or
ptr = &array[index], an entry (ptr, array, index, 0) is added to a data structure map containing
the actual mappings of pointers to arrays. In this entry ptr is the name or id of a pointer, array the
corresponding array, index the index of the element of the array the pointer initially points to, and
the last element of the quadruple is the number of increments of the pointer in a loop body. This
number corresponds to the step between two consecutive iterations and is initialised to 0. In case of
some statement changing a pointer, i.e. a statement containing pointer arithmetic, the expression
is evaluated and the entry in the map is updated. If a pointer is dereferenced, the name of the
corresponding array and its current offset are looked up in map, and with this information it is easy

- 47 -



MHAOTEU: Project No 24942

Algorithm 1 Pointer clean-up conversion for CFG G
map ← ⊘
L ← preorderList(G);
while L not empty do

stmt ← head(L);
removeHead(L);
if stmt is pointer declaration and initialisation then

map ← map ∪ (pointer,array,offset,0)
else if stmt is for loop then

processLoop(stmt,map)
else if stmt is pointer assignment statement then

if (pointer,array,*,*) ∈ map then
map ← map - (pointer,array,*,*)

end if
map ← map ∪ (pointer,array,offset,0)

else if stmt contains pointer reference then
Look up (pointer,array,offset,*) ∈ map
if stmt contains pointer-based array access then

replace pointer-based access by array[initial index+offset]
else if stmt contains pointer arithmetic then

map ← map - (pointer,array,offset,*)
calculate new offset
map ← map ∪ (pointer,array,new offset,0)

end if
end if

end while
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to replace the pointer-based access by an explicit array access. Loop statements are handled in a
separate procedure that receives the loop statement (together with its loop body) and the map as
parameters.

The procedure for handling loops is given as algorithm 2. Similar to the basic algorithm the
loop handling procedure proceeds a preorder traversal of the nodes of the loop body. Two passes
over all nodes are made: The first pass counts the total offset within one loop iteration of pointers
traversing arrays, the second pass then is the actual replacement phase. The total offset of a pointer
is the absolute sum of all increments and decrements from the beginning to the end of the loop body.
Whenever the loop finishes an iteration, the pointers are moved by the number of elements given
by this offset. The second phase then takes this information in order to replace the pointer-accesses
and all expressions containing pointer arithmetic and to construct affine index functions for the
array accesses. The offset of the first pass is the multiplicative coefficient to the induction variable,
i.e. the step which is used from one iteration to the other. Single pointer increments or decrements
within a loop body affect the additive component of affine index functions. The procedure keeps
track of the pointer increments/decrements it encounters and uses the current distance from the
value at the entry of the loop body as the local offset when performing the replacement.

The values for the introductory example 18 as computed by the algorithm and stored in map
are shown in figures 23 and 24. The final array index functions fj(i) are computed as

fj(i) = I × i + (∆ + δ)

with the total increment I, induction variable i, initial offset ∆ and local offset δ. Each of resulting
index functions fj(i) for all array accesses j are affine functions.

The algorithm passes every simple node once, and every node enclosed in a loop construct twice.
Hence, the algorithm uses time O(n) with n being the number of nodes of the CFG. The exact time
depends on the number and the size of loops. Improvements in handling loops are possible, e.g. by
storing the nodes with pointer accesses for further replacement rather than spending a second pass.
However, the algorithm will still run in linear time. Space complexity is linearly dependent on the
number of different pointers used for accessing array elements, because for every pointer there is a
separate entry in the map data structure.

18 Extensions

So far only simple loops with “plain” loop bodies have been considered. Extensions to the algorithm
are shown in this section which among others things enable treatment of general loops nest – and
therefore also perfect loop nests –, conditional branches and multi-dimensional arrays.

Not all of the presented extensions have been implemented during this project. So far, only
“array parameters” are fully functional and “perfect loop nests” are prototyped, respectively. The
other extensions have been developed and tested manually.

18.1 Arrays passed as parameters of functions

If no legal pointer assignment can be found, but the pointer used to traverse an array is a formal
parameter of the function to be processed, it can be used as the name of the array. Kernighan and
Ritchie [24] give following definition:

A postfix expression followed by an expression in square brackets is a postfix expression
denoting a subscripted array reference. One of the two expressions must have type
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Algorithm 2 Procedure processLoop(statement stmt, mapping map)

/* count all pointer increments in loop body and update map accordingly */
L = preorderList(loopBody)
while L not empty do

stmt ← head(L);
removeHead(L);
if stmt contains array arithmetic then

Look up (pointer,array,offset,increment) ∈ map
map ← map - (pointer,array,offset,increment)
calculate new increment
map ← map ∪ (pointer,array,offset,new increment)

end if
end while
/* replace all pointer increments in loop body according to map */
L = preorderList(loopBody)
while L not empty do

if stmt contains pointer reference then
Look up (pointer,array,offset,increment) ∈ map
Look up (pointer,local offset) ∈ offsetMap
if (pointer,local offset) 6∈ offsetMap then

offsetMap ← offsetMap ∪ (pointer,0)
end if
if stmt contains pointer-based array access then

index function ← increment × ind.var. + offset + local offset
replace pointer-based access by array[index function]

else if stmt contains pointer arithmetic then
offsetMap ← offsetMap - (pointer,local offset)
calculate new local offset
offsetMap ← offsetMap ∪ (pointer,new local offset)

end if
end if

end while
for all (pointer,*,*,*) ∈ map do

map ← map - (pointer,array,offset,increment)
new offset ← increment × upper loop bound + offset + local offset
map ← map ∪ (pointer,array,new offset,0)

end for
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int w, f;

int *ptr coeff, *ptr wi1, *ptr wi2;

int wi[2 * NumberOfSections];

int coefficients[5*NumberOfSections];

int x,y;

ptr coeff = &coefficients[0];

ptr wi1 = &wi[0];

ptr wi2 = &wi[1];

x = pin down(x, coefficients, wi);

y = x;

for (f=0;f<NumberOfSections;f++)

{
w = y - *ptr coeff++ * *ptr wi1;

w -= *ptr coeff++ * *ptr wi2;

y = *ptr coeff++ * w;

y += *ptr coeff++ * *ptr wi1;

y += *ptr coeff++ * *ptr wi2;

*ptr wi2++ = *ptr wi1;

*ptr wi1++ = w;

ptr wi2++;

ptr wi1++;

}

Contents of data structure map:
{(ptr, array, offset, increment), . . . }

(ptr coeff,coefficients,0,0)
(ptr coeff,coefficients,0,0),(ptr wi1,wi,0,0)
(ptr coeff,coefficients,0,0),(ptr wi1,wi,0,0),(ptr wi2,wi,1,0)

(ptr coeff,coefficients,0,1),(ptr wi1,wi,0,0),(ptr wi2,wi,1,0)
(ptr coeff,coefficients,0,2),(ptr wi1,wi,0,0),(ptr wi2,wi,1,0)
(ptr coeff,coefficients,0,3),(ptr wi1,wi,0,0),(ptr wi2,wi,1,0)
(ptr coeff,coefficients,0,4),(ptr wi1,wi,0,0),(ptr wi2,wi,1,0)
(ptr coeff,coefficients,0,5),(ptr wi1,wi,0,0),(ptr wi2,wi,1,0)
(ptr coeff,coefficients,0,5),(ptr wi1,wi,0,0),(ptr wi2,wi,1,1)
(ptr coeff,coefficients,0,5),(ptr wi1,wi,0,1),(ptr wi2,wi,1,1)
(ptr coeff,coefficients,0,5),(ptr wi1,wi,0,1),(ptr wi2,wi,1,2)
(ptr coeff,coefficients,0,5),(ptr wi1,wi,0,2),(ptr wi2,wi,1,2)

Figure 23: First pass of clean-up conversion and values of the map data structure
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int w, f;

int *ptr coeff, *ptr wi1, *ptr wi2;

int wi[2 * NumberOfSections];

int coefficients[5*NumberOfSections];

int x,y;

ptr coeff = &coefficients[0];

ptr wi1 = &wi[0];

ptr wi2 = &wi[1];

x = pin down(x, coefficients, wi);

y = x;

for (f=0;f<NumberOfSections;f++)

{
w = y - *ptr coeff++ * *ptr wi1;

w -= *ptr coeff++ * *ptr wi2;

y = *ptr coeff++ * w;

y += *ptr coeff++ * *ptr wi1;

y += *ptr coeff++ * *ptr wi2;

*ptr wi2++ = *ptr wi1;

*ptr wi1++ = w;

ptr wi2++;

ptr wi1++;

}

Contents of data structure offsetMap:
{(ptr, localoffset), . . . }

(ptr coeff,0),(ptr wi1,0),(ptr wi2,0)
(ptr coeff,1),(ptr wi1,0),(ptr wi2,0)
(ptr coeff,2),(ptr wi1,0),(ptr wi2,0)
(ptr coeff,3),(ptr wi1,0),(ptr wi2,0)
(ptr coeff,4),(ptr wi1,0),(ptr wi2,0)
(ptr coeff,5),(ptr wi1,0),(ptr wi2,0)
(ptr coeff,5),(ptr wi1,0),(ptr wi2,1)
(ptr coeff,5),(ptr wi1,1),(ptr wi2,1)
(ptr coeff,5),(ptr wi1,1),(ptr wi2,2)

=⇒ (ptr coeff,5),(ptr wi1,2),(ptr wi2,2)
Array index functions

coeff. wi (1) wi (2)

5× f + 0 2× f + 0
5× f + 1 2× f + 1
5× f + 2
5× f + 3 2× f + 0
5× f + 4 2× f + 1

2× f + 0 2× f + 1
2× f + 0

Figure 24: Second pass of clean-up conversion, values of the offsetMap data structure and affine
index functions
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“pointer to T”, where T is some type, and the other must have integral type; the type
of the subscript expression is T. The expression E1[E2] is identical (by definition) to
*((E1)+(E2)).

Figure 25 shows a function with parameters *px and *ph. Both pointers can be legally inter-
preted as pointing to some position inside arrays as done in the original program on the left side.
After converting the pointer accesses the program on the right side results which is semantically
identical.

void pin_down(int *px, int *ph)

{
int i;

for (i = 0; i < LENGTH; ++i)

{
*px++ = 1;

*ph++ = 1;

}
}

void pin_down(int *px, int *ph)

{
int i;

for (i = 0; i < LENGTH; ++i)

{
px[1*i+0] = 1;

ph[1*i+0] = 1;

}
}

Figure 25: Example of pointer clean-up conversion of arrays passed as function arguments

18.2 Perfect Loop Nests

Perfect loop nests of structured loops are different from simple loops in the way that the effect of
a pointer increment/decrement in the loop body not only multiplies by the iteration range of its
immediately enclosing loop construct, but by the ranges of all outer loops. Therefore, all outer
loops have to be considered when converting pointers of a perfect loop nest.

int image[X*Y];

int *pimage = &image[0];

for(i = 0; i < X; i++)

{
for(j = 0; j < Y; f++)

{
*pimage++ = 1;

}
}

int image[X*Y];

for(i = 0; i < X; i++)

{
for(j = 0; j < Y; f++)

{
image[(Y*i) + (1*f) + 0] = 1;

}
}

Figure 26: Pointer clean-up conversion of perfect loop nests

Figure 26 shows on the left side a perfect loop nest with a simple loop body. The pointer pimage
traverses the array image and initialises all elements to 1. When analysing the outer loop, i.e. the
loop with induction variable i, its loop body is another loop that moves the pointer by Y steps.
Consequently, each iteration step of the outer loop is multiplied by Y. The inner loop contributes to
the resulting index function as an additive component dependent on j as known from simple loops.
Thus, the converted loop has the form as shown on the right side of figure 26.
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for(i1 = 0; i1 < N1; i1 + +)

{
for(i2 = 0; i2 < N2; i2 + +)

{
...

for(in = 0; in < Nn; in + +)

{
. . . *ptr . . .

}
}

}

Figure 27: General structure of perfect loop nest with pointer-based array access

for(i1 = 0; i1 < N1; i1 + +)

{
for(i2 = 0; i2 < N2; i2 + +)

{
...

for(in = 0; in < Nn; in + +)

{
. . . array[(

∑n−1
j=1 (ij ×Nj+1) + in + ∆ + δ)] . . .

}
}

}

Figure 28: Perfect loop nest after pointer clean-up conversion
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Resulting index functions are still affine functions, but they are now functions in all enclosing
induction variables. It is important to note that all loops of the perfect loop nest are structured
loops and no iteration range of an inner loop is dependent on any of the enclosing loops. Figures 27
and 28 show general forms of perfect loop nests and their form after pointer clean-up conversion,
respectively.

Handling perfect loop nests does not require extra passes over the loop. It is sufficient to detect
perfect loop nest and descent to the inner loop body while keeping track of the outer loops. Once
the actual loop body is reached conversion can be performed as usual, but with incorporating the
additional outer loop variables and loop ranges as part of the index functions. Hence, asymptotical
run-time complexity of the algorithm is not affected.

18.3 General Loop Nests

General loop nests differ from perfect loop nests in the possibility for more statements than a single
loop statement on each level of the outer loops. General loops nests do not have any restrictions
on the number and type of statements their loop bodies might contain. Hence, it is possible that a
loop contains several consecutive inner loops among among other non-loop statements. Ordinary
statement can occur before, between or after inner loops. Additionally, there are no restrictions
that prevent these ordinary statements from being statements containing pointer arithmetic or from
re-initialising pointers, i.e. pointer assignments. Figure 29 shows the structure of a general loop
nest.

for(i1 = 0; i1 < N1; i1 + +)

{
S11

for(i21 = 0; i21 < N21; i21 + +)

{
...

}
S12

for(i22 = 0; i22 < N22; i22 + +)

{
...

}
S13
...

}

Figure 29: General loop nest

In context of general loop nest several problems must be solved:

1. pointer assignments in outer loops,

2. pointer arithmetic in outer loops,

3. consecutive loops with references to same arrays,
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4. mixed ordinary and loop statements.

Although this list of problems gives the impression of a quickly rising complexity of a possible
algorithm, none of the listed problems is really “hard”. Eventually, even the linear time complexity
remains unchanged. Problems 1) and 2) can be solved with generalisations of already used tech-
niques. The bookkeeping of loop information must be extended in order to store information on
all enclosing loops. Additionally, it is necessary to keep track of the loops a pointer movement is
dependent on. Pointers are not automatically dependent on all outer loops, e.g. when a pointer
re-initialisation takes place all outer loops from this point on do not affect the pointer movement.
Problems 3) and 4) are actually no new problems, they already occur in functions with simple loops.
But this time, loops and statements are not at the top level, i.e. the level of a function body, but
on loop level. Therefore, the same distinction between cases as seen in the base algorithm has to be
introduced in the loop handling procedure. After finished one loop, the pointer-to-array-mapping
must be updated according to the pointer movement in the loop body and the iteration ranges of
enclosing loops. With this knowledge ordinary non-loop statements before, between or after inner
loops are natural extensions to the framework.

int *p_x = &x[0] ;

int *p_h = &h[0] ;

int *p_y = &y[0] ;

for (i = 0 ; i < 3; i++)

{
p_x = &x[0] ;

for (f = 0 ; f < 3; f++)

{
*p_y += *p_h++ * *p_x++ ;

}

p_y++ ;

}

for (i = 0 ; i < 3; i++)

{

for (f = 0 ; f < 3; f++)

{
y[i] += h[3*i+f] * x[f];

}

}

Figure 30: Example of pointer clean-up conversion of general loop nests

An example is shown in figure 30. Since the pointer p x is re-initialised within the i-loop but
outside the f-loop, the access via p x inside the inner loop body is only dependent on f and not
on i. The opposite is true with the pointer access p y. It is not changed in the f-loop, but in the
i-loop. The access to the array h is dependent on i as well as on f.

18.4 Conditional branches

Virtually all programs, not only DSP code, contains not only sequential sequences of instructions,
but also conditional branches. Because different branches of such constructs are executed mutually
exclusively, effects of all branches on pointer conversion must be considered independently from
each other.

An important assumption is that pointer increments must be equal in all branches. This as-
sumption seems to be strict, but it is fulfilled already in nearly all programs. The way arrays are

- 56 -



MHAOTEU: Project No 24942

traversed is often static and not dependent on any decision taken at run-time. Thus, there are only
a very few programs that changes array traversal dependent on the outcome of some expression
evaluation at run-time.

int *ptr = &array[0];

for (i = 0 ; i < N; i++)

{
if ( . . . )

{
. . . ptr++ . . .
. . . ptr++ . . .

}
else

{
. . . ptr++ . . .
. . . ptr++ . . .

}
}

for (i = 0 ; i < N; i++)

{
if ( . . . )

{
. . . array[2*i+0] . . .
. . . array[2*i+1] . . .

}
else

{
. . . array[2*i+0] . . .
. . . array[2*i+1] . . .

}
}

Figure 31: Example of pointer clean-up conversion of conditional branches

Figure 31 shows a loop with a conditional branch before and after pointer clean-up conversion.
Each branch contains two references to ptr. The local offset is calculated independently in each
branch starting with the value valid at the node of control flow branching, i.e. the if-statement.

The extended algorithm just has to check if the condition of matched pointer increments if
fulfilled, and if so counting and replacement can be performed in all branches with the same initial
mapping of pointers to arrays. Because all pointer changes must match in all branches, any one of
the possible mappings can be chosen as the resulting mapping after leaving the conditional branch
construct.

switch-statements are generalisations of conditional branches. Basically, switch-statements
are equivalent to cascaded if-statements. For this reason they can be handled in the same way as
if-statements, but now more than two branches must be considered.

18.5 Multi-dimensional arrays

Multi-dimensional arrays in C are in no way different from one-dimensional arrays. They are just
nested one-dimensional arrays, i.e. the base type of an n-dimensional array is an (n-1)-dimensional
array etc. Nonetheless, differences show up in pointer-based traversal of multi-dimensional arrays.
It is not possible anymore to traverse a multi-dimensional array with a single pointer, because
movement in any dimension requires pointers of the corresponding type of that dimension. Because
of the inconvenience of having pointer of different types, i.e. pointers to actual elements and pointers
to “sub-arrays”, multi-dimensional arrays are rarely object of pointer traversal. However, when
pointer type information is used, the dimension of the pointer increment can be reconstructed.
Figure 32 shows an example of the application of pointer clean-up conversion of a 2-dimensional
array.

More often, multi-dimensional arrays can be found already linearised in order to enable traversal
by a single pointer. Linearisation of multi-dimensional arrays is the mapping of elements of higher
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int a[10][20];

int (*ptr_y)[20] = &a[0];

int *ptr_x;

for(i = 0; i < 10; i++)

{
ptr_x = *ptr_y++;

for(j = 0; j < 20; j++)

{
*ptr_x++ = 5;

}
}

int a[10][20];

for(i = 0; i < 10; i++)

{

for(j = 0; j < 20; j++)

{
a[1*i+0][1*i+j] = 5;

}
}

Figure 32: Example of pointer clean-up conversion of a 2-dimensional array

dimensions onto some sequential sequence of elements. For example, a 2-dimensional array can be
stored as a linear array with elements stored row by row.

Pointer accesses to linearised multi-dimensional arrays cannot be distinguished from “ordinary”
accesses to 1-dimensional arrays. Hence, the technique for pointer clean-up conversion is applicable
without any changes. After converting the array accesses a further step that re-transforms the
arrays to their original multi-dimensional form is not only possible, but also useful for further
analysis and optimisations, e.g. data dependence analysis and automatic partitioning of data and
computation.
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19 Software-Pipelining

Software-Pipelining is a loop optimisation technique that seeks to exploit Instruction Level Par-
allelism by overlapping consecutive loop iterations in such a way that statements from different
iterations are in state of execution simultaneously. Since the performance of VLIW architectures
like DSPs is strongly dependent on the compilers’ ability to fill most of the wide instruction words
with independent operations, this technique plays a key role in DSP code generation.

20 Motivation

Software-Pipelining attempts to generate an instruction schedule for a loop in such a way that
the total execution time of the loop is minimised. The idea is to take independent operations
from subsequent iterations and to execute them in parallel. This of course is only possible if the
underlying architecture support Instruction Level Parallelism.

for (f = 0; f < N; f++)

{
t_0 = Z ;

t_2 = A[1 * f] ;

t_3 = B[1 * f] ;

t_1 = t_2 * t_3 ;

t_0 += t_1 ;

Z = t_0 ;

}

t_0 = Z ;

t_2 = A[0] ;

t_3 = B[0] ;

t_1 = t_2 * t_3 ;

t_0 += t_1 ;

for (f = 0; f < N-1; f++)

{
Z = t_0 ;

t_0 = Z ;

t_2 = A[1 * f + 1] ;

t_3 = B[1 * f + 1] ;

t_1 = t_2 * t_3 ;

t_0 += t_1 ;

}
Z = t_0 ;

Figure 33: Sequential Loop and Software-Pipelined Loop

Figure 33 shows a simple loop in its original, i.e. sequential, form and additionally the same loop
after applying software-pipelining. On the first view it is not obvious why the software-pipelined
loop is superior to the original one. A look at figure 34 can make this fact more clear. The loop
body of the original loop body is shown in a). If no further optimisations are performed, sequential
code is executed. One instruction follows the other, all iterations are executed sequentially, i.e.
one iteration is finished before the next one is started. Each iteration takes 6 steps to finish. The
total execution time 3 of the sequential loop is therefore N × 6. b) shows the loop body after
performing Local Compaction. Local compaction schedules the instruction of a single loop body in
such a way that data independent operations can be executed simultaneously. A data dependent
instruction must be scheduled after the instruction it is dependent on. If no further assumptions
are made on the number and type of instructions that can be executed in parallel, the schedule
in b) results. The number of steps required for one iteration has been decreased to 4. Hence, the

3All example cost calculations neglect potential branch and jump penalties. The purpose is to demonstrate the
possible performance gain rather than giving a cycle accurate loop timing.
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t_0 = Z; t_2 = A[1 * f]; t_3 = B[1 * f];

t_1 = t_2 * t_3;

t_0 += t_1;

Z = t_0;

t_0 = Z; t_2 = A[1 * f]; t_3 = B[1 * f];

t_1 = t_2 * t_3;

t_0 += t_1;

Z = t_0;

t_1 = t_2 * t_3;

t_3 = B[1 * f];

t_2 = A[1 * f];

t_0 = Z;

t_0 += t_1;

Z = t_0;

a) Sequential Loop b) Locally Compacted Loop

c) Software-Pipelined Loop

t_0 = Z; t_2 = A[1 * f]; t_3 = B[1 * f];

t_1 = t_2 * t_3;

t_0 += t_1;
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t_0 += t_1;

Z = t_0;

Iteration 2

Iteration 1

Epilogue

Prologue

New Loop Kernel

Iteration 2

F
igu

re
34:

S
oftw

are-P
ip

elin
in

g
of

a
sim

p
le

lo
op

-
60

-



MHAOTEU: Project No 24942

total number of steps for the entire loop is N ×4. Part c) of the figure shows the software-pipelined
loop based on the locally compacted loop. Two consecutive iterations can be overlapped as long
as data dependences are respected. Although it may appear as if the simultaneous execution of
Z = t 0 and t 0 = Z might violate data dependence constraints, this schedule is legal under the
assumption that all read accesses are performed before any write access. The resulting New Loop
Kernel which is framed by a blue box contains more parallel instructions and takes only 3 steps.
However, it becomes apparent that the new loop kernel represents some steady state of the loop.
Instructions before and after it perform the necessary initialisation and proper end. These code
segments are called Prologue and Epilogue, respectively. The new loop kernel takes 3 steps, and the
prologue and epilogue together take 4 steps. The loop range is decreased by 1 in order to take of
respect of the prologue and epilogue, therefore N − 1 iterations remain. The total number of steps
is (N − 1)× 3 + 4. When the number of steps for the locally compacted and the software-pipelined
loops are compared, the software-pipelined version is superior for any reasonable number N of
iterations:

Costlc ≥ Costsp

4N ≥ 3(N − 1) + 4

N ≥ 1 (36)

Because instruction scheduling is a task of a compiler that is done on a very low level, i.e.
the intermediate representation used is very machine-specific and detailed machine information is
available, software-pipelining is usually performed in some compiler back-end or code generator.
The compiler needs to know which machine instructions are available, how many instructions
can be issued simultaneously and which latencies these instructions have. The exact and optimal
solution to this scheduling is a NP-complete problem and therefore many compilers don not perform
software-pipelining at all or generate only sub-optimal schedules.

The approach of software-pipelining taken in this project is different. It assumes a commercial
DSP compiler that does not support software-pipelining and whose source code is not available for
an integration. In order to support the existing compiler to generate better loop schedules software-
pipelining is performed as a Source-to-Source Transformation during a preprocessing stage. The
software-pipelining program takes plain C code as input and outputs again C code. This modified
code is that used as an input to the actual compiler that generates the object code.

21 Basics

Since optimal scheduling a loop is a computationally hard problem, most software-pipelining tech-
niques aim to achieve a reasonably good rather than optimal schedule. Giving up the goal of
optimality of the solution in favour of efficient compilation algorithms is just one of the many
trade-offs compiler developers have to find. One of the many different efficient software-pipelining
methods is Modulo Scheduling [53]. It is characterised by its properties to take the same schedule
for each iteration of the loop and to initiate consecutive iterations at a fixed distance to each other.
The constant distance between the iteration initiations is the Initiation Interval (II). To achieve
the highest benefit from Modulo Scheduling the Initiation Interval should be as small as possible,
i.e. the number of overlapped steps of consecutive iterations as high as possible. The smallest
possible and still valid initiation interval with respect to data dependences and resource constraints
is the Minimum Initiation Interval (MII). After this has been determined, the actual process of
scheduling a new loop kernel can be started. Since is a theoretical lower bound, it cannot always
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be reached in practice. An iteration algorithm starts with the MII and increases it until a valid
loop kernel can be generated. Finally, code for the new loop kernel as well as for the prologue and
epilogue is created and output.

The algorithm only works for simple (i.e. inner) loops without conditional branches. Conditional
branches introduce several possible execution paths through the loop body which all must be
considered during software-pipelining. Alternative algorithms with extended capabilities to handle
even more complex loops are described in a later section. First, the following sections give an
overview of the determination of the MII and construction of a new loop kernel.

22 Minimum Initiation Interval

The Minimum Initiation Interval is a theoretical lower bound for the distance of initiations of
consecutive iterations and is based on estimations. The MII is influenced by resource constraints
such as the number of available functional units of a certain type and the different latencies of
the performed operations. Another influence on the MII stems from data dependences between
operations in different iterations. An operations must not be initiated before an operation it is
dependent on in some earlier iteration is finished. The first component of the MII which is based
on resource-constraints is denoted as ResMII and the other one is the recurrence-constraint MII
RecMII. The final MII is determined as the maximum of ResMII and RecMII:

MII = ⌈max(ResMII,RecMII)⌉ (37)

Figure 35 shows the Data Dependence Graph (DDG) and a Schedule for the loop of the intro-
ductory example. In the DDG the nodes represent instructions of the loop body and the edges
dependences between instructions. In this example only true dependences are displayed. However,
output and anti dependences must be considered too in the actual computation. The dependence
edges are labelled with latencies of the operations. The backwards edge between Z = t 0 and t 0 =

Z is a loop-carried dependence, the others are loop independent dependences. The resulting sched-
ule for the loop body is given below. If the hypothetical machine has 4 identical functional units,
the loop can be scheduled into 5 cycles while latencies (of the multiplication) and data dependences
are respected.

22.1 Resource-constrained Minimum Initiation Interval

Resource availability imposes constraints on the Minimum Initiation Interval. The Resource-
constrained Minimum Initiation Interval (ResMII) is determined by summing up all resource re-
quirements of one iteration on the one hand side, and all resources available on the other. Ob-
viously, the available resources must meet the consumption of all operation in one loop iteration.
The ResMII is estimated as the maximal consumption of a specific resource type divided by the
number of those resources, or

ResMII = max
i∈FU types

(
# FU type i required

# FU type i in hardware

)

(38)

For the example in figure 35 this means to take the number of instructions and divide it by the
number of functional units as all functional units are equivalent. Therefore, ResMII = 6

4 = 3
2 .
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t_0 = Z; t_2 = A[1 * f]; t_3 = B[1 * f];

Functional Unit 1 Functional Unit 2 Functional Unit 3 Functional Unit 4

Z = t_0;

t_0 += t_1;

t_1 = t_2 * t_3;

Cycle

1

2

3

4

5

t_1 = t_2 * t_3;t_0 = Z;

t_2 = A[1 * f]; t_3 = B[1 * f];

Z = t_0;

t_0 += t_1;

1 1

1

1

1 2

Figure 35: Data Dependence Graph and schedule with resource-constraints
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22.2 Recurrence-constrained Minimum Initiation Interval

The second kind of lower limit of the MII results from data dependences. Whereas data dependences
of a single iteration form a spanning tree of the DDG, loop-carried dependences are backward edges
in this graph. Loop independent and loop-carried dependences can form cycles in the DDG. The
difference time an instruction is issued and the instruction it is dependent on must be bigger than
the sum of latencies on the path between them. Let c be a circuit in the DDG, Delay(c) the
total sum of latencies along that circuit and Distance(c) the number of different iterations spanned
by the dependence circuit. Because all scalar definitions form output dependences with itself, i.e.
a value written by some instance of a definition in some iteration is overwritten by the another
instance of that definition at some later iteration, the same operation must not be issued earlier
than Delay(c) later. Or written another way

II ×Distance(c) ≥ Delay(c) (39)

Because there might be several dependence cycles in a DDG, the RecMII must be a conservative
estimation and is therefore defined as the worst-case constraint:

RecMII = max
c∈dependence circuits

(
Delay(c)

Distance(c)

)

. (40)

The example in figure 35 contains only a single dependence cycle4. The sum of latencies
Delay(c) on this cycle is 3, the number of different iterations Distance(c) involved in it is 2. Hence,
RecMII = 3

2 holds. With ResMII and RecMII together, the MII for the example is calculated as

MII = ⌈max(ResMII,RecMII)⌉ = ⌈max(
3

2
,
3

2
)⌉ = 2 (41)

With Modulo Scheduling this lower limit cannot be reached. However, this MII gives a good
initialisation value for the iterative search for an II that can be practically realised.

23 Scheduling a New Loop Kernel

After the MII has been determined, a new loop kernel can be scheduled. Starting with the MII,
the algorithm tries to find a schedule that overlaps consecutive loops, respects data dependences
and uses no more than the available resources. Not always such a schedule can be found; in such a
case the algorithm increases the II by one and starts again. The algorithm terminates when a valid
schedule is found or the II has reached a certain threshold. In the latter case, software-pipelining
is considered as not profitable and some other loop scheduling technique should be applied.

Figure 36 shows the example loop from above and some overlapping of loop iterations. Be-
cause Modulo Scheduling constructs a single loop schedule for all iterations and a single II, no II
corresponding to the MII of 2 can be found. II must be increased to 4 until a valid schedule is
found. The instructions of different iterations are put together into a single scheduling block that
corresponds to the generated instruction stream. From this scheduling table, the Prologue, the
Epilogue and the new loop kernel can be extracted and output.

For the construction of the new loop kernel a Modulo Resource Reservation Table (MRT) is used.
This table stores information on the utilisation of resources as a result of instruction scheduling.

4Although there are actually more dependence cycles these are not shown in the figure in order to keep the example
simple.
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t_0 = Z; t_2 = A[1 * f]; t_3 = B[1 * f];

Functional Unit 1 Functional Unit 2 Functional Unit 3 Functional Unit 4

Z = t_0;

t_0 += t_1;

t_1 = t_2 * t_3;

t_0 = Z; t_2 = A[1 * f]; t_3 = B[1 * f];

Functional Unit 1 Functional Unit 2 Functional Unit 3 Functional Unit 4

Z = t_0;

t_0 += t_1;

t_1 = t_2 * t_3;

t_0 = Z; t_2 = A[1 * f]; t_3 = B[1 * f];

Z = t_0;

t_0 += t_1;

t_1 = t_2 * t_3;

Initiation Interval II

Cycle
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Iteration 1

Iteration 2
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The MRT stores for every operation which functional unit is used and for how long it is occupied.
Since Modulo Scheduling produces repetitive schedules, the MRT has exactly II rows. Each column
represents a functional unit. An entry in some field of the table indicates that the corresponding
resource is busy at that time; on the contrary, an empty field stands for some available resource.

The main task of the modulo scheduler is to place the instructions of the new loop kernel into
the MRT in a optimal way. Different scheduling algorithms with varying complexity and quality
have been proposed. However, most of the times some variant of List-Scheduling is used. List-
Scheduling is a one-pass scheduling that schedules operations according operations in a basic block
via a topological traversal of its DDG. Independent operations are scheduled as early as possible,
whereas data dependent operations are delayed until the operations they are dependent on are
finished. Often this algorithm constructs that are near-optimal schedule. Another advantage is the
low computational complexity of this algorithm itself, which allows for application even on bigger
loops.

The final step is the code generation. The operations in the Epilogue, Prologue and new loop
kernel must be compacted and assembled into VLIW instructions which are then output.

24 Extensions

Since Software-Pipelining is a potentially very powerful loop optimisation, many extensions to the
basic algorithm have been developed. Extensions range from handling of loops with conditional
branches and software-pipelining of loop nests to more complex techniques for generating schedules
with multiple initiation intervals and techniques for generating better local schedules of the new loop
kernel. One of the many techniquse for handling loops with conditional branches [22] is discussed
briefly in next section.

24.1 Software-Pipelining of Loops with Conditional Branches

Software-Pipelining Loops with conditional branches is substantially harder because there are dif-
ferent paths through the loop body which have to be considered. Different combinations of control
flow paths can be taken in consecutive iterations, therefore all possible effects of overlapping oper-
ations from these paths must be covered by the new loop kernel. Because each path might have
its own set of iterations, this could lead to multiple IIs and different schedules for each branch
combination, respectively. An overview of many different approaches to this problem can be found
in [22, 58]. At this place, only Predicated Modulo Scheduling that relies on Conditional Execution
(see section 8) is presented.

The two key elements of Predicated Modulo Scheduling are if-conversion and Conditional Ex-
ecution. In a first step, all conditional branches are converted into guarded operations. This
corresponds to a conversion of control dependences into data dependences. The resulting code
does not contain any more conditional branches, but guarded operations. The second step is then
Modulo Scheduling of the loop with a single basic block as its loop body.

Figure 37 shows an example of the if-conversion. On the left side the original program with an
if-statement is shown. The right side shows the equivalent program fragment after if-conversion.
The expression that is taken to decide which branch to take, is evaluated and its results is stored
in P. The following instructions are guarded with either P or its complementary value !P depending
on the branch the instructions originate from. The resulting piece of code is a single basic block,
i.e. it contains no branches anymore.

- 66 -



MHAOTEU: Project No 24942

if (exp)

{
Statement 1;

...

}
else

{
Statement 2;

...

}

P = exp;

[P] Statement 1;

[P] ...

[!P] Statement 2;

[!P] ...

Figure 37: Example of if-conversion

Because many DSPs such as the Philips TriMedia (see section 8) support Conditional Execu-
tion, Predicated Modulo Scheduling can be easily adapted to such an architecture. Benefits clearly
arise from the fact that loops with conditional branches can be software-pipelined and therefore
speeded up by a comparatively simple extension to the basic algorithm. However, Predicated Mod-
ulo Scheduling has some disadvantages, too. Because there are instructions with complementary
predicates, only one group is executed at a time. The other group is completely ignored. Although
these instructions are not actually executed, they are assigned to some functional unit that is not
available anymore to other instructions at that time. The overall utilisation of the processor re-
sources decreases as a result. An additional effect is the increase of the MII to a larger value than
that of any of the individual paths alone. This is caused by the fact that the if-converted loop is a
single basic block with as many instructions as the sum of the instructions of both branches before
the conversion. The resource consumption of this larger basic block must be fulfilled by available
functional units, which results in a larger ResMII. This larger ResMII seems not to be a major
drawback as Hu [22] refers to results that indicate that the with Predicated Modulo Scheduling
achievable II is often close to the MII.

For this project, Predicated Modulo Scheduling was not considered because of its dependence
on the ability to generate Predicated Operations. The actual Software-Pipelining approach in this
project is on Source Level, i.e. C programming language, and there are no equivalent constructs
available. Although, the conditional expression (exp1 ? exp2 : exp3) can be compiled into
Predicated Operations, there is no guarantee that this will really be done by the compiler.

25 Implemented Software-Pipelining Algorithm

During this project a Modulo Scheduling Software-Pipeliner on Source-to-Source level has been
implemented and integrated into Octave. Due to the different level, i.e. source level as opposed to
machine-specific level, some adaptions of the presented basic method were necessary. These concern
mainly the reduction of complexity of C expressions and the modelling of a machine instruction set
in C. The main ideas are based on previous works by Su et al. [60] and were extended and changed
to study the effects in a different environment.

In the following an overview of the different stages of the software-pipeliner are given. The
individual stages are explained briefly.

1. Pointer Clean-up Conversion
The Pointer Clean-Up Conversion is the transformation described in section 12 and serves the
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purpose to make data dependence analysis easier. After Pointer Clean-up Conversion Array
Data Dependence Analyses can be applied.

2. Decomposition into Pseudo-3-Address-Form
This steps breaks down C expressions into much simpler expressions and statements that
resemble to 3-address machine instructions. Since there is a big gap between potentially
arbitrary expressions in C and simple 3-address instructions of the DSP, this step attempts
to reduce this gap. The expected benefits from the expression decomposition are increased
flexibility at the scheduling stage and more precise instruction cost modelling. The scheduler
cannot freely move expressions if these are very complex and show many data dependences. By
decomposing them into simpler expressions, these intermediate expressions are much easier
to move. On the other hand, cost modelling for complex expressions is complicated. It
becomes much easier, if the statements and expressions correspond closely to “real” machine
instructions. For different instruction types, specific costs in order to model latencies can be
introduced5

3. Data Dependence Analysis
During Data Dependence Analysis a Data Dependence Graph (DDG) is constructed. Different
algorithms are used to take account of scalar and subscripted variables.

• Scalar Dependences
For scalar variable a full data flow analysis is used. It determines True, Anti and Output
Dependences. Potentially the data flow analysis can be used for programs with arbitrary
control flow. But the Software-Pipelining step is restricted to simple loops the full power
of this analysis is hardly used. Its flexible approach of implementation allows for future
re-use. Although an automatic Program Analyzer Generator (PAG) [] was available, the
scalar data flow analysis was implemented from scratch in C++ because the complexity
of the available tool is quite high and so the expected training period.

• Array Dependences
Array Dependence Analysis seeks to determine data dependence relations between array
accesses. As already outlined in section 6 Memory Disambiguation can be distinguished
from Array Data Flow Analysis. During the project an Array Data Flow Analysis has
initially been compared to a Memory Disambiguation Method. Because for the very most
cases both methods could prove independence of some array accesses between iterations
with the same precision6 of the solution, the Banerjee Test – a Memory Disambiguation
method – was finally integrated into Octave.

4. Software-Pipelining The implemented software-pipelining method is a Modulo Scheduling
procedure. It considers each C statement as an instruction that can be scheduled individually.
Because in a previous the complexity of C expressions and statements has been reduced to
Pseudo-3-Address-Form, the pipeliner has much flexibility even for smaller loops with only a
few original statements. The Abstract Syntax Tree is traversed until a for-loop construct is

5The original plan of utilising a cost model based on the Pseudo-3-Address-Form was abandoned during the project
because it would have made the software-pipelining worse. Nonetheless, it is just a simple step to integrate it for
other applications based on this program representation.

6Array Data Flow Analysis and Memory Disambiguation usually achieve results at very different precision. Due
to the relative simplicity of the used benchmark programs that showed very little loop-carried array dependences the
results were similar. For more complex programs the Array Data Flow Analysis is more capable of achieving better
results.
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found. while- and do-while-loops are ignored, because they are no structured loops. If the
for-loop construct is a simple structured loop, this loop can be processed directly. Otherwise,
if the loop is a loop nest, its inner loop is determined. Only this innermost loop will be
pipelined. The first step of the software-pipelining process is to generate a locally compacted
loop representation. Each statement is scheduled as early as possible. Statements that have
intra-loop dependences on other statements are delayed until all statements it is dependent
on are scheduled. The next step is to determine the II. The initial II is incremented until
some overlapping of consecutive loop iterations – two or more, depending on the amount of
overlapping – is found that respects all inter-loop dependences. When an II can be determined
that is smaller than the lenth of the compacted loop body, the new loop kernel is constructed.
If no such II exists, the software-pipelining process is abandoned. The construction of the new
loop kernel is basically the same as shown in figure 36. The new loop kernel is constructed from
all overlapped iterations. If operations to be scheduled contain array accesses the iteration the
operation is taken from must be considered. The number of the iteration in the overlapped
block is added to the constant part of the affine index function. In this way e.g., an array
access a[i] might become a[i+2], if the instance of that access is located in the third iteration
(i.e. iteration number 2). Finally, the software-pipelined loop is output. The new loop with
adjusted loop bounds are placed in-between the Epilogue and Prologue. Because the output
language C does not support constructs for generating parallel instruction blocks, the new
loop kernel is output as a sequential list of instructions. Beginning with the statements of the
earliest cycle, all statements of that cycle are written in order of ascending iteration numbers.
This guarantees that the implicit assumption that every read access is performed before any
write access in each cycle is obeyed. When all loops of the program are processed, the entire
program is written back into a C output file. This file can be used as an input file for any C
compiler. The loop transformation might make it easier to create better schedules although
no direct transfer of information on the independent operations that can be scheduled in
parallel can be transfered to that compiler.

The original idea to model machine characteristics such as latencies of different operations and
the issue width at the very high source level was abandoned during the project. Because per-
formance figures showed that additional constraints imposed to the scheduling process would
not generate better solutions, no further time was spent on integrating this part. The free
schedule, i.e. the schedule only respecting data dependences and assuming unbounded issue
width and only single-cycle latencies, is superior to more restricted schedules and therefore it
is the only one generated by the software-pipeliner.

All parts of the program are implemented in C++, because the Octave frontend is written in
C++. Extensive use of the object-oriented programming style during the project allowed for mod-
ularity and simplified design, implementation, test and integration of classes. Additionally, changes
of the implementation at later stages of the programming process did not influence other classes
because the class interfaces remained unchanged. The Pointer Clean-up Conversion, the Expres-
sion Decomposition and the Software-Pipelining are separate programs. This separation keeps the
individual programs simple and easier to maintain than a monolithic program. Furthermore, all
transformations can be applied individually and in any order.
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26 Empirical Results

During this project a Software-Pipelining algorithm on Source-to-Source Level has been imple-
mented. Because it is hard to reason about the behaviour of a complex system such as a compiler
in theory alone, a series of experiments has been conducted in order to quantify the effects of the
software-pipelining loop transformation.

27 Tests and Goals

The environment for all tests consisted of the programs developed during this project (Pointer
Clean-up Conversion, Statement and Expression Decomposition, Software-Pipelining), the Philips
TriMedia Compiler and Simulator, and the DSPstone benchmark suite. First, some transformations
on source level were applied, before the transformed program was used as input to the TriMedia
compiler. This compiler generates object code that can be evaluated with help of the TriMedia sim-
ulator. The simulator generates profiling output that was used for run-time comparisons. Because
the TriMedia compiler does not generate any additional assembler files, the actual machine code
was not analysed with respect to the instruction scheduling and final code size. Only the number
of clock periods for the individual loops were measured.

The aim of the test series was to get empirical results on how the different transformations, in
particular software-pipelining, influence the performance of a DSP system, i.e. DSP applications
compiled with a C compiler for a DSP processor. Because DSP applications differ significantly
from other applications, it is important to observe the effects for this type of applications rather
than for programs of different domains or artificial program constructs that can be easily chosen to
produce virtually every desired result. In order to get meaningful results, all transformed programs
were compared to the original unmodified program. The transformations were applied individually
as well as in combinations to learn more about their individual behaviour and their interaction
with other optimisations that are part of the TriMedia compiler. The individual behaviour of a
transformation can only be observed if no other optimisations blur the results. On the other hand,
some transformations rely on other optimisations or enable or disable them. Therefore, all tests
were repeated for all available optimisation levels of the TriMedia compiler. Because software-
pipelining creates some static overhead in form of a loop prologue and epilogue, for some programs
a performance gain can only be expected after a certain number of iterations. To analyse the
dependence of the program performance on the loop range, some tests were repeated with different
numbers of iterations. Another often used source level optimisation is loop unrolling. Because loop
unrolling serves similar purposes than software-pipelining, in some tests these two techniques were
compared.

28 Observations and Results

In this sections the results obtained during the empirical evaluation are presented. Because the
Pointer Clean-up Conversion is a transformation that not only supports the data dependence anal-
ysis of the software-pipeliner, but also has its justification in context of other optimisation, it is
presented separately.
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28.1 Software-Pipelining

Figure 38 shows the performance figures for the programs biquad N sections, n real updates,
convolution and fir of the DSPstone benchmark suite. For all programs the run-time of the un-
modified program and after clean-up and decomposition alone, after clean-up and composition, after
clean-up, decomposition and software-pipelining and after decomposition and software-pipelining
are shown. Additionally, each diagram shows the run-times for each of these tests for the optimi-
sation levels O0, O1, O2 and O3 (compare section 10).

For the lower optimisation levels the programs after clean-up conversion usually take less cy-
cles than the unmodified programs. An exception is convolution; although without any further
optimisation the cleaned-up program is superior, the original programs performs better at opti-
misation level O1. At higher levels the original programs differ not so much from the programs
after clean-up conversion. Performances can be equal (n real updates), better (fir) or worse
(biquad N sections). If one version outperforms the other at a certain level, it does not mean
that this is true for the next higher level. For these four programs the pointer clean-up conver-
sion is able to increase performance significantly at lower optimisation levels, and at higher levels
performance is similar to that of the pointer-based code.
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Figure 38: Results for biquad N sections, n real updates, convolution and fir

The introduction of the decomposition step usually decreases the performance at the lower
optimisation levels. For the higher levels this penalty does not exist any more. Whereas the
decomposition by itself has no justification since it is only a supporting technique for the software-
pipelining, it is important to know that it does not deteriorate performance of the latter at higher
optimisation levels. The main reason for the decreased performance at level O0 is the introduction
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of many temporary variables and the resulting high number of register to register copy operations.
After the TriMedia compiler applies Copy-Propagation these copy operations do not exist any more.

Because the software-pipelined programs are first transformed by the decomposition transfor-
mation, they all perform badly without any further optimisations. At level O0 there is still the
above described penalty. For higher optimisation levels the results become more realistic. In gen-
eral, software-pipelined programs do not perform better than the original program. The run-times
of the original programs and the software-pipelined programs are equal or close to each other.
Surprisingly, no real benefit is achieved from software-pipelining.

Different version of the n complex updates program are shown in figure 39. In addition to
the comparison of the different transformations and optimisation levels, the number of iterations
is varied. Furthermore, 4-way loop unrolling was applied to the version with 1024 iterations. The
three version of n complex updates with different numbers of iterations (16,64,1024) do not show
significant changes over the increase of the loop range. Of course, absolute times increase, but
the relations between the original and transformed programs remain unchanged. For this pro-
gram there is no influence of the number of iterations on the performance. The overhead of the
loop prologue and epilogue is either not important at all or only significant for very small loop
ranges. For n complex updates software-pipelining shows some positive effect. At higher optimi-
sation levels the software-pipelined program in pointer-based representation performs better than
the unmodified program. The number of cycles can be reduced by up to 50% with decomposing
and software-pipelining this program. Because this program contains many pointer-based memory
references that are hard to analyse, the original program suffers from pipeline stalls due to memory
access latencies. After software-pipelining, some of these latencies can be hidden by other opera-
tions. When software-pipelining is compared to 4-way loop unrolling, software-pipelining is better
at higher optimisation levels whereas unrolling improves the program without optimisations. At
the higher levels – when software-pipelining is not influenced by the decomposition any more –
software-pipelining achieves run-times of about 50% of the unrolled program. Again, the pointer
representation prevents the optimiser to take advantage from a usually very powerful program
transformation. Interestingly, the performance of the cleaned up code is without exception much
better than the original code. In this program pointer clean-up conversion alone is as powerful as
software-pipelining at higher optimisation levels. Additionally, pointer clean-up conversion already
improves the code at lower levels very much.

28.2 Pointer Clean-up Conversion

Because Pointer Clean-up Conversion is not only useful for software-pipelining, but also for other
fine-grain and coarse-grain parallelisation techniques, its influences on program performance are
evaluated individually. In addition to the programs shown in the previous section, more tests with
programs from the DSPstone benchmark suite were carried out.

As already seen in figure 39, the pointer clean-up conversion has a big potential for improving
the performance of DSP programs. In that example an improvement of up to 68% was achieved
(64 iterations, O1, from 54 to 17 cycles). In this case the pointer references prevent the TriMedia
compiler from successfully performing its dependence analysis. This analysis is crucial not only for
software-pipelining, but also for VLIW code generation. After the clean-up conversion, already rel-
ative simple array dependence analyses can be used to determine the dependences. The instruction
scheduler that uses this information can produce more efficient code.

Figure 40 shows the run-times of the matrix1, matrix2, lms and mat1x3 programs. The original
version is compared to the cleaned version for all available optimisation levels. For the levels O0 and
O1 all cleaned programs take less cycles than the corresponding original programs. The difference
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Figure 39: Results for different loop ranges of n complex updates
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can be up to 50%. For higher optimisation levels the differences become smaller. At level O2, in
particular, the original programs show either better or the same performance. On the contrary,
at level O3 the cleaned version again perform better. In general, with pointer clean-up conversion
some substantial benefit can be achieved without the need for further optimisations. Because all
four programs are not too complex, the original programs can perform as good as the transformed
programs at higher levels. But as seen in figure 39, for more complex programs the conversion
provides some substantial advantage.
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Figure 40: Results of pointer clean-up conversion for matrix1, matrix2, lms and mat1x3

28.3 Other Tests

Further tests have been conducted to compare Memory Disambiguation and Array Data Flow
Analysis as well as to examine the behaviour of the software-pipelining approach in combination
with some other target architecture and compiler. Because of restrictions in the available time for
this project and machine resources, these tests had a more experimental rather than systematic
nature.

In order to compare the Banerjee test as a Memory Disambiguation method and a full Array
Data Flow Analysis (see section 6) implementations of both methods were tested against each
other. The Banerjee test was integrated in Octave, whereas the Array Data Flow Analysis was a
prototyped stand-alone program. Dependences determined by both approaches were compared to
each other. After some tests with programs from the DSPstone benchmark suite, it became clear
that both approaches provide equal results most of the times. Because the benchmark programs
do not contain conditional branches in their loop body their data flow relations are quite simple.
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Additionally, many of the DSPstone benchmark programs do not show loop-carried dependences. In
such cases, it is not a big challenge to simple Memory Disambiguation tests to prove independence of
different iterations. A more sophisticated Array Data Flow Analysis cannot provide more accurate
results for such programs. Other Multimedia applications with more complex loop bodies and data
dependence relations could benefit more from better analyses, but no further tests were carried out.

To learn more about the effects of software-pipelining on source level, a completely different
target architecture was chosen. The target was the Intel Celeron, a super-scalar general-purpose
processor. The code for this architecture was generated by the GNU-C compiler. Partly, the results
varied from the TriMedia performance figures. In particular, cases could be identified in that the
transformed programs performed better or worse than the original programs although the contrary
was true for the other architecture/compiler. Because of the complexity of the architecture/compiler
system it cannot be clearly determined what the actual cause for this behaviour is. The interaction
between compiler phases and architectural features make it hard or impossible to find a single
reason for some specific behaviour. It is more the complex interaction that often prevents accurate
predictions of program performance in a changed environment.

29 Interpretation

Software-Pipelining on Source-to-Source level has the potential to increase the performance of a
certain class of DSP programs. When loop bodies contain many pointer-based array references that
cannot be analysed successfully by a commercial compiler, software-pipelining can support hiding
memory latencies and instruction scheduling. On the other hand, if the loop bodies are simple and
contain only a few array accesses, these can be analysed and optimised by techniques integrated
in manufacturers’ DSP compilers more successfully than on the very high source level. During
the last years DSP manufacturers constantly improved their compilers and integrated many more
sophisticated analyses and optimisation techniques. Whereas source level transformations were a
promising approach to increasing code quality of DSP compilers a few years ago [60], the situation
has changed in the meantime. For example, the TriMedia compiler can perform simple pointer
alias analysis and load-pipelining. The first technique can provide dependence information on
simple and regular pointer accesses whereas the latter is a simplified form of software-pipelining.
Both techniques compete with source level transformations; alias analysis can prove independence
of statements that can be scheduled with load-pipelining at a level with very machine-specific
information. For many programs, in particular programs with simple loop structures, these built-in
techniques are superior to the external source transformations. For more complex situations a high
level approach to software-pipelining is still advantageous, because the higher level of abstraction
can help to extract the desired dependence information more easily. Not only compiler technology
has strong influences, but also the machine architecture. The TriMedia CPU has an instruction
and data cache. The latter is uncommon for a DSP. The effects of some program transformations
are very hard to predict in presence of a data cache. Therefore, often the only way to reason about
the effect of a transformation is actually to apply the transformation and examine its effects by
program execution. In general, the effects of source level transformations are subject to complex
interactions between other optimisations and the architecture.

The Pointer Clean-up Conversion has been proofed to be a powerful technique supporting other
optimisations and existing compilers as well. Pointer Clean-up Conversion transforms pointer-
based programs that often achieve only sub-optimal performance with modern architectures and
compilers into programs that can be analysed successfully with existing Array Dependence tests and
therefore can be better optimised. Apart from a preprocessing step for the implemented software-
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pipelining approach of this project, the Clean-up Conversion has more justifications. Applied by
itself, the TriMedia compiler is enabled to produce better code than it can do with the original
programs. Not only code generation for ILP processors benefits from this transformation, but also
coarse-grain parallelisation techniques such as the automatic partitioning of data and computation
are supported. Most of these techniques only work with explicit array representation and are not
applicable in case of pointer presence. After the conversion originally pointer-based DSP programs
are open for these techniques.
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30 Conclusions and Outlook

During this project a software-pipelining approach at source-to-source level has been implemented
and evaluated. A series of tests based on the DSPstone benchmark suite showed only little in-
fluence on simple loops, but significant performance gains of up to 50% for more complex loops
with many pointer-based array references. Simpler loops can be analysed and optimised by the
TriMedia compiler, whereas this compiler is not able to process more complex loops. In these cases
the source-level software-pipelining transformation can help to rearrange the loop body in such a
way that better instruction schedules can be generated. Although the number of complex loops
in the DSPstone benchmark suite is small, more recent and future multimedia codes will show
more often complex constructs due to increasing overall complexity of these applications. However,
software-pipelining on source-to-source level is highly dependent on the available compiler technol-
ogy. If the compiler used to generate the object code contains sophisticated analyses and powerful
optimisations, the source level transformation can have either no effect at all or even detrimental
effect. On the other hand, conventional compilers that perform only standard optimisations can be
effectively supported by the software-pipelining transformation.

A contribution to compiler technology is the Pointer Clean-up Conversion that has been devel-
oped and implemented during this project. Apart from its original task of supporting the software-
pipeliner by providing explicit array accesses that are easier to analyse than pointer-based accesses,
this conversion is very useful in other contexts, too. The resulting explicit array accesses can be
handled better by the TriMedia compiler, so that the performance after pointer conversion alone
can be increased by up to 68%. Additionally, automatic coarse-grain parallelisation techniques
benefit from the explicit array representation. It is promising to further extend the capabilities of
the pointer conversion and to study more real applications, other compilers and other optimisations
benefitting from it.

The experiments conducted during the project have shown that the behaviour of complex system
such as a compiler and a DSP architecture are hard to predict. Already minor changes in the source
program can have unexpected consequences when the generated object code is executed. Further
research on application, compiler and architecture interactions are necessary. In particular, the
influence of different optimisations on each other and the ordering of optimisation passes in order
to achieve optimal code for a given architecture are interesting fields of research.

Whereas parallelisation for single processors DSPs, more precisely the exploitation of instruction
level parallelism and data level parallelism, is an area in that some progress has been made, little
effort has been put into parallelisation techniques for Multiprocessor DSPs. Multiprocessor DSPs
combine features that can be found in other architectures only individually, but not in this unique
combination. High-speed on-chip interconnection networks, processors with SIMD instructions
and dual memory accesses to several small high-speed memory banks justify research on these
architectures. Since current compilers for these architectures are rudimentary at best, more work
on creating a cost modell for arbitrary computations and developing methods for minimising the
cost of given DSP and Multimedia programs are required for taking full advantage of the availability
of single-chip multiprocessor DSPs.
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Part II

Optimization of DSP, Image Processing and

3D Applications on General-Purpose

Processors with SIMD ISA Extensions
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Abstract

This deliverable analyzes and quantifies the performance of DSP, image and 3D applications on
recent general-purpose microprocessors using streaming SIMD ISA extensions (integer and floating
point). We have evaluated the AltiVec extensions to PowerPC ISA on a set of 9 benchmarks. Our
benchmark suite includes DSP kernels (FIR), multimedia kernels (IDCT, RGB2YCbCr) and a 3D
geometry transformations kernel. The benchmark suite includes both integer and single precision
floating point kernels in PPC and AltiVec versions. Each benchmark has been optimized for both
ILP and memory hierarchy by using loop unrolling, software pipelining, blocked algorithms and
data prefetch. We demonstrate that SIMD applications are very sensitive to memory bandwidth
and that optimizations can speedup Altivec applications from 1.9 to 7.1.

31 Introduction

The SIMD (Single Instruction Multiple Data) extensions to general purpose microprocessor in-
struction sets have been introduced in 1995 to enhance the performance of multimedia and DSP
applications. The goal for these extensions to general purpose microprocessors instruction sets is to
accelerate DSP and multimedia application at a small cost. Traditionally in these processors, bet-
ter ILP exploitation goes through increasing dispatch logic (reorder buffer size, reservation station
size) and the number of functional units available. With SIMD instruction sets only the number of
functional units is increased (the width of a functional unit). With constantly increasing available
transistors in microprocessors there was room for the additional functional units needed by SIMD
instruction sets. With SIMD extensions it’s up to the programmer or the compiler to extract the
ILP that is traditionally extracted by the out of order core of the microprocessor. Multimedia and
DSP applications generally works one data vectors, so SIMD programmation is well adapted to
these class of applications.

At the beginning, these extensions were able to process 64 bits integer vectors: Sun with VIS in
1995 [54], HP with MAX in 1995 [51] and Intel with MMX in 1997 [43]. The introduction of SIMD
extensions able to process single precision floating point vectors is more recent: AMD with 3DNow!
[16] and Intel with SSE [44] in 1998. The multimedia applications use more and more floating
point computations. Currently the main target for these FP SIMD extensions is 3D polygonal
rendering that is extensively used in CAD applications and games. The need for single precision
floating point computing power is very important in this class of applications. Last year Motorola
introduced AltiVec [57][4][41], which is the first SIMD instruction set that can handle both integer
and floating point vectors.

Several studies have presented the performance of integer SIMD applications ( multimedia
applications with MMX in [10], image processing with VIS in [18] ) and floating point SIMD
applications with an ideal memory hierarchy ( ILP sutdies on 3D geometry transformations in [18]
and DSP and multimedia performance with AltiVec [61])

In this deliverable we study the performance of both integer and floating point applications
through DSP, image and 3D kernels on a general purpose microprocessor with SIMD extensions
with memory hierarchy. DSP, image and 3D are the 3 main classes of multimedia applications and
multimedia is the main workload on home computers.

In the first section we present our baseline architecture and the tools we used for this study.
Next we present our workloads: multimedia kernels originally written in C that we have optimized
for AltiVec SIMD instruction set. These micro kernels are taken from 3D polygonal rendering, voice
recognition, 3D sound effects, MPEG compression and decompression, and 2D image processing.
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Figure 41: PowerPC G4 pipeline diagram

We detail the optimizations used for a better exploitation of SIMD characteristics and the problems
related to them.

In the last section we study the impact of the memory hierarchy on the performance of the set
of benchmarks. We will study more precisely the impact of the AltiVec streaming prefetch and the
impact of the main memory bandwidth.

32 Methodology

32.1 AltiVec and G4 microarchitecture

AltiVec is a Single Instruction Multiple Data (SIMD) machine comprised of 32× 128− bit “vector”
registers, 2 fully pipelined processing units (a vector permute and an ALU) and 170 new instruc-
tions. These instructions comprise vector multiply accumulation, all kinds of permutations between
two vectors, float to int conversions, pixel packing, logical operations, comparisons, selections and
extensions from a scalar to a vector.

AltiVec vector registers can hold either 16 8-bits integers, 8 16 bits integers, 4 32 bits integer
than 4 IEEE-754 single precision floats. AltiVec provides streaming prefetch instructions. The
programmer can use these instructions to specify the amount of data to be prefetched into the
first level cache, with an optional stride. The Motorola PowerPC G4 is the first microprocessor
to implement AltiVec instruction set. The PowerPC G4 has a 4 stage pipeline (Fetch, Dispatch,
Execution, Completion). There are six executions units and one reserving station per unit: 2 integer
units (FX1 and FX2), 1 floating point unit (FPU), 1 Load-Store Unit (LSU), 1 Vector Permute
Unit (VPU) and 1 Vector Arithmetic-Logic Unit (VALU). The VALU is subdivided into 3 sub-units
that can not be used simultaneously: Vector Simple Integer (VSI), Vector Complex Integer (VCI)
and Vector Floating Point (VFP). The latency for VSI is 1 cycle, 3 cycles for VCI and 4 cycles for
VFP. The PowerPC G4 we used for all the tests is a 450MHz G4 with 32Kb L1 and 1024k L2 on a
half speed dedicated bus, the memory bus uses PC100 SDRAM. There is more informations about
the PowerPC G4 in [58].
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32.2 Tools

32.2.1 The AltiVec programming interface

We have used Apple MrC compiler through a Metrowerks Codewarrior pro 4 plug-in. MrC allows
easy Altivec programming through some extensions which enable the use of Altivec functions in a
C program. The C programming model for Altivec used in MrC is designed to look like function
calls, but each of this function call represents and generates one Altivec instruction. Variables are
defined using C types that match Altivec data types and variables declared using these types are
all 16-byte aligned. The sample following program performs the sum of two arrays of N float (N
multiple of 4):

vector float A[N], B[N], C[N];

int i;

for ( i=0 ; i<N ; i++ )

A[i] = vec_add( B[i] , C[i] );

As seen in this sample program, the programmer has not to do the registers allocation, and he can
use the C control structures (here for).

32.2.2 Trace extraction and simulation environment

We have evaluated the performances of our multimedia kernel by execution on a real PowerPC
G4. We have used trace driven simulation to estimate the impact of memory bandwidth impact
on these kernel’s performances. We couldn’t modify the memory bandwidth of our PowerPC G4
(by changing the bus/processor ratio and the memory latency) so we used Motorola G4 simulator
v1.1.2 and pitsTT6 v1.4 execution trace generator. PitsTT6 works as a shared library. A call to
startTrace() launch the trace generation during the execution and a call to stopTrace() stops it. It
generates a TT6 execution trace which we used as input for the G4 simulator.

The G4 simulator hasn’t much parameters but it allows to change the bus/processor ratio and
the timings of the SDRAM. We have used these two parameters to simulate increased bandwidth.
By dividing the ratio by 2 and multiplying the main memory latency by 2 we obtained a doubled
memory bandwidth. We have verified the validity of this model by simulating very simple micro-
kernels like memory to memory copies.

33 SIMD optimizations for DSP image and 3D kernels

33.1 Workloads

We have used 9 micro-kernels taken from multimedia and DSP applications. There are 4 single
precision floating point kernels and 5 integer kernels.

33.1.1 SOAD

This Sum Of Absolute Difference (SOAD) kernel is found in several reference video coder im-
plementations such as MPEG2. It is used to compare the similarity of two blocks of pixels in
motion-estimation algorithms, which is one of the most computationally intensive aspects of video
encoding.
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33.1.2 RGB2YCbCr

RGB2YCbCr converts from Gamma Corrected RGB to the YCbCr Color Space. RGB is generally
used by monitors and represents the Red, Green, and Blue components of a color. YCbCr is used
for transmission and storage. Y represents the luminence, with Cb representing the blue color
difference, and Cr representing the red color difference. It is used in video compression algorithms.

33.1.3 IDCT

The Inverse Discrete Cosine Transform (IDCT) is used in MPEG2 decompression, it transforms an
image from the DCT domain back to the spatial domain for image reconstruction. All calculations
are performed in 16 bits fixed point arithmetic.

33.1.4 Image filters

The Image filters corresponds to gamma correction filters on static images. The sparse one works
only on one component of the image (the green one) and the dense one works on the 3 components.

33.1.5 FIR

FIR and IIR filtering are two of the fundamental operations in digital signal processing. In FIR/IIR
filters (a FIR filter is a subset of an IIR filter), a sequence of input digital samples is convolved
with either one or two kernels of filter coefficients to produce a filtered output sequence. There are
number of applications that use FIR/IIR filtering in digital signal processing. They are used by
example into audio equalizer to filter, boost or attenuate some frequencies. This filter is also used
in 3D positional audio effects, to make a sound appear to come from a specified location. This is
done by applying different filters to the left and right stereo channels. Finally adaptative FIR/IIR
are used in speech compression by the Linear Predictive Coding algorithm.

33.1.6 DAXPY

DAXPY is used in number of numerical algorithms, it is the heart of matrix-matrix products.

33.1.7 Max

The Max micro-kernel is used to find the maximum floating-point element of a vector and the
elements corresponding index. The Max algorithm can be used in speech recognition. Finding the
maximum or the minimum floating-point element in a vector (an array) is a very important step
in the Viterbi algorithm. The Viterbi algorithm is often in speech recognition to find the best
sequence of states in a model that best describes a speech sample [68][67].

33.1.8 3D Kernel

The 3D kernel performs the essential steps of the geometry part of the 3D polygonal graphic
pipeline. 3D polygonal rendering is used by most of the CAO/CAD applications, virtual reality
and a lot of games. Our 3D kernel performs the vertices transformation and perspective correction
from 3D object space coordinates to 2D screen space coordinates, the normals transformation and
renormalization, backface culling and phong lighting. We perform two steps of phong lighting to
simulate a rendering where there is two dynamic lights. The C code we use comes from the Mesa
3D graphics Library [66] and the algorithms for 3D polygonal rendering are described in [28].
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33.2 AltiVec features to raise the performances

33.2.1 SIMD processing and easy permutations

AltiVec provides SIMD instructions able to work on 4 to 16 element wide vectors depending on
the data types. The programmer can permute each byte element of a vector as he wants. The
instruction count should theoretically be reduced by the number of elements a vector contains.
So it should be 4 for single precision floating point applications 16 for 8 bit integer applications
and 8 for 16 bit applications. The theoretical speedups for programs that use SIMD instructions
correspond to the maximum data vector width available for data types that are used. It is the
instruction count reduction factor. The speedups won’t be so high for the following reasons:

• data need often to be reorganized to be processed efficiently with the SIMD instructions
available. This overhead limits the speedup of all the programs that need

• The ILP that can be extracted from each algorithm is variable and often the theoretical
speedup isn’t reachable because of the instructions dependency graph that limits the ILP.

33.2.2 Specialized instructions

SIMD instruction sets extensions generally contains more than just SIMD instructions. They pro-
vide some specialized instruction that accelerates much the processing of most DSP and multimedia
algorithms. These instructions, if only present in the SIMD extensions can raise the speedup of the
SIMD version of the programs over the theoretical speedup. These specialized instructions are:

• meta-instructions: these instructions perform multiple operation at a time, the multiply
accumulation is the most known example. There are instructions that perform 1√

x
that

accelerates much some 3D geometry processing that cant be found in non-SIMD instruction
sets.

• “vector if” without branch: by using masking and selecting instructions the programmer can
perform conditional tests on individual vector elements without any branch instruction. The
overhead for these instructions is that all computations are always done on each element of
the vector even if it is unuseful, and finally the useful results are selected in the resulting
vector by using the comparison mask generated for the “if”. By reducing the number of
branch in the heart of loops, the average fetched instruction count per cycle is increased.

• Type conversion, vector packing and unpacking. SIMD instruction sets provide float to int
and int to float conversions and packing, unpacking instructions with at the user choice
saturated arithmetics or not. Saturated arithmetics and type conversions are generally costly
operations and are much used in multimedia algorithms that works on floats or 32 bit integers
and that need the results to be converted into 8-bits integer to be displayed at screen.

33.2.3 Large register file

The SIMD instruction sets use large register files with currently four times more space than con-
ventional register files (same amount of registers, 4 times wider). This additional register space can
be used in algorithms by maximizing the amount of data stored in registers. That reduces the first
level cache miss rate and can raise much the performances of some algorithms.
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33.3 Optimizations

We have tried to optimize both AltiVec and C versions of our micro-kernels. All the optimizations
techniques are commonly used to optimize non-SIMD code. We have used loop unrolling for all
the kernels and software pipelining when it was possible. We tried to maximize the number of
register used. The compiler did not detect all the loop invariants, so we forced the use of registers
to store these loop invariants. When using the AltiVec programming model, we have not to specify
explicitly when the data have to be loaded or stored. This is done automatically by the compiler,
but not always in the optimal manner. So we always forced the load and store by loading and
storing explicitly the data into registers. We did not try to schedule the instructions by hand, the
out of order execution does it automatically. The previous sum of two arrays algorithm optimized
will look like:

vector float A[N], B[N], C[N];

register vector float a0,a1,a2,a3,b0,b1,b2,b3,c0,c1,c2,c3;

int ia,ib,ic;

for ( ia=&(A[0]),ib=&(B[0]),ic=&(C[0]) ;

i<=&(A[N]) ;

ia+=64,ib+=64,ic+=64 )

{

/* loading B[i..i+3] */

b0=vec_ldx(ib,0);b1=vec_ldx(ib,1);

b2=vec_ldx(ib,2);b3=vec_ldx(ib,3);

/* loading C[i..i+3] */

c0=vec_ldx(ic,0);c1=vec_ldx(ic,1);

c2=vec_ldx(ic,2);c3=vec_ldx(ic,3);

a0=vec_add(b0,c0);a1=vec_add(b1,c1);

a2=vec_add(b2,c2);a3=vec_add(b3,c3);

/* storing A[i..i+3] */

vec_stvx(a0,ia,0);vec_stvx(a1,ia,1);

vec_stvx(a2,ia,2);vec_stvx(a3,ia,3);

}

We use blocked algorithms when there was some temporal locality in our algorithms (essentially 3D
kernel). We have used two kinds of parallelization to write the SIMD versions of all the micro ker-
nels: the intra-iteration parallelization and the inter-iterations parallelization when it was possible.
The inter-iteration parallelization is usable only when there are no inter-iteration dependencies.
The instruction dependency graph of an iteration is the same in SIMD when using inter-iterations
parallelization than in C, so the performance of this parallelization is highly predictable (assuming
a perfect memory hierarchy).

The DSP algorithms generally have these kind of dependencies (all the convolutions by example),
so we have used intra-iteration parallelization (FIR). The parallelism extractible by this way is
generally lower than by the inter-iteration way.

For the 3D kernel we have tried both kind of parallelization. Traditionally the 3D data are
stocked in Arrays Of Structures (AOS). Intel has evaluated in [45] that the Structure Of Arrays
(SOA) is a more efficient way to store 3D data for SIMD geometry transformations. When in AOS
the parallelization used is intra-iteration and when in SOA inter-iterations is used. One of our goal
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Benchmark Dataset Size (MBytes) Description

SOAD 1 1 MPEG2 frame
RGB2YCbCr 9 1 TVHD frame
IDCT 8 8 MPEG2 frame
Img sparse 9 1 TVHD frame
Img dense 9 1 TVHD frame
FIR 10 2400000 elements
DAXPY 8 2000000 elements
Max 16 4000000 elements
3D 10 512000 vertices scene

Table 3: Datasets for the 9 benchmarks

is the integration of the AltiVec geometry transformations into Mesa, so we had to use the AOS
structures of Mesa. We have evaluated that it is more efficient to convert AOS to SOA at the
beginning of the pipeline and back SOA to AOS at the end and use inter-iterations parallelization
than using intra-iteration with AOS. The overhead involved by this data transposition is made
of vector permutation instructions. These instructions can be executed in parallel with vector
computations in the PowerPC G4, so the impact of these transposition on final performance is low.

34 Performance evaluation

34.1 Execution on a PPC G4

We have measured the execution time of the 9 micro benchmarks on a PowerMac G4 450 with
1MByte of L2 cache. We have run each benchmark in its C version and AltiVec version with
prefetch on and off. All the results are given as speedups against the C version without prefetch.
We have used the datasets presented in Table 3. For all the benchmarks, the L1 misses are only
cold misses because multimedia applications exploits mainly spatial locality via data streams.

The speedups range from 1.8 to 4.9 for single precision floating point kernels and from 1.9 to
7.1 for integer ones. The results are shown in figure 42.

Generally we have measured a speedup lower than the theoretical one. It is between 2.75
and 3.5 for floating point applications. FIR has the biggest instruction count reduction because
there is no need for data reorganization because of the intra-iteration parallelization. Its speedup
does not reach the theoretical because the loop cannot be unrolled so the AltiVec functional units
stay unoccupied most of the time. The 3D kernel that uses inter-iteration parallelization needs
data reorganizations, that is an overhead in instruction count. The dependency graph between
instructions is the same in AltiVec than in C (omitting the Permutations for reorganization) so
the speedup is essentially limited by the overhead of the reorganization. AltiVec provides an
independent permutation unit so a part of the reorganizations can be done in parallel with the
computations. Max and DAXPY are more memory intensive than computation, so the speedup
is limited by the memory hierarchy performance (cf. next section). For the integer benchmarks,
IDCT is very computational and well parallelizable without any overhead, the number of executed
instructions is reduced by a 8 factor and the speedup is 7.1. The sparse filter isn’t much efficient
because it performs a lot of computations for nothing, just because the data structure is sparse.
The AltiVec instruction count is near the one for the dense filter, versus a 4 times reduction for
the PPC version. The two last benchmarks have an instruction reduction count of about 16, but
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Speedups of the micro-kernels
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Figure 42: Performance of the 9 kernels on a PowerMac G4 450, speedup over the C version.

they become memory bound faster than computation bound. The 3D kernel uses some AltiVec
specialized instructions as frac1sqrtx in the normals transformation process. The clipping step
uses intensively masking and selection instructions to perform “vector if”. The phong lighting step
uses vector packing, float to int conversions and saturated arithmetics. The part of the phong
algorithm that uses these instructions has a speedup of 14, and the phong lighting step has a global
speedup of 7.4. The functions we have implemented in our 3D kernels represent 85% of the time
of the geometry transformations into the Mesa 3D graphic Library. The integration of our AltiVec
functions into Mesa should give over a 100% increase in performance.

34.2 Latency problems: Streaming prefetch impact

Our benchmarks are multimedia applications that have streaming data acess. We use blocked
algorithm to avoid cache misses other than cold ones. Prefetch is a well known solution to memory
latency problems. In all our algorithms we have measured the impact of AltiVec streaming prefetch.
We have chosen to launch streaming prefetch each 32Bytes of data.The impact on performance of
enabling prefetch is shown in Table 4. The impact of prefetch is much more important for AltiVec
programs than PPC one but DAXPY.

DAXPY is memory bandwidth limited in both AltiVec and PPC version, and this limit is
reached when activating prefetch (the performance are the same for PPC with prefetch than AltiVec
with prefetch) so this explains why the speedup due to prefetch is lower for AltiVec version (the
version without prefetch is faster in AltiVec).

Max in its PPC version is limited by the branch mispredictions that reduce the average number
of instruction fetched each cycle. We see that the impact of prefetch is not very high because
memory latency impact is much lower than branch mispredictions impact. Max has no mispredicted
branches in its AltiVec version so the fetch does not limiting the performance. The limiting factor
becomes the memory latency, most of the time is spent in waiting for the data to come from main
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C (PPC) AltiVec

SOAD 1.05 1.27
RGB2YCbCr 1.00 1.37
IDCT 1.01 1.34
Img sparse 1.17 1.62
Img dense 1.01 1.66
FIR 1.00 1.06
DAXPY 1.90 1.72
Max 1.10 3.65
3D 1.07 1.37

Table 4: speedup due to AltiVec streaming prefetch

memory. This explains the great impact of prefetch in the AltiVec version of this Kernel.
There are some kernels on which the activation of the streaming prefetch has a negative impact

on the performance. The activation of prefetch generates a heavy load on the Load/store unit and
on SOAD and the dense image filter (PPC) it has a negative impact on performance. On the other
side, FIR performs a lot of computations per data and it is not much dependent of the memory
latency and the impact of prefetch on performance remains low for both versions.

For the PPC version the impact is greater in the sparse version of the image filter than for the
dense version. In the dense version the first level cache hit rate is very high without prefetch (1 miss
/ 32 load), for the sparse version it is only 1/8 so the prefetch increases relatively more the L1 hit
rate for the sparse filter. For the AltiVec version the acceleration due to prefetch are very similar
because the data are accessed by 128 bit vectors even if they will not be processed (sparse filter).
There are a little more computation in the sparse version (masking and selecting the element to be
processed) so the impact of prefetch is reduced compared to the dense filter (memory access are
less important).

For the rest of the kernels the impact of streaming prefetch for PPC versions is under 10% and
between 27% and 66% for AltiVec ones. This is a great improvement in performance for AltiVec
programs at a low programmer’s effort cost.

34.3 AltiVec and memory bandwidth

We have seen that streaming prefetch has a great impact on AltiVec programs performance. Al-
tiVec programs are much more sensible to memory latency than the PPC ones, but what impact
has memory bandwidth? With streaming prefetch enabled is it the main factor limiting the per-
formance of the AltiVec programs. We couldn’t change the available memory bandwidth on our
G4 platform, so we used Motorola G4 simulator with the same kernels to evaluate the impact of
memory bandwidth on our micro-kernels. We have used pitsTT6 execution trace as input to the
simulator. We have simulated the various memory bandwidth by changing the processor/memory
ratio and the SDRAM timings because there was no other ways of modifying the relative memory
bandwidth available. We have simulated a halved, doubled and quadrupled memory bandwidth.
We have simulated a perfect memory hierarchy too (all data in L1 cache) to get a upper bound of
the performance and see how far of this bound we stay.

All the results are in Figure 43 and Figure 44. By looking to the speedup due to perfect memory
hierarchy we can know if the kernel is memory bound or computation bound. SOAD, RGB2YCbCr
and 3D are memory bound in their AltiVec version and DAXPY and Max both in PPC and AltiVec
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No Prefetch, Impact of the Memory bandwidth
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Figure 43: Impact of the memory bandwidth for the 9 kernels, prefetch off.

version.
On most of the benchmark memory bandwidth increase has much more impact on AltiVec per-

formance than PPC. It is not a surprising result because the time spent in computations relatively
to the memory accesses in AltiVec programs is much lower than in PPC due to SIMD processing.
DAXPY and 3D kernel are sensible to memory bandwidth increase in both C and AltiVec version,
but the impact is greater for AltiVec versions. SOAD, RGB2YCbCr, Image filters and Max are
sensible to memory bandwidth increase only in their AltiVec versions when prefetch is activated.
The two remaining programs IDCT and FIR are essentially computation bound, the impact of
memory bandwidth is still greater in AltiVec than in PPC but it is quite negligeable.

The increase of main memory bandwidth has more impact when prefetch is activated for both
C and AltiVec versions. When prefetch is used, memory access are more regular and optimized,
the computations are accelerated because of the memory latency reduction, so the need for high
bandwidth is more important.

With a quadrupled bandwidth the half of the programs have performance comparable to the
performance with perfect memory hierarchy. SOAD, RGB2YCbCr, DAXPY, Max, 3D kernel have
more requirements than a quadrupled memory bandwidth.

That shows that the main factor limiting the performance of multimedia, DSP and 3D appli-
cations with AltiVec is the main memory bus bandwidth. Currently the PowerPC G4 is limited
by its 100MHz 64bit with SDRAM main memory bus on the studied applications. The only tested
applications that have really no need for an increased memory bandwidth are applications that are
only computation bound. The G4 bus is well designed for most of our applications when we don’t
use AltiVec but does not meet the requirements for the AltiVec versions. The memory technology
that offer a doubled memory bandwidth are currently available with DDRSDRAM [73][55] and
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Figure 44: Impact of the memory bandwidth for the 9 kernels, prefetch on.

RAMBUS [24]. By using such memory technology some application performance would increase of
up to 40% if the latency stays the same as the SDRAM (it is the case for DDRSDRAM).

35 Conclusion

We have run 9 benchmarks on a PowerPC G4 in both AltiVec and PPC versions. These benchmarks
are kernels taken from multimedia applications. The speedups achieved range from 1.9 to 7.1
with prefetch activated. We have explained the optimization techniques that allow this range of
speedup and evaluated the impact of memory hierarchy on the performance of our DSP, multimedia
and 3D benchmarks. These techniques are well known and commonly used on non-SIMD code
but give interesting performance with SIMD multimedia applications. Finally after the software
optimizations study we have studied how our programs map on G4 architecture and evaluated that
the memory bandwidth available on a PowerPC G4 is sufficient for PPC applications but becomes
the main bottleneck for AltiVec versions of our programs. By using higher bandwidth memory like
DDRSDRAM or RAMBUS which provide up to a quadrupled bandwidth, the performance could
increases of up to 55%.
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Part III

CME Driven Optimizations
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Abstract

The effectiveness of the memory hierarchy is critical for the performance of current processors. The
performance of the memory hierarchy can be improved by means of program transformations such
as padding and loop tiling, which are code transformations targeted to reduce conflict and capacity
misses respectively. This chapter presents novel approaches to perform near-optimal padding and
loop tiling based on Cache Miss Equations and genetic algorithms. The results show that they
can remove practically all replacement misses (conflict and capacity) in some kernels from different
benchmarks. The reduction of replacement misses results in a decrease of the miss ratio that can
be as significant as a factor of 9 for the Swim program and a particular cache architecture by means
of padding and a factor of 7 for the matrix multiply kernel by means of loop tiling.

36 Introduction

Memory performance is critical for the performance of current computers. Memory is organized
hierarchically in such a way that the upper levels are smaller and faster. The uppermost level
typically has a very short latency (e.g. 1-2 cycles) but the latency of the lower levels may be a
few orders of magnitude longer (e.g. main memory latency may be around 100 cycles). Thus,
techniques to keep as much data as possible in the uppermost levels are key to performance.

In addition to the hardware organization, it is well known that the performance of the memory
hierarchy is very sensitive to the particular memory reference patterns of each program. The
reference patterns of a given program can be changed by means of transformations that do not
alter the semantics of the program. These program transformations can modify the order in which
some computations are performed or can simply change the data layout. Loop Tiling and Padding
are examples of these families of techniques respectively. Loop tiling is based on a combination of
strip-mining and loop interchange, and padding is based on adding some dummy elements between
variables (inter-variable padding) or between elements of the same variable (intra-variable padding).

Loop tiling and padding have a significant potential to remove cache misses. Loop tiling can
remove most capacity misses by restructuring the loop and changing the order in which statements
are executed. On the other hand, padding can remove most conflict misses by changing the address
of conflicting data, and some compulsory misses by aligning data with cache lines. However, finding
the optimal loop tiling or padding for a given program is a very complex task, since the options are
almost unlimited and exploring all of them is infeasible. For very simple programs, the programmer
intuition may help but in general, a systematic approach that can be integrated into a compiler
and can deal with any type of program is desirable. This systematic approach requires the support
of a locality analysis method in order to assess the performance of different alternatives.

In this chapter, we propose automatic approaches to perform loop tiling and padding in numeric
codes. They are based on a very accurate technique to analyze the locality of a program that is
known as Cache Miss Equations (CMEs) and a genetic algorithm in order to search the solution
space. The proposed genetic algorithm converges very fast and although it does not guarantee that
the optimal solution is found, we show that after loop tiling or padding, the replacement miss ratio
of the evaluated benchmarks is almost negligible. Therefore, for these programs the results are
near-optimal. The rest of this chapter is organized as follows. Section 37 overviews the locality
analysis approach. Section 38 presents the padding technique and its performance is evaluated
in section 39. Section 40 presents the loop tiling technique and its performance is evaluated in
section 41. Section 42 summarizes the main conclusions of this work.
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37 Memory Locality Analysis

To effectively transform a code in order to optimize memory performance, a good memory locality
analysis is required. In this section, we describe the locality analysis technique used in this work
to perform loop tiling and padding.

In particular, we use Cache Miss Equations (CMEs) [31] to represent the cache behavior. Cache
Miss Equations are a very accurate analytical model of the cache memory. They describe the cache
behavior by means of diophantine equations, which allows us to use mathematical techniques to
compute the locality of each memory reference. Unfortunately a direct solution of these equations
is computationally intractable due to its NP nature.

37.1 Overview of Cache Miss Equations

Cache Miss Equations are a set of equations7 that represent all the potential cache misses for the
references in a loop nest. They describe the precise relationship among the iteration space, array
sizes, base addresses, and the cache parameters for a loop nest. This section presents an overview
of the CMEs. For more details about CMEs see [31, 32].

37.2 Finding Cache Misses from CMEs

Deciding whether a reference causes a miss or a hit for a given iteration point is equivalent to
deciding whether this iteration point belongs to the polyhedra defined by the CMEs. The points
inside each CMEs polyhedron represent the potential cache misses (the number of points is the
number of potential cache misses). This leads us to consider several ways for computing them. Our
approach builds upon traversing the iteration space to solve the equations. This approach to solve
the CMEs allows studying each reference in a particular iteration point independently of all other
memory references and iteration points. Details can be found in the M3D1 deliverable.

37.3 CME for multiple convex regions

The implemented technique to count points in polyhedra requires that the iteration space is a
convex region, but after tiling n dimensions the iteration space is the union of 2n convex regions.

Figure 45 shows how the iteration space of a one-dimension loop becomes a two-convex region
iteration space after tiling. The shaded regions correspond to the different convex regions before
and after tiling.

Because of this, the CME implementation has been modified to deal with multiple convex region
by defining the equations for every convex region and solving for every analyzed point the equations
corresponding to the convex region in which the point is contained.

38 Padding

This section presents our method for guiding both inter- and intra-variable padding. In this paper
we refer to the cache size as Cs. memi is the original base address of variable number i (V ari)
and P Basei stands for the inter-variable padding between V ari and V ari−1. dimij stands for the
size of the dimension j of V ari (Di is the number of dimensions) and Si is its size. P Dimij is the
intra-variable padding applied to dimij , and P Si is the size of V ari after padding (see Figure 46).
We define ∆i as P Si − Si.

7The term equation has been loosely used to refer to a set of simultaneous equalities and inequalities.
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(a)

do i=1, 8
   a[i]=0.0
enddo

(b)

do ii=1, 8, 3
   do i=1, min(3, 8-ii+1)
      a[i+ii-1]=0.0
   enddo
enddo
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Figure 45: Example of iteration space: (a) before tiling, (b) after tiling

38.1 Inter-variable padding

When inter-variable padding is applied only the base addresses of the variables are changed. Thus,
padding is performed in a simple way. Memory variable base addresses are initially defined using
the values given by the compiler. Then, we define for each memory variable V ari, a variable
P Basei, i = 0 . . . k:

0 ≤ P Basei ≤ Cs − 1

Note that padding a variable is equivalent to modifying the initial addresses of the other variables
(see Figure 46). Thus, after padding, the memory variable base addresses are computed as follows:

BaseAddr(V ari) = memi +

k≤i∑

k=0

P Basek

38.2 Adding intra-variable padding

The result of applying both inter- and intra-variable padding is that all base addresses and sizes
of every dimension of each memory variable may change. They are initially set according to the
values given by the compiler. For each memory variable V ari, i = 0 . . . k we define a set of variables
{P Basei, P Dimij}, j = 0 . . . Di

0 ≤ P Basei, P Dimij ≤ Cs − 1
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Figure 46: Data layout: (a) before inter-variable padding, (b) after inter-variable padding (c) before
padding, (d) after padding, (e) 2-D array, (f) 2-D array after intra-variable padding

After padding, memory variable base addresses are computed in the following way(see Fig-
ure 46):

BaseAddr(V ari) = memi+

+
∑k<i

k=0(P Basek + ∆k) + P Basei

and the size of the dimensions are:

Dimi(V arj) = dimji + P Dimji

38.3 Model

For the sake of uniformity in the analysis presented here, we assume that both inter- and intra-
variable padding are applied8. Our work focuses in obtaining the values of the variables

{P Basei, P Dimij}

that minimizes the number of misses.
Let f be the function that represents the number of misses for each possible value of the padding

variables:

f 7−→ #Misses (42)

f([0, Cs − 1]| {z }
P Base0

× [0, Cs − 1]D0| {z }
P Dim0j

× . . . × [0, Cs − 1]| {z }
P Basek

× [0, Cs − 1]Dk| {z }
P Dimkj

) =

= f(P Base0, P Dim0j| {z }
D0

, . . . , P Basek, P Dimkj| {z }
Dk

)

Note that [0, Cs − 1]Di represents the domain of the different P Dimij of the variable V ari.

8To apply only inter-variable padding, set all P Dimij to 0
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Our problem can be expressed as follows:

MIN f(P Base0, P Dim0j
︸ ︷︷ ︸

D0

. . . , P Basek, P Dimkj
︸ ︷︷ ︸

Dk

)

0 ≤ P Basei, P Dimij ≤ Cs − 1

i = 0 . . . k

where f is called the objective function.
Since f is a pseudo-polynomial function [20], the relationship between padding and the number

of misses is nonlinear. P Basei and P Dimij can take only integer values, thus, our problem can
be seen as a nonlinear integer optimization (NLP) one.

Many researchers have studied NLP [7, 33]. A well studied case is the one where the constraints
are linear (named linearly constrained optimization). A special case is when the objective func-
tion is entirely linear; this is called Linear Programming (LP). Algorithms to solve both real (e.g
simplex [60]) and integer functions (e.g branch & bound scheme [74]) can be found in the literature.

One of the challenges in NLP is that some problems exhibit local minima. Algorithms that
propose to overcome this problem are named Global Optimization. Real functions have been studied
deeply [75, 40, 33]. Unfortunately, integer functions are hard to optimize. There are some studies
based on {0,1} valued integer functions [38], but in general, this is a hard and time-consuming
problem. Hence, the use of heuristics is necessary. Tabu search [34] obtains promising theoretical
results, but only partial implementations have been reported so far. On the other hand, simulated
annealing [46] and genetic algorithms [35, 39] have been used for years with very good results.

Our proposal is based on the use of a genetic algorithm to optimize function f .

38.4 Genetic Algorithm

Algorithms for function optimization are generally limited to convex regular functions. However,
there are lots of functions that are not continuous, non differentiable or multi-modal. It is common
to solve this problem by means of stochastic sampling. Whereas traditional search techniques
use characteristics of the problem to determine the next sampling point (e.g Gradient), stochastic
methods use non-deterministic decision rules [27].

Genetic Algorithms (GAs) are a particular type of stochastic methods that have been used to
solve hard problems with objective functions that do not meet the properties to use traditional
methods [35]. These algorithms search in the solution space of a function simulating the Nature-
based process of evolution, that is, the survival of the fittest. Usually, the fittest individuals tend to
reproduce more than the inferior individuals, and they survive to the next generation propagating
the best genes.

GAs simulate the evolution of a population. Figure 47 shows the simplest GA. It starts from
a random generated population, and it makes the population evolve by means of basic genetic
operators (selection, mutation and crossover) [35] applied to individuals of the current population,
to produce an improved next generation.

38.5 Genetic Algorithm Parameters

The use of GAs requires the determination of the following issues: chromosome representation,
selection function, genetic operators, the creation of the initial population and the termination
criteria.
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ALGORITHM:

Supply a population P0

i=1
while (not finish)

Pi=Selection(Pi−1)
Pi=Reproduce(Pi)
i=i+1

end

Figure 47: Simple Genetic Algorithm

Child 2Child 1
Crossing Site

Parent 2Parent 1

Figure 48: Schematic of simple crossover

Each individual is made up of a set of chromosomes, which represent the variables. In our
work, each individual is one configuration of padding (identified by all the inter- and intra-variable
padding factors), and the chromosomes represent one single padding factor. The fitness of those
individuals is computed using the objective function (eq. 42). The fittest individual is the one that
has a set of padding factors that results in less misses.

A chromosome representation is needed to represent each individual in the population. Genetic
algorithms require the natural parameter set of the optimization problem to be coded as a finite-
length string over some finite alphabet such as alphabet {0,1}. Thus, each chromosome is made up
of a sequence of genes from a certain alphabet.

It has been shown that using large alphabets gives better results [53]. We have used the alphabet
{0, . . . , 2k − 1}, where k is the greatest divisor of the log2Cs that is lower than log2Cs. This is the
largest value of k that guarantees that a single padding factor consists of at least two genes for
every cache size. This is not a restriction because the compilers know the cache size. Thus, this
computation can be done automatically.

Example. Let us assume a cache of 32 Kbytes. Thus, log2(32× 210) = 15. The set of divisors
is divisors = {1, 3, 5, 15}. Hence, the greatest divisor less than 15 is 5, and we will use the alphabet
{0, . . . , 31}, representing each single padding with 3 genes. For instance, a padding factor of 10017
is represented by the following three genes:

01001
︸ ︷︷ ︸

gene0=9

11001
︸ ︷︷ ︸

gene1=25

00001
︸ ︷︷ ︸

gene2=1
︸ ︷︷ ︸

chromosome

Genetic operators provide the basic search mechanism of the GAs, creating new solutions based
on the solutions that exist. The selection of individuals to produce successive generations plays
an extremely important role. A common selection approach assigns probability of selection to
each individual depending on its fitness. Individuals with higher fitness have a higher probability
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of contributing one or more offsprings to the next generation. Then, individuals are selected
depending on this probability. We have adopted one of the selection schemes that gives better
results, which is known as remainder stochastic selection without replacement [35].

Crossover takes two individuals and produces two new individuals with a given probability,
merging the genetic material in a random point (named cross site). In the case they do not
crossover, both individuals are added to the new population (see Figure 48). Mutation changes
one individual to produce a new one by flipping some of its genes. Both crossover probability
and mutation probability have to be determined empirically, and are related to the size of the
population.

The GA must be provided with an initial population (see Figure 47), that is created randomly.
GAs moves from generation to generation, and the usual termination criterion is the number of
generations, although other criteria can be used [35].

Our experiments have shown that an initial population of size equal to 30, with a crossover
probability of 0.9 and a mutation probability of 0.001, gives near-optimal results after 15 genera-
tions.

38.6 Objective Function

If the objective function to optimize is hard to compute, it will be necessary to choose a trade-off
between accuracy and time-consumption.

Given a loop nest, our objective function (f in eq. 42) consists of the CMEs generated in a
parameterized way, where the parameters are the padding factors.

A genetic algorithm requires to evaluate the objective function multiple times. Since counting
the number of solutions to the CMEs is an extremely high time-consuming process, we use the
techniques outlined in M3D1 deliverable in order to make this approach feasible.

39 Padding Performance Evaluation

This section evaluates the proposed padding approach. Examples of its use will be given, as well
as its accuracy.

39.1 Experimental Framework

CMEs have been implemented for fortran codes through the Polaris Compiler [65] and the Ictineo
library [5]. These libraries allow us to obtain all the compile-time information needed to generate
the equations.

The evaluation of CMEs has been implemented in C++ following the techniques outlined in
M3D1 deliverable and using our own polyhedra representation [9].

Due to CMEs restrictions, only perfectly nested loops in which the array subscript expressions
are affine functions of the induction variables are analyzed [31]. The loop nests considered are
obtained from the SPECfp95, choosing for each program the most time-consuming loop nests that
in total represent between the 60-70% of the whole execution time, using the reference input data.
Also some kernels from algebraic codes have been analyzed. Results for different cache architectures
are reported, including the cache architecture of the new Pentium 4 processor [13]. Since the main
objective of padding is to remove conflict misses, a fully-associative cache has been evaluated as a
reference point. This evaluation has been done by means of the CMEs [77].

The difference between the miss ratio of a given cache and that of a fully-associative cache is
an estimation of the amount of conflict misses that are not removed by the padding technique. We
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Figure 49: Miss ratio before and after inter-variable padding for different cache sizes.

assume an LRU replacement policy, which is very used in practice, unlike the Belady algorithm [8],
which is optimal but only off-line implementations are known. In this case, one may find some
pathological cases where the miss ratio of a fully-associative cache is higher than that of a direct-
mapped cache. For instance, assume a loop nest that traverses multiple times an array whose size
is equal to the cache size plus one line and the line size is equal to one array element. The LRU
fully-associative cache will miss for every access whereas a direct-mapped cache will hit for all the
accesses excepting those corresponding to the first and the last line.

Four SPECfp95 programs have not been evaluated because the following reasons:

• 125.turb3d and 141.apsi: The loop nests that represent the 65% of the execution time
have not enough iteration points to use sampling, although our method could be applied
to these loops by analyzing the whole iteration space, we preferred to analyze some kernels
instead.

• 145.fpppp: The section of the code that represents the main part of the execution time does
not contain perfectly nested loops.

• 146.wave5: The array subscripts are function of other arrays, and thus the CMEs cannot
be obtained.

39.2 Examples of Some Kernels

We will first illustrate the effectiveness of the padding approach by means of some Livermore kernels
(see Table 5). We have evaluated their miss ratio for a 16-Kbyte cache with 32-byte lines.
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Kernel Description Problem size
ADI32 (LIV 8) 2D ADI integration N=10240

DOT256 (LIV 3) Vector dot product N=10240
MULT300 (LIV 21) Matrix multiplication N=1024

Table 5: Kernels

Program NO Padding Inter-Padding Intra-Padding Fully-Assoc

ADI32 75% 11.6% 11.6% 11.6%

DOT256 7% 5.2% 5.2% 5.2%

MULT300 21.3% 5.5% 3.2% 3.2%

Table 6: Miss ratio for the evaluated kernels (16KB direct-mapped cache, 32B lines)

Table 6 shows the results. Column 2 shows the miss ratio for a direct-mapped cache before
padding, whereas column 3 shows the miss ratio after applying inter-variable padding and column 4
the miss ratio after intra-variable padding. We can see that padding significantly reduces the miss
ratio for all of them. Column 5 shows the miss ratio of the fully-associative cache. We can see that
after inter-variable padding, the miss ratio of the direct-mapped cache and the fully-associative
cache are the same for two kernels and very close for the third one.

This third one has intra-variable conflict misses, so intra-variable padding is required to further
reduce the number of misses. We can see that after applying intra-variable padding, the number
of misses for the first two kernels does not change, but the third one has now the same miss ratio
as the fully-associative cache. This indicates that the proposed padding technique has removed all
conflict misses for the three kernels.

39.3 Performance Evaluation for the Specfp95

Figure 49 shows, for the 6 Spec95 programs analyzed, the miss ratio of a direct-mapped cache
before and after applying inter-variable padding. Note that the figures for the different cache sizes
(32KB, 16KB, 8KB, and 4KB) have different scales. Note also that the Spec95 applications have a
relatively small working set with respect to current applications. Thus, the results for the smaller
cache sizes may be more representative of what we can expect today for larger caches and bigger
applications. Two sets of programs can be distinguished:

• Set1 is composed of programs Tomcatv and Swim. The miss ratio of this set of programs is
highly affected by cache size. In addition many of the misses are due to conflicts [29].

• Set2 is composed of programs Su2cor, Hydro, Mgrid, and Applu. The miss ratio of this set
of programs is quite insensitive to the cache size. In addition all the programs of this set have
practically no conflict misses [29].

39.3.1 Inter-Variable Padding

Since the objective of padding is to eliminate conflict misses, for Set2 we obtain a small improve-
ment when applying inter-variable padding due to the low number of conflicts. Su2cor, which is
the program with the highest conflict miss ratio in this set, experiences the highest improvement
(e.g 27% miss rate reduction for a 16KB cache). In addition, another source of improvement is
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Figure 50: Miss ratio for the Tomcatv and Swim loop nests before and after inter-variable padding
for different cache sizes.

that the proposed inter-variable padding technique also aligns the data structures with cache lines,
which reduces compulsory misses.

On the other hand, inter-variable padding provides a huge improvement in miss ratio for Set1.
Note that for both programs, a small improvement is obtained for a 32KB cache (Figure 49.a). This
is caused by the fact that almost no conflicts arise for 32KB caches or bigger for these programs
due to the relatively small working set of the Spec95 applications. However, the smaller the cache
the bigger the miss ratio and the bigger the improvement that inter-variable padding obtains.

For the Swim program, the miss ratio grows from 8.1% to 24.8%, 62.9%, and 77.9% when the
cache is reduced from 32KB to 16KB (Figure 49.b), 8KB (Figure 49.c), and 4KB (Figure 49.d)
respectively. However, when we apply inter-variable padding, the miss ratio is kept almost constant
(7.1%, 7.2%, 7.8% and 8.2% respectively). This is because most of the misses of this program
are caused by conflicts between different data structures (inter-variable conflict misses) and the
algorithm practically obtains the optimal padding among them.

For the Tomcatv program, the miss ratio also grows significantly when the cache size is reduced
(9.5%, 14.8%, 46.0%, and 72.1% respectively for the different cache sizes). In this program, we
also obtain a considerable improvement when applying inter-variable padding for caches smaller
than 32KB. However, the miss ratio after inter-variable padding varies significantly with the cache
size (8.8%, 11.8%, 21.6%, and 52%). This variation is caused by capacity misses that grow when
the cache is reduced, and by intra-variable conflict misses (e.g. conflicts among distinct rows and
columns of the same array) whose frequency also grows when the cache is reduced. Inter-variable
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Figure 51: (a) Miss ratio for different Tomcatv loop nests before and after inter- and intra-variable
padding (b) Miss ratio for the Tomcatv and Swim loop nests for the Pentium 4 L1 cache

padding does not remove the latter type of conflicts, which are the target of intra-variable padding.
Figure 50 details the miss ratio for the main loop nests of the programs in Set1 (note again the

different scales for the different cache sizes). The figure shows the miss ratio for each loop before
and after applying inter-variable padding. It also shows the miss ratio for a fully-associative cache
after inter-variable padding.

For the Swim program loop nests 1 and 2 have practically no improvement due to inter-variable
padding (excepting a slight improvement due to alignment) because they have no conflict misses.
Note also that these two loop nests have almost the same miss rate regardless of the cache size. On
the other hand, loop nests 3 to 7 have an extremely large miss ratio due to conflicts for small caches.
Note that in these loops, applying inter-variable padding practically removes all the conflict misses
since the miss rate after inter-variable padding and the fully-associative miss rate are practically
identical. As an extreme case, loop nest 3 has a miss ratio close to 100% for a 4KB cache, which
after inter-variable padding is reduced to 11.8%. This is exactly the same miss ratio obtained for
a fully-associative cache, which means that all the conflict misses have been removed. Note that
inter-variable padding removes all the conflict misses for all Swim loops since the miss rate after
inter-variable padding and the fully-associative miss rate are practically identical.

The Tomcatv program has several loop nests that deserve special comments. For the 32KB and
16KB, the proposed inter-variable padding technique practically removes all conflict misses, so we
will emphasize the 8KB and 4KB caches. For the 8KB cache, inter-variable padding removes all
conflict misses from all loop nests except for loop 1. In this case, inter-variable padding reduces the
miss ratio from 53.6% to 29.2% but not all conflict misses are removed since the fully-associative
miss ratio is 11.4%. An analysis of this loop shows that in addition to inter-conflict misses there
are also intra-conflict misses and this type of misses can only be removed by applying intra-variable
padding.

In the case of a 4KB cache, inter-variable padding achieves about the same miss rate as a fully-
associative cache for loop nests 2, 3, 5, and 7. As a noticeable case, the miss ratio of loop 7 has
been reduced from 42.3% to 15.8%. For the other loop nests there is a significant improvement

- 101 -



MHAOTEU: Project No 24942

(from 81.9% to 60.0% for loop 1, from 91.1% to 70.3% for loop 4, and from 87.7% to 68.5% for loop
6) but the miss ratio is still far from that of the fully-associative cache (11.4%, 20.6%, and 19.2%
respectively). An analysis of this three loop nests revealed that most of the remaining misses are
intra-variable conflict misses so a further intra-variable padding optimization is required.

39.3.2 Intra-Variable Padding

Inter-variable padding cannot remove intra-variable conflict misses, that is, conflicts among different
accesses to the same array. The objective of intra-variable padding is to eliminate these conflict
misses.

We have shown in the previous section that Tomcatv is the only program of our benchmarks
that has a significant intra-variable conflict miss ratio, in particular for caches of 4 and 8 KB.
Figure 51.a shows the miss ratio for the different loop nests of the Tomcatv program. The figure
shows the miss ratio for each loop after applying inter- and intra-variable padding. It also shows
the miss ratio before padding and that of a fully-associative. As we observed before, inter-variable
padding does not remove all conflicts misses because there are intra-conflict misses. Intra-variable
padding achieves about the same miss rate as the fully-associative cache, which means that the
proposed padding algorithm removes practically all conflict misses.

Figure 51.b details the miss ratio for the main loop nests of the programs in Set1 for a 8KB
4-way set associative cache with 64B lines, which is the cache arquitecture of the new Pentium 4
processor [13]. Intra-variable padding achieves about the same miss ratio as the fully associative
cache, reducing the average miss ratio from 62.5% to 4.18% for the Swim program, and from 23.6%
to 4.6% for the Tomcatv.

39.3.3 Execution Time

Finally, padding has to be performed in a reasonable amount of time in order to be included as an
optimization step of a compiler. In our case, it took about 5 minutes to optimize each program9.
This amount of time can be significantly reduced if the technique is guided by a locality analysis
in order to apply padding only to those loop nests that can benefit from it. The locality analysis
developed in this work could easily be extended to provide such information.

40 Loop Tiling

In this section we present our proposal to perform loop tiling. Tiling [72, 25] is a transformation
which combines strip-mining [25] with loop interchange to form small [25] tiles of loop iterations
which are executed together to exploit data locality. In this section Ti and Ui stand for the tile size
and upper bound respectively of loop i in the original loop nest. Figure 52 shows an example of a
normalized [69] loop before (a) and after (b) loop tiling.

40.1 Model

The target of our work is to obtain the values of the variables Ti that minimize the number of misses.
Note that loop tiling changes only the order in which the original iteration space is traversed, so
the number of compulsory misses before and after tiling remains constant. Because of this, our
work focuses in minimizing the number of replacement misses.

9In an Alpha Server with a 21264 processor at 524 MHZ
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(a)

do i1=1, U1

do i2=1, U2

do i3=1, U3

A(i3,i2,i1) = B(i1,i3,i2)
enddo

enddo
enddo

(b)

do ii1=1, U1, T1

do ii2=1, U2, T2

do ii3=1, U3, T3

do i1=ii1, min(ii1+T1-1, U1)
do i2=ii2, min(ii2+T2-1, U2)

do i3=ii3, min(ii3+T3-1, U3)
A(i3,i2,i1) = B(i1,i3,i2)

enddo
enddo

enddo
enddo

enddo
enddo

Figure 52: 3D matrix transposition: (a) before tiling, (b) after tiling

Let f be the function that represents the number of replacement misses for each possible value
of the tile size variables:

f 7−→ #Replacement Misses (43)

f : [1, U1]
︸ ︷︷ ︸

T1

× . . .× [1, Uk]
︸ ︷︷ ︸

Tk

−→ Z
Our problem can be expressed as follows:

MIN f(T1, . . . , Tk)

1 ≤ Ti ≤ Ui

i = 1 . . . k

where f is called the objective function.
Since f is a pseudo-polynomial function [20], the relationship between loop tiling and the number

of misses is nonlinear. Ti can take only integer values, thus, our problem can be seen as a nonlinear
integer optimization (NLP) one (see section 38.3).

40.2 Genetic Algorithm Parameters

The representation used to perform loop tiling has some significant differences with the represen-
tation used to perform padding. In the case of inter-variable padding, we have that the function
to transform representation values to padding factors is the identity function because the padding
factor is exactly the integer value of the binary representation of the corresponding chromosome.
But in the case of loop tiling we need a representation for the values [1 . . . Ui] where Ui can take
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any integer value greater than zero. The best way we have found to represent this range of values
is to use a binary representation of the values [0 . . . 2k-1] where k is ⌈log2Ui⌉. Thus, there are more
values in the representation range than possible tile size values. Therefore, we need a function to
map values [0 . . . 2k-1] onto the range [1 . . . Ui].

Let g be the function that represents the tile size for each possible value of the representation:

g : [0 . . . 2k − 1] −→ [1 . . . Ui]

where

k = ⌈log2Ui⌉

x ∈ [0 . . . 2k − 1]

g(x) = ⌊
x ∗ (Ui − 1)

2k − 1
⌋+ 1 (44)

Figure 53 illustrates an example of how this function works.

Sample code

do . . .
. . .

do ij=1, 5
. . .
enddo

. . .
enddo

Ui = 5
k = 3
g : [0 . . . 7] −→ [1 . . . 5]

Tile sizes

g(0) = 1
g(1) = 1
g(2) = 2
g(3) = 2
g(4) = 3
g(5) = 3
g(6) = 4
g(7) = 5

Figure 53: Example of the correspondence between representation values and the tile sizes for a
given dimension

It can be easily seen that every possible tile size ti ∈ [1 . . . Ui] has at least one representation
value x such that g(x) = ti. The following proof shows that the lowest x corresponds to ti = 1,
the highest x corresponds to ti = Ui and for every x (except the highest) g(x + 1) ≤ g(x) + 1,
so it is not possible to have g(x) = ti and g(x + 1) > ti+1, which would mean that ti+1 had no
representation.

Proof:

g(0) = 1 and g(2k-1) = Ui are obvious with equation 44.

We have that for all other values x between 0 and 2k-1,

g(x + 1) ≤ g(x) + 1
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thus, applying equation 44 we obtain the following inequality

⌊ (x+1)∗(Ui−1)
2k−1

⌋+ 1 ≤ ⌊x∗(Ui−1)
2k−1

⌋+ 1 + 1

and after simplifying, the inequality is as follows

⌊x∗(Ui−1)
2k−1

+ Ui−1
2k−1
⌋ ≤ ⌊x∗(Ui−1)

2k−1
⌋+ 1

using that Ui-1 ≤ 2k-1, it can be seen that the second fraction on the left of the inequality
is smaller than 1, so the inequality is always true.

Our experiments show that an initial population of size equal to 30, with crossover probability of
0.9 and a mutation probability of 0.001, gives near-optimal results in most cases after 15 generations.
In the rest of the cases, near-optimal results are obtained after a number of generations between
15 and 25. Figure 54 shows the algorithm to decide the number of generations required before
the optimal tile search stops, where converge() is a function to decide when the population is
homogeneous enough. In our case we consider that a population converges when the best individual
has a difference of replacement misses smaller than 2% with respect to the population average of
its generation. We have observed in the evaluated loops that this convergence criterion is only
achieved if the population is closed to the optimal.

Finally, CME have an exponential cost with respect to the number of dimensions of the loop
nest, and loop tiling is a transformation that doubles the number of dimensions of the loop nest
and increases the number of equations (see M3.D1). Due to this, 450 evaluations (15 iterations ×
30 individuals) for each loop are quite time consuming. In our case, it took more than 20 hours
for some loops using an interval of width 0.05 and a 95% confidence for sampling. Due to this we
changed these parameters to 0.1 and 90% respectively. After that, the time required for each loop
is between 15 minutes and 4 hours.

41 Loop Tiling Performance Evaluation

This section evaluates the proposed loop tiling approach. Examples of its use will be given, as well
as its accuracy.

41.1 Experimental Framework

The experimental framework used to evaluate this technique is the same as that used to evaluate
padding (see section 39.1).

The loop nests considered are some kernels from different programs (NAS10, BIHAR11, LIV-
ERMORE) and some frequently used kernels (see Table 7). These loops have been chosen because
they exhibit high number of capacity misses. Results for different cache architectures are reported.
This evaluation has been done by means of the CMEs.

41.2 Examples of some kernels

First of all we show the effectiveness of the loop tiling technique by means of some well-known
kernels (see Table 8). We have evaluated their miss ratio for a 8KB direct-mapped cache with
32-bytes lines.

10Numerical Aerospace Simulation Facility (by NASA Ames Research Center)
11Biharmonic Partial differential equations solver in rectangular geometry
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Kernel Program Description Problem size
T2D 2D Matrix transposition N=100, 200, 500, 1000, 2000

T3DJIK 3D Matrix transposition N=20, 50, 100, 150, 200
a[k,j,i] = b[j,i,k]

T3DIKJ 3D Matrix transposition N=20, 50, 100, 150, 200
a[k,j,i] = b[i,k,j]

JACOBI3D Partial differential N=20, 50, 100, 150, 200
equations solver

MATMUL Matrix by vector multiplication N=100, 200, 500, 1000, 2000
MM LIVERMORE Matrix multiplication N=100, 200, 500, 1000, 2000
ADI LIVERMORE 2D ADI integration N=100, 200, 500, 1000, 2000
ADD NAS Addition of update N=163

to a matrix
BTRIX NAS Block Tri-diagonal solver. N=30

Backward block sweep
VPENTA1 NAS Invert 3 pentadiagonals N=128

simultaneously. Loop 1
VPENTA2 NAS Invert 3 pentadiagonals N=128

simultaneously. Loop 2
DPSSB BIHAR unnormalized inverse of a N=100

forward transform of a
complex periodic sequence

DPSSF BIHAR forward transform of a N=100
complex periodic sequence

DRADBG1 BIHAR backward transform of a N=100
real coefficient array. Loop 1

DRADBG2 BIHAR backward transform of a N=100
real coefficient array. Loop 2

DRADFG1 BIHAR forward transform of a N=100
real periodic sequence. Loop 1

DRADFG2 BIHAR forward transform of a N=100
real periodic sequence. Loop 2

Table 7: Evaluated kernels

No Tiling Tiling
Kernel Problem size

Total Replacement Total Replacement
T2D N=2000 63.3% 36.4% 27.7% 0.9%

T3DJIK N=200 63.4% 36.7% 30.2% 3.6%
T3DIKJ N=200 34.6% 7.0% 27.9% 0.3%

JACOBI3D N=200 25.6% 7.2% 19.8% 1.3%

Table 8: Miss ratio for some evaluated kernels (8KB direct-mapped cache, 32B lines)
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ALGORITHM:

finish := false
iters := 0
while (not finish)

if (iters<15)
iters = iters + 1
create next generation

else if (iters>=15 and iters<25)
if (not converge())

iters = iters + 1
create next generation

else finish := true
endif

else finish := true
endif

endwhile

Figure 54: Genetic Algorithm used to perform loop tiling

Table 8 shows the results. Column 2 shows the problem size. Columns 3 and 4 show the total
and replacement miss ratio before loop tiling respectively, whereas columns 5 and 6 show the total
and replacement miss ratio after tiling respectively. We can see that after tiling the replacement
miss ratio is near zero for all kernels. This indicates that loop tiling has removed almost all
replacement misses. The remaining replacement misses probably are conflict misses which must be
removed by means of techniques like padding.

41.3 Performance Evaluation for some kernels

In this section we present the replacement miss ratio of different direct-mapped caches (8KB, 16KB,
32KB and 64KB) before and after applying loop tiling for the kernels of the table 7.

It can be seen that for most programs near-optimal results are obtained after tiling. However,
for some kernels (ADD, BTRIX, VPENTA1 and VPENTA2) the replacement miss ratio obtained
after tiling is still quite high for all cache sizes. For some others (ADI 1000 and ADI 2000) we
can observe the same trend for a 8KB cache. We have analyzed these cases carefully and we have
observed that most of the remaining replacement misses are due to conflicts and they cannot be
removed by loop tiling. For these programs we have investigated the combination of padding and
tiling techniques as discused below.

Table 9 shows the replacement miss ratios obtained for those kernels where the replacement miss
ratio is still high after loop tiling. Column 2 shows the original replacement miss ratio, whereas
columns 3 and 4 show the replacement miss ratio after padding, and after padding and tiling
respectively. The replacement miss ratios obtained for all kernels are near-optimal.

Table 10 shows the percentage of kernels (not considering those which appears in table 9), which
have a replacement miss ratio lower than 1%, 2% and 5% respectively. For all these kernels and all
cache sizes the replacement miss ratios are lower than 5%.
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Figure 55: Replacement miss ratio before and after loop tiling for 8KB cache.

16KB Cache
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Figure 56: Replacement miss ratio before and after loop tiling for 16KB cache.

We have shown that the proposed loop tiling technique obtains near-optimal results for almost
all loops. Since most of the replacement misses which our tiling technique cannot remove are
conflict misses, applying padding and tiling together is a promising technique to study in future
work.
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32KB Cache
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Figure 57: Replacement miss ratio before and after loop tiling for 32KB cache.

64KB Cache
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Figure 58: Replacement miss ratio before and after loop tiling for 64KB cache.

42 Conclusions

Cache memory performance is critical for the efficient execution of numerical applications. Padding
and loop tiling are program transformations that reduce both types of replacement misses: conflict
and capacity misses. In this work, we have proposed the use of genetic algorithms in order to
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8KB 16KB
Kernel Padding Padding

Original Padding
+ tiling

Original Padding
+ tiling

ADD 60.2% 59.8% 0.5% 60.2% 59.8% 0.0%
BTRIX 50.1% 0.2% 0.2% 39.2% 0.0% 0.0%

VPENTA1 78.3% 52.4% 0.0% 78.2% 38.2% 0.0%
VPENTA2 86.0% 11.9% 0.0% 86.0% 11.5% 0.0%
ADI 1000 26.2% 12.3% 4.1%
ADI 2000 25.7% 12.4% 3.4%

32KB 64KB
Kernel Padding Padding

Original Padding
+ tiling

Original Padding
+ tiling

ADD 60.2% 59.8% 0.0% 60.2% 59.8% 0.0%
BTRIX 34.1% 0.0% 0.0% 29.9% 0.0% 0.0%

VPENTA1 78.1% 32.9% 0.0% 77.9% 22.6% 0.0%
VPENTA2 86.0% 11.3% 0.0% 86.0% 5.9% 0.0%

Table 9: Miss ratio for some evaluated kernels (8KB direct-mapped cache, 32B lines)

Replacement miss ratio
Cache sizes

<1% <2% <5%
8KB 56.4% 79.5% 100.0%
16KB 73.2% 87.8% 100.0%
32KB 90.2% 97.6% 100.0%
64KB 92.7% 97.6% 100.0%

Table 10: Replacement miss ratios after tiling of all kernels except those which appear in table 9

perform near-optimal padding and loop tiling.
Genetic algorithms require many evaluations of the objective function, in order to evaluate the

miss ratio for different padding or tiling configurations. In order to make the technique computa-
tionally tractable and effective, a fast and accurate locality analysis technique to evaluate the miss
ratio is required. We have used Cache Miss Equations for their high accuracy. However, solving
CMEs directly is computationally intractable. We have proposed several techniques to solve them
very fast.

The evaluations of padding and tiling show that, for the programs that have conflict and capacity
misses respectively, we achieve a significant improvement. For instance, for a 8KB direct-mapped
cache, we can reduce the replacement miss ratio of the 3D matrix transpostion (N=100) from 36.7%
to 0.6% and the replacement miss ratio of the kernel Dpssb from 55.5% to 1.25% by means of tiling.
For the same cache configuration we can reduce the miss ratio of the Swim program from 62.9%
to 7.8% and the miss ratio of the Tomcatv program from 46.0% to 21.6% by means of padding.
Besides, padding slightly reduces the compulsory misses due to a better alignment of arrays with
cache lines.

Finally, an exhaustive evaluation of the programs and kernels with a high number of conflict and
capacity misses reveals that the proposed techniques to perform loop tiling and padding practically
remove all the capacity and conflict misses for all loops that have been analyzed.
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Part IV

Iterative Compilation
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43 Combined Selection of Tile Sizes and
Unroll Factors Using Iterative Compilation

Abstract

Loop tiling and unrolling are two important program transformations to increase locality and
expose instruction level parallelism (ILP), respectively. However, these transformations are not
independent and each can adversely affect the goal of the other. Furthermore, the best combination
will vary dramatically from one processor to the next. In this paper, we therefore address the
problem of how to select tile sizes and unroll factors simultaneously. Furthermore, we approach this
problem in an architectural adaptive manner by means of iterative compilation, where we generate
many versions of a program and decide upon the best by actually executing them and measuring
their execution time. We evaluate several iterative strategies based on genetic algorithms, random
sampling and simulated annealing. We compare the levels of optimisation obtained by iterative
compilation to several well-known static techniques and show that we outperform each of them on a
wide range of benchmarks across a variety of architectures. Finally, we show how to quantitatively
trade-off the number of profiles needed and the level of optimisation that can be reached. In this
way, we can reach high levels of optimisation within 50 iterations.

44 Introduction

Efficient use of the memory hierarchy is essential for good performance due to the ever increasing
gap between processor and memory speed. Program transformations such as loop tiling or blocking
have been shown to be an effective approach to improving locality and cache exploitation [30, 22,
37, 49, 71]. In this approach one tries to divide the loop into smaller tiles in such a way that the
working set of each tile fits in the cache thereby exploiting the available locality.

It is also important to fully utilise the internal parallelism within modern processors which are
capable of issuing several instructions per cycle [23]. Loop unrolling is an important transforma-
tion for this purpose [59] as it increases the size of the loop body exposing more instructions for
Instruction Level Parallelism (ILP) . As we require effective utilisation of the memory hierarchy
and internal parallelism, we need to combine both of these transformations. To illustrate the trans-
formation we consider in this paper consider the example given in Figure 59. In the figure, TJ and
TK are the tile sizes for J and K loop, respectively, and U is the unroll factor of the I loop. 12

In this paper we study the combination of these two transformations. and address the problem of
determining simultaneously optimal tile sizes and unroll factors for any given loop nest. Combining
the best tiling transformation for locality with the best unrolling factor for ILP, however, does
not give the best overall transformation as transformation application is not orthogonal in effect.
Loop unrolling can adversely affect locality and tiling may restrict the available instruction level
parallelism.

The close interaction between tiling and unrolling can be seen in Figure 60 which shows that
a small deviation from ‘good’ tile sizes and unroll factors can cause a huge increase in execution
time and even a slow down with respect to the original program. We need to answer the question
for which tile sizes and unroll factors we obtain the minimum execution time? A static technique
essentially tries to give an analytical expression for this minimum. In [12, 48] we have studied

12The variation on loop unrolling that we consider in this paper is unroll-and-jam [2, 15, 14] whereby an outer loop
is unrolled and the inner loops are fused. Epilogue code is not shown here for simplicity
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the characteristics of optimisation spaces in detail for a variety of benchmarks and platforms. and
showed that different platforms give rise to widely varying optimization spaces and that a compiler,
using a simplified static cost model, would never be able to predict this minimum. Instead, we
propose to actually search this space in a manner that is adaptable for different architectures.. We
call this approach iterative compilation where. we generate many versions of a program and try to
determine their execution time. This can be done by actually executing the program on the target
hardware, by employing one or more static models, or by a combination of both techniques. The
version that performs best is selected. and thus we determine the best combined tile size and unroll
factor. In the present paper, we use real execution time to search the space for a minimal point
and by using a generic iterative compilation strategy, we can find excellent optimisations across a
range of architectures. Thus, we obtain highly architecture specific optimisations in an architecture
independent manner.

This approach is highly attractive in situations which require high performance such as embed-
ded systems where the compilation time can be amortised across the number of products shipped
or in the case of vendor supplied library codes for which the same argument holds. It is also useful
in contexts where the underlying architecture changes (e.g. additional memory, a new release of the
low-level compiler or a completely new processor) as the iterative search strategy has no hardwired
system dependent knowledge.

Although, theoretically, iterative compilation can find the optimal version of a program for any
architecture by simply considering all possibilities, in practice the search space is extremely large
and therefore in this paper we examine techniques that reduce this cost and show that iterative
compilation outperforms static techniques across a range of architectures.

In order to assess the efficiency of our approach, we use a collection of small benchmark kernels
and three target platforms in section 45. In section 46 we show that we can find good tile sizes
and unroll factors by visiting only a tiny fraction of the entire optimization space. We assess
the quality of the optimization found by comparing it to two well-known static tile size selection
algorithms in section 47 and show that we outperform each of them in almost all cases and can find
good solutions in less than 20 minutes on average. After analysing the cost of compilation time in
section 48, we limit the number of iterations to a realistic small and fixed amount and construct
quantitative trade-off graphs, in section 49, that show the good performance can be reached with
little cost. Finally, we discuss related work in section 50, future directions in section 51 and draw
some concluding remarks in section 52.

Original Transformed

DO I = 1,N

DO J = 1,N

DO K = 1,N

A[I,J] = A[I,J] + B[I,K]*C[K,J]

DO JJ = 1,N,TJ

DO KK = 1,N,TK

DO I = 1,N,U

DO J = JJ,MIN(JJ+TJ-1,N)

DO K = KK,MIN(KK+TK-1,N)

A[I,J] = A[I,J] + B[I,K] * C[K,J]

A[I+1,J] = A[I+1,J] + B[I+1,K] * C[K,J]

...

A[I+U-1,J] = A[I+U-1,J] + B[I+U-1,K] * C[K,J]

Figure 59: Example Transformation
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Figure 60: Execution Time MxM on Pentium for Unrolling and Tiling

45 Experiment

In this section we discuss the parameters of our experiment, including the search algorithms em-
ployed by the global driver, the benchmarks and the target platforms.

45.1 Search Algorithms

We have implemented several search algorithms, including a genetic algorithm, simulated annealing,
pyramid search, window search and random search.

Genetic algorithm Genetic Algorithms are modelled on natural evolution processes and manip-
ulate individuals in a population over several generations to improve their fitness. In GA
there are two important operations: crossover and mutation.

crossover: In this phase, new children are created from two existing parents picked from the
current population. Stronger parents are more likely to be selected and their children inherit
their characteristics. If the crossover probability is set low, weak individuals also get a chance
to be selected.

mutation: In this phase, all individuals in the population are checked bit by bit and the
bit values are randomly reversed according to a specified rate, the mutation probability.
This mutation operator forces the algorithm to search new areas of the search space. If the
mutation probability is set high, the search sequence becomes more random.

Simulated annealing SA is modelled on the physical process of annealing which is the process of
heating up a solid and then cooling it down slowly until it crystallises. The algorithm consists
of a sequence of iterations starting with high temperature. A position of an atom is selected
randomly and its neighbouring points are evaluated. With a certain probability, this atom
makes a move. Then the temperature is reduced and the same procedure is repeated until
this atom comes to a halt.

Pyramid or Grid search We define a top level grid over the search space and evaluate each
point on this grid. We order the points in a priority queue. Around the best points we refine
the grid.
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Window search We define windows over the search space. Initially, the window is the entire
space. We take s samples and order them in a priority queue. Around the best points we
define a new window with length and width of p%.

Random search We randomly generate 2000 possible sets of parameters.

45.2 Benchmarks

In order to assess the efficiency of iterative compilation for selecting tile sizes and unroll factors,
we want to use many small kernel benchmarks from multimedia applications that exhibit a wide
variety of memory access behaviour. In this way, we are able to give a statistically relevant analysis
of the results. Therefore, we chose the following benchmarks.

• Matrix-Matrix Multiplication (MxM). We use all 6 possible loop orders to generate 6 bench-
marks with highly different memory access behaviour. We use data input sizes of N = 256,
N = 300 and N = 301.

• Matrix-Vector Multiplication (MxV). We use the two possible loop orders. We use data input
sizes N = 2048, N = 2300 and N = 2301.

• Forward Discrete Cosine Transform. This benchmark is one of the most important routines
from the low-level bit stream video encoder H263. It contains three initialisation loops and two
main loops: the first loop repeatedly calculates innerproducts and the other loop is a matrix-
matrix multiplication. These loops are hand optimised in the reference implementation and
we undid some of this optimization in order to remove a dependence that would prohibit
some transformation. We use both the first main loop in isolation and the entire routine in
our experiments. We use data input sizes of N = 256, N = 300 and N = 301 and for the
purposes of this paper, restricted our attention to tile sizes from 1 to 100 and unroll factors
from 1 to 20.

45.3 Platforms

We have conducted our experiments on three different platforms: Pentium II, Hewlett-Packard
Precision Architecture (HP-PA 712/60) and UltraSparc. In order to compile a transformed version
of the source program we used the native Fortran77 compiler with full optimization on.

Not every benchmark and data input size has been executed on every platform. Instead, we
have considered a total of 82 different experiments.

46 Results

In this section we show how much speedup we obtain as a function of the number of iterations,
where we show the best speedup found so far. Due to space limitation, we present only part of
the speedup graphs that we have measured. For an exhaustive presentation of all these results the
reader is referred to the full version of this paper [47]. We consider both rectangular and square
tiles and show that square tiles achieve as much improvement as rectangular tiles in only a fraction
of the compilation time. In section 47 we discuss how good these levels of optimization are by
comparing them to existing static approaches.
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Figure 61: Speedup MxM – ijk version
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Figure 62: Speedup MxM – ikj version
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Figure 63: Speedup FDCT
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46.1 Rectangular Tile Sizes

In this section we discuss the results when we search for rectangular tile sizes together with unroll
factors. In this case, the search space consists of 20 × 100 × 100 = 200, 000 points. We let the
search algorithm run for 2000 iterations. We did not consider MxV in this experiment since it only
contains a double loop and rectangular tiling is not applicable.

46.1.1 Analysis of Search Algorithm Performance

The results of iterative compilation are given in Figures 61 through 63. The x-axis denotes the
number of iterations, that is, the number of times a transformed version of the program is generated,
compiled and executed. The y-axis denotes the speedup of the fastest version found so far.

The first observation is that iterative compilation indeed yields high levels of optimization. For
example, we obtain a speedup of over 18 for MxM (IKJ version) and a speedup of 30 for MxM (KIJ
version) on the HP-PA. For these benchmarks, we obtain speedups of over 7, respectively 4, on
the Pentium, and 5.5, respectively 3.3, on the UltraSparc. We have shown in [47] that these high
levels of optimization are found across all our benchmarks and platforms for all data input sizes.
This gives some confidence in the viability of our approach. In section 47 we give a more quantified
assessment of this by comparing iterative compilation to two well-known static techniques.

The second observation we can make is that these search algorithms do not differ much in their
efficiency. The speedups found by the different search algorithms are within 5% on average of each
other [47]. In the table below, we have given the number of iterations required to obtain maximal
speedup. We also gave the number of iterations needed to reach 90% of this maximum.

max. 90% of max.

GA 808.4 its. 76.5 its.
SA 767.6 its. 144.6 its.
Pyramid 1043.9 its. 251.7 its.
Window 835.6 its. 65.6 its.
Random 747.0 its. 162.2 its.

We observe that we on average need roughly between 750 and 1000 iterations in order to obtain
the maximum speedup. We also observe, however, that iterative compilation reaches high levels
of optimization much earlier and that the last few hundred iterations are used for a small increase
in the final outcome. From the table we also observe that SA and Random reach their maximum
fastest. It should be noted that SA shows quite random behaviour also, especially in its earlier
phases where the probability to accept degradations is high. Also, Window search exhibits random
behaviour because we draw random samples from the window that initially covers the entire search
space. In our opinion this suggests that the underlying search space indeed is quite irregular and
regular searching approaches will not yield acceptable results. Pyramid search is slowest because
initially we define a grid over the entire search space that consists of 500 points. Many of these
point may be located in regions that perform badly. Therefore, Pyramid search has a high initial
overhead. This is also reflected in the high number of iterations needed to reach 90% of the maximal
speedup. In general, we see that we need only a fraction of the number of iterations for maximal
speedup to reach 90% of this maximum. Although the average number of iterations we need to
reach 90% lies between 0.03% and 0.13% of the entire search space, the absolute number is far
too high to settle for it. However, this observation enables us to propose a trade-off between the
number of evaluations we employ and the level of optimization that we can find. This topic is
discussed in more detail in section 49 where we show a quantitative trade-off graph.
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Figure 64: Speedup MxM – ijk version
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Figure 65: Speedup MxM – ikj version

46.1.2 Conclusion

We conclude that iterative compilation is capable of finding good unroll factors and tile sizes across a
wide variety of benchmarks, data input sizes and platforms. Several natural algorithms all perform
almost equally well. We reach high levels of optimization visiting between 0.375% and 0.5% of the
entire search space. We can reach 90% of maximum optimization by visiting a far smaller fraction of
the search space: between 0.03% and 0.13%. However, searching for rectangular tile sizes requires
a large search space of 200,000 points. Therefore, in the next section, we consider the possibility
to search for square tiles that reduces the size of the search space to 2000 points.

46.2 Square Tile Sizes

In this section we search for square tile sizes, reducing the size of the search space by a factor
100 to 2000 points. We implemented four search algorithms: GA, Pyramid, Random and SA. We
compared the search algorithms and found that they reached their maximum improvement in about
the same number of steps [47]. In this section we only present the results using Pyramid search.
The results are given in Figures 64 through 67. We used 400 iterations to determine the maximal
speedup, which is 20% of the number of iterations we used for rectangular tiles.
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Figure 66: Speedup MxV
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Figure 67: Speedup FDCT
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46.2.1 Analysis of results

Comparing the speedups obtained using square tiles with the speedups obtained using rectangular
tiles shows that they are about the same. In one case (MxM-KIJ on HP-PA) square tiling performs
about 30% slower than rectangular tiling. In one other case (MxM-IKJ for N = 300 on Pentium)
square tiling obtains a speedup of 4.03 whereas for rectangular tiling, speedups of 7.22 are obtained.
However, in some other cases square tiling outperforms rectangular tiling: for the first loop in FDCT
square tiling performs 45% better than rectangular tiling on the UltraSparc. In all other cases,
square tiling is within 5% on average from rectangular tiling. In general, the difference between
the different search algorithms for rectangular tiling is of the same order of magnitude than the
difference between square and rectangular tiling. This shows that square tiles can provide the same
speedup as rectangular tiles do and therefore we can restrict attention to square tiles.

The next observation is that iterative compilation reaches high levels of optimization rapidly.
In the table below we have shown the average number of iterations needed to find the maximal
speedup and 90% of this maximal speedup, for each platform. We see that we improve by a factor
of 8 over searching for rectangular tile sizes, both for finding the maximal improvement and for
finding 90% of this maximal improvement.

max. 90% of max.

Pentium 146 its. 31.3 its.
HP-PA 79.9 its. 23.9 its.
Ultra 127 its. 38.2 its.

Average 116.2 its. 30.9 its.

46.2.2 Conclusion

We conclude that the speedup obtained using square tiles is almost as good as the one obtained
using rectangular tiles. However, the time needed for iterative compilation is a factor of 8 smaller for
square tiles than for rectangular tiles. This provides our first heuristic for managing the complexity
of iterative compilation by only considering square tiles.

47 Comparison with Static Techniques

In this section we quantify the efficiency of iterative compilation by comparing the performance
improvements to two static tile size selection algorithms. In [71] it has been shown that these tiling
algorithms perform as good as or better than a host of other tiling techniques. The first algorithm,
TSS by Coleman and McKinley [22], considers the size of the working set in the loop body and
requires that this working set is smaller than the cache size. It also takes into account an estimate
of the cross interference between different arrays and tries to minimise this cross interference. We
unrolled the loop a number of times and computed the tile size using TSS for the unrolled loop.
The second algorithm, LRW by Lam, Rothberg and Wolf [49], does not consider the working set
nor the cross interference rate. It computes a tile size based only on the size of the cache. We have
used this tile size together with different unrolling factors.

We compute the comparison between our approach and the static approaches as follows. Let Sit

be the speedup obtained by iterative compilation and let STSS be the speedup obtained by TSS.
Then the improvement of iterative compilation over TSS, ITSS, is given by

ITSS =
Sit − STSS

STSS
· 100%
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Figure 68: Improvement over TSS for MxM – ijk version, N = 256
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Figure 69: Improvement over LRW for MxM – ijk version, N = 256

We compute the improvement of iterative compilation over LRW likewise. Note that when iterative
compilation produces a lower speedup than TSS, a negative improvement is obtained. The results
are given in Figures 68 through 74 (see also [47]).

We immediately observe from these figures that iterative compilation outperforms the other
techniques significantly, up to 1800% for MxM-IKJ on the HP-PA. Note that we show that this
improvement holds for each unroll factor less than or equal to 20 that the compiler might choose.
From the figures it can also be observed that for an unroll factor of 1, which corresponds to no
unrolling, improvements over tiling only are large. In the full version of the paper [47] it is shown
that the observations given above hold for almost each benchmark, data size and platform. In
particular, iterative compilation improves in all cases on Pentium. For HP-PA, there are 20 out
of 600 cases where iterative compilation performs 2% less than TSS and 2 cases where iterative
compilation performs 3% less than LRW. For UltraSparc, there is 1 case out of 600 where iterative
compilation performs 2% less than TSS. It always performs better than LRW. Hence, summing up,
in more than 99% of our benchmarks iterative compilation outperforms a static tile size selection
algorithm. In the other cases only a very slight degradation of about 2% can be observed. From
this data we conclude that iterative compilation is a powerful optimization technique outperforming
existing static techniques significantly.
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Figure 70: Improvement over TSS for MxM – ikj version, N = 256
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Figure 71: Improvement over LRW for MxM – ikj version, N = 256
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Figure 72: Improvement over TSS for MxV, N = 2048
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Figure 73: Improvement over TSS for FDCT, N = 256
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Figure 74: Improvement over LRW for FDCT, N = 256
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Figure 75: Compilation Time and Decomposition of Compilation Time
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48 Compilation Time

In this section we discuss the compilation time required for iterative compilation that we show
in Figure 75 as a function of the number of iterations, together with the breakdown in the times
required for searching and program transformation in MT1, native Fortran77 compilation and
execution. We observe that the relationship is almost linear. For 400 iterations, we need on
average on Pentium 14.6 minutes, on HP-PA 65.23 minutes and on UltraSparc 64.49 minutes.

In case of the Pentium and UltraSparc, most time is spent in executing the transformed program.
However, for HP-PA, the time required for native Fortran77 compilation is the dominant factor and
the time required for the global driver can be larger than the execution time of the transformed
program. Hence most reduction in time required for iterative compilation can be obtained from
reducing the number of actual executions, that need both native compilation and running the
program.

49 Trade-off between Number of Iterations and Level of Opti-

mization

In this section we discuss how much improvement we can obtain from iterative compilation when
limiting the number of iterations. Thus we investigate how much performance gain is available for
a given compilation time “budget”.

49.1 Comparing Improvements

We need to define a metric that we can use to compare improvements. In this subsection we discuss
two possibilities. We use both metrics below to construct a trade-off graph between the number
of iterations and the levels of optimization that result. First, we want to quantify the effect of a
transformation. There are two natural approaches.

Speedup Suppose the execution time of the original program is t0 and the execution time of the
transformed program is t1. The speedup of the transformation S is defined as

S =
t0
t1

As we keep track of the best version found so far, the speedup is always greater than or equal
to one, S ≥ 1.

Execution time improvement This quantity is defined as the difference between the original
execution time and the execution time of the transformed program, relative to the execution
time of the original execution time. The improvement I of the transformation is therefore
defined as

I =
t0 − t1

t0
· 100%

If the transformation slows down the original program, I < 0. Otherwise, 0 ≤ I < 100%. If
I = 0%, then the transformation has no effect. If t1 decreases to 0 seconds, I increases to
100%. In the present case of iterative compilation, I lies between 0% and 100%.
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Using the two measures above, we can define a metric to quantify how close a transformation
comes to another transformation. There are two properties we require this metric to have. First, if
transformation T1 has no effect, but transformation T2 has a positive effect, we want to be able to
say that T1 reaches 0% of the improvement of T2. Second, if T1 results in the same running time
as T2, we want to be able to say that T1 reaches 100% of the improvement of T2.

Speedup Since the minimal speedup we obtain from iterative compilation is 1, we define the
metric MS based on speedup by

MS(T1, T2) =
S1 − 1

S2 − 1
· 100%

where Si is the speedup obtained from transformation Ti. It is easy to see that MS has the
two properties discussed above.

Execution time improvement We want the metric MI to measure how close the improvement
I1 comes to I2. That is, we want the relation I1 = MI(T1, T2) · I2 to hold. Therefore, we
define

MI(T1, T2) =
t0 − t1
t0 − t2

· 100%

where t0 is the original execution time and ti is the execution time resulting from transfor-
mation Ti. Again it is easy to see that MI has the two properties discussed above. We can
rewrite MI in terms of speedup as follows.

MI(T1, T2) =
S2

S1
·
S1 − 1

S2 − 1
· 100%

Below, T2 is the transformation with maximal improvement, hence S2 ≥ S1 and MI ≥MS .

For example, suppose we have a program that runs in 20 seconds. Suppose transformation T1

reduces the running time to 4 seconds, and transformation T2 reduces the running time to 2
seconds. Then S1 = 5 and S2 = 10, and I1 = 80% and I2 = 90%. To compute comparisons,
MS(T1, T2) = 4

9 · 100% ≈ 44% and MI(T1, T2) = 20−4
20−2 · 100% ≈ 88%. Hence we see the difference

between the two metrics. There is a large difference between speedups and therefore MS is only
44%. On the other hand, there is not so much difference in running times compared to the original
running time. T1 already reduces the running time to a large extend. The metric MI records this
and says that T1 reaches 88% of T2.

49.2 Quantitative Trade-off Graphs

We now want to compare the transformation Ti found in iteration i to the final transformation Tm

with maximal effect that has been found after 400 iterations. We use the results of both the Pyramid
and the Random search algorithm since this last algorithm inspects the entire search space in a
few iterations and hence delivers high levels of optimization rapidly. We use both metrics discussed
above in this comparison. In this way, we are able to focus on both speedup and execution time
improvement. We proceed as follows.

We base our comparison on the transformations using square tiles discussed in section 46.2. We
measured the speedup found after 25 iterations in all 82 experiments that we have conducted. We
counted the number of cases where we reached 100% of the speedup. This yields a percentage of
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Figure 76: Trade-off Graphs for Pyramid search (top) and Random search (bottom)
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Compilation time 25 its. 50 its. 75 its. 100 its.

Pentium 1.23 m. 2.37 m. 3.27 m. 4.63 m.
HP-PA 4.10 m. 7.68 m. 10.4 m. 14.34 m.
UltraSparc 4.66 m. 9.02 m. 12.51 m. 17.77 m.

Table 11: Compilation Time for Small Numbers of Iterations

the experiments that reach this maximal result. Likewise, we counted the number of cases where
we reached at least 95%, 90%, 80% and 70% of the maximal speedup. We also counted the cases
where we reached at least 100%, 99%, 98%, 97%, 95%, 90% and 80% of the maximal execution
time improvement.

We followed the same procedure after 50, 75 and 100 iterations. The results are plotted in Figure
76 that provide quantitative trade-off graphs. From these figures we can deduce, for example, that
using the Random algorithm after 100 iteration, 58% of the benchmarks were fully optimized and
thus reached 100% of the speedup or execution time improvement. Likewise, we see that after 50
iterations, 85% of the benchmarks reached at least 90% of the maximal speedup and 79% of the
benchmarks reached at least 97% of the execution time improvement. Conversely, given a budget
if N iterations, we can deduce the effect of iterative compilation in terms of how likely it is that a
certain level of improvement is reached.

There are a number of observations we can make. First, we see that after 25 iterations most
benchmarks reach high levels of optimization: more than 50% reach 95% of the maximal speedup
and 45% reach 99% of the maximal execution time improvement for Random search. Likewise, after
25 iterations more than 50% of the benchmarks reach 90% of the maximal speedup and 97% of the
maximal execution time improvement for Pyramid search. For 50 iterations, all benchmarks reach
at least 70% of their maximal speedup and 80% of their maximal execution time improvement for
Random search, and 90% of the benchmarks reach 60% of their maximal speedup and 70% of their
maximal execution time improvement for Pyramid search. Conversely, after 100 iterations most
benchmarks reach high levels of optimization. For 50 or more iterations, the “equibars” for 70%
and 80% of the speedup, and the “equibars” for 80% and 90% of the execution time improvement
are close together. This means that there are few programs with an improvement between 70%
and 80% in speedup (or between 80% and 90% in execution time improvement). The vast majority
reaches a higher level of optimization.

Comparing the trade-off graphs for Pyramid search and Random search we observe that Random
search reaches the highest levels of optimization quickest. One reason for this is that Random search
takes samples from the entire optimization space, whereas Pyramid search evaluates a 50 point grid
first. Therefore, after 25 iterations, Pyramid search only has inspected half of the search space.
This shows that if we are only willing to execute a few iterations, Random search can outperform
other approaches. The trade-off graph suggests that after taking 50 random samples, we have a
high probability to have found a good optimization.

In Table 11, we have shown the compilation time in minutes required for 25, 50, 75 and 100
iterations. We observe that the times for 25 or 50 iterations can be afforded. In future work we
hope to bring down these compilation times even further by including static models in the search.
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50 Related Work

There are many paper dealing with tile size selection [22, 30, 49, 59, 71]. All these selection
algorithms use static analysis and models to compute tile sizes, in contrast to the present approach
that uses dynamic profiling information. Carr and Kennedy [15] and Carr [14] compute unroll-and-
jam factors in order to minimise the difference in machine and loop balance. Carr computes how
much benefit the unroll-and-jam of a loop has for a range of unroll factors based on static models
and searches at compile time to decide which unroll factor has the most benefit. In contrast, the
present approach uses actual execution times and moreover considers loop tiling at the same time.

Currently, searching techniques are employed in hardware generation, for example, in design
space exploration [26]. In this approach, many implementations of a design are generated and
static models are used to estimate for example die size and speed of the circuit. Optimal points
in the design space are called Pareto points. For example, one such point signifies that some
implementation gives the fastest circuit for a given die size, or alternatively the smallest die for a
given speed.

Whaley and Dongarra [78], and Bilmes et al. [11] describe systems for generating highly opti-
mized BLAS routines that probe the underlying hardware to find optimal transformation param-
eters. They show to be capable of outperforming vendor supplied, hand optimized library BLAS
routines. In contrast to the present approach, however, these systems are only able to optimise
BLAS routines and are not general purpose compilers.

Wolf, May Dan and Chen [79] have described a compiler that also searches for the optimal
optimization by considering the entire optimization space. Han, Rivera and Tseng [37] also describe
a compiler that searches for tile and pad sizes using static models. In contrast to the present
approach, however, their compilers use static cost models to evaluate the different optimisations.
Our approach based on actual execution times will deliver superior performance and can adapt to
any architecture, requiring no prior modelling phase.

Chow and Wu [19] apply ‘fractional factorial design’ to decide on a number of experiments to
run for selecting a collection of compiler switches. They, however, focus on on/off switches and do
not consider the choice of parameter values that might come from a large range of values.

Over the past years, many proposals have been put forward to use profile information, for
example, in the creation of superblocks [42] or hyperblocks [52] to enable efficient scheduling for ILP
processors. These techniques are currently being employed in commercial compilers [21]. Profiles
are also used to identify runtime constants that can be exploited at compile time [56]. The recently
established workshop on Feedback Directed Compilation shows that currently many proposals are
being put forward to exploit profile information in the compiler chain. This paper can be seen as
taking profiling one step further by using many profiles for deciding between many alternatives.

The present research was started within the Esprit project OCEANS [6]. Within this project,
other approaches to iterative compilation are considered. Bodin explores in [76] the interplay
between loop unrolling and software pipelining. This approach can be fully integrated with the
present approach since Bodin targets a different phase in the compiler, namely, the code generation
phase. In [62], Nisbett proposes a genetic algorithm approach to searching.

51 Future Directions

The obvious drawback of iterative compilation is its long compilation time that is required in order
to generate many versions of the source program and execute them to obtain profiling information.
In this section we discuss a few possible solutions.
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The first approach is to use analytical models in the search. We intend to use the static models
to guide the search by using them to decide whether one version of the program is better than
another. Only if the models predict that some version might be better than the best one found so
far, we will actually profile that version. In this way, profiling the transformed program will only be
done in situations where static information is insufficient to give reliable predictions. These models
should be accurate enough to cover a large portion of the search space or, alternatively, should be
accurate for certain aspects of the search space. For example, based on Figure 60 we could include
a model that suggests large unroll factors and small tile sizes, and another model that suggests
large tiles and small unroll factors. Iterative compilation would then search in both these areas of
the optimization space. Currently, we are implementing a cache model to measure the impact of
the transformations at compile time on memory access behaviour and a parameterised scheduler
to measure the impact on ILP exploitation. We are also implementing Cache Miss Equations [36]
and the procedure to statically evaluate the effect of Unroll-and-Jam proposed by Carr [14]. In the
long term we envisage a compilation system where the user can trade-off levels of optimization and
compilation time by tuning the complexity and accuracy of static models, the number of points
that are inspected and the number of programs that are actually executed. In this compilation
model, traditional compilers use models of low to medium complexity, visit one point and execute
no programs. The present paper discusses the situation where there are no models and many points
are visited and evaluated. The compilers by Wolf, Maydan and Cheng [79], and the one by Han,
Rivera and Tseng [37] fall in between by using low complexity models, visit many points but do
not execute any program.

In the present paper we discuss how to deal with parameters for a given transformation. How-
ever, many other transformations can be employed that do not have such a parameter, like loop
interchange. In [64] we discuss an approach by considering decision trees for applying a host of
transformations, including data transformations [63]. Loop unrolling and tiling is one node in this
tree and the present approach to transformation space exploration can be used in this node to
determine optimal parameters. However, we need to ensure that good tile sizes and unroll factors
can be found very quickly for this approach to be feasible.

52 Conclusion

In this paper we have discussed how to simultaneously select tile sizes and unroll factors using a
novel approach to program optimization, namely, iterative compilation. This approach generates
many transformed versions of the source program and searches for the best by compiling and
executing these programs. We have implemented this approach and we have shown that it is able
to find high levels of optimization rapidly, outperforming existing approaches significantly. We
have shown how to trade-off compilation time and levels of optimization by limiting the number of
iterations. In this way, within 50 iterations, high levels of optimization on average can be found.
The compilation time required is then reduced to less than 20 minutes.
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Part V

Reordering Methods for Data Locality

Improvement
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Abstract

Cache memories have been introduced to reduce influence of the main memories slowness on pro-
cessors performances. This speed gap increases almost as fast as processor frequencies. Recent
systems uses several levels of cache memories. But for big data structures as in most of scientific
programs, the cache mechanism isn’t efficient. Many studies have attempted to modify source
program in order to improve cache use. However, known techniques have many limitations. The
aim of this report is to suggest a new method which exploits avaible cache management software
features and which allows cache memories use on real-time systems.

53 Introduction

The performance gap between every new commodity processor generation and main memories
increases constantly. Progress concerning memories is widely insufficient in front of the very fast
increase of processors frequencies, and number of operations which they can handle during one clock
cycle. This led in the 60s to the introduction of caches, intermediate memories with small sizes
and closer to processors speed. Purpose was to take advantage of the speed of the fastest memory
(level 1 cache) combined to the size and to the price of the slowest (the RAM), by exploiting the
principle of data locality.

The effective use of this memory hierarchy is one of the keys to obtain the best performance.
We obtain them only with a maximal use of data locality. The first attempts to solve this problem
were programming crafts, leading to non portable codes, nearly illegible, and error-prone. That is
why big efforts were made to find solutions allowing the compiler to do the optimization work. It
consisted first of all in integrating already well known program transformation techniques, more
recently in studying the data layout transformations, and now in combining these two approaches.

Techniques focusing on cache optimization suffer big limitations. It is difficult to make choices
on the program tranformation to be applied, as on the order in which to apply them. Furthermore,
these transformations are very sensitive to dependence problems. The data layout tranformations
lack flexibility and do not allow an optimal layout for the whole program in realistic cases.

None of the current techniques takes into account the existence of tools allowing the software
to participate in cache management. We propose here a new method of locality optimization,
based on the use of these tools. The principle is to reorganize the operations of a program to
form subsets for which all the referenced data hold in the cache. This technique, called chunking
takes advantage of the cache memory by being freed from inherent limitations of already existing
methods. Furthermore, controling the cache contents at any time allows us to offer guarantees of
real-time type.

We will recall first of all what phenomenon is responsible for reduction in cache performance.
For it we will define the principle of locality, and show how one take advantage of it and what are
its limits. We will then quickly present the various techniques exploiting this principle to optimize
programs at compile time. We will show then the limitations of these methods and present chunking,
whose aim is to surmount them.

53.1 Principle of data locality

53.1.1 Definition

Memory accesses have been known to be predictable for a long time. The locality principle is a
hypothesis made on program memory accesses behavior. We divide it in two suppositions putting
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in evidence the two dimensions of this principle [Hen90]:

temporal locality: if an item is referenced, it will tend to be referenced again soon,

spatial locality: if an item is referenced, nearby items will tend to be referenced soon.

53.1.2 Exploitation

The principle of locality is the basis of hierarchical memories systems. Their organization and their
functioning are simple: the highest level of the hierarchy is the processor registers, the lower levels
are slower but bigger (and less expensive) cache memories. The largest but also the slowest (and
the least expensive), main memory, takes the last place. One may even consider disks as the lowest
level of hierarchy. If an item is present at a level of the hierarchy, it will be present also in all lower
levels.

Data

Block

registers

level 1 cache

level 2 cache

RAM

Figure 77: Memory hierarchy

When a processor needs an item, it looks for it in the memory hierarchy from the upper to the
lower level. When it is found, it is copied up to the upper level (temporal locality: if the processor
wants to re-reference it a short time later, it will be in the highest hierarchy level, and so referenced
in the fastest way). Furthermore, some nearby data are copied at the same time (spatial locality:
if the processor wants to reference one or some of these data a short time later, they will be in
the top of the hierarchy, and so referenced in the fastest way). The data set simultaneously copied
is called a line or a block. Supplementary data to the one that was referenced are generally its
neighbors.

More precise information about the functioning of cache memories and more generally about
hierarchical memories systems will be found in [Hen90, Tan90].

53.1.3 Limits

In most of cases, the functioning of cache memories effectively allows one to benefit from data
locality. But in situations such as repeated treatments on big regular structures, as for matrices or
vectors during scientific calculations, we can see that it is unsuitable. In these circumstances, data
can be replaced in the hierarchy at each access, in spite of the fact that they are the subject to
re-use during the treatment. Bad performance results from this temporal locality loss. Also, the
successive use of non consecutive data in memory will lead to a spatial locality loss, and so, to a
performance loss.

Here are two examples illustrating these various types of locality loss. Measures were made on
an i386 machine provided with an unique 32Kb cache level, and using a 32 bytes length line (except
when stated otherwise, all the quantitative data of this document will have this machine for source).
The first example presented in figure 78 shows performance loss caused by temporal locality loss
on a simple program. This program computes nb times repeated operations on consecutive data of
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floating type (4 bytes) of an array v of size N . A performance loss logically occurs when the array
becomes too big for the cache memory.

for (i = 0; i < nb times; i + +)
for (j = 0; j < N ; j + +)

v[j] = v[j] + constant ;

10.5
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11.5

12

12.5

13

13.5

14

14.5

15

1 32 1K 32K 1M

M
flo

ps

N : float array size (words)

Performance as a function of N

calculation

Figure 78: Temporal locality loss

The second example in figure 79 is similar to the first with the difference that calculations made
in the j loop do not take place on consecutive data in memory. Program makes jumps of jump
length in the array, instead of treating cells one after the other. This causes a spatial locality loss
and so a performance deterioration which increases with the lenght of the jump. This deterioration
stops when the jump length becomes equal to the block length. At this moment, every data can
only be found in the main memory.

These limits are known since cache memories introduction. Since then, a lot of work was focused
at improving this situation.

53.2 Classical techniques of locality improvement

We can consider two main families of techniques allowing to improve locality: program transforations
and data transformations. All these techniques try to move operations referencing identical data
closer. This so that data are still in the cache when we will need it again. We call it transforming
re-use into locality. The first technique aims at finding a better execution order for operations by
modifying control statements, the second tries to adapt the memory data layout. In the following
section, we will outline these two techniques.

53.2.1 Program transformations

Program transformations were the first proposed solutions. They consist of various methods whose
applications was the responsability of the programmers [All72]. The resulting code was difficult
to understand and non portable. Wolf and Lam first proposed an algorithm based on program
transformations that allows automatic optimizations [Wol91]. They so began the big effort of
research led to create effective optimizing compilers.

The general idea of program transformation is to modify the iteration space of every loop nest
program [Wol91, Wol92]. It means changing the operations order by loop reorganization, to bring
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for (i = 0; i < nb times; i + +)
for (j = 0; j < N ; j+ = jump)

v[j] = v[j] + constant ;
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Figure 79: Temporal and spatial locality loss

together the treatments of the same data and so, to take maximum advantage of the locality.
An ideal reorganization is not always possible (or legal): we have to make sure of the absence of
dependence forbidding transformation [Gof91, Kuc81]. But this is not the real problem: analysing
dependence is a well known problem in automatic parallelization [Ber66, Ban88]. The real problem,
particularly for automation, will not be to know if a transformation is legal, but whether it improves
locality or not.

These techniques can have effects in various levels of the hierarchy: on top with scalar replace-
ment and unroll-and-jam (see [Cal90, Car94]), on some levels with tiling (see [WoM87, WoM89,
Iri88, Lam91, Wol91]) or on all levels with loop transformations (see [McK96, War84, WoM86]).

53.2.2 Data layout transformation

To optimize locality by using data layout transformation, or more simply data tranformation, is
a more recent approach than program transformations. Li put the foundations of it in his thesis
[LiW93], expanding Wolf’s theory [Wol91]. The basic idea comes from a simple observation: the
locality improving way depends on the data layout. For example in the C language, the data lines
of a matrix are ordered successively in memory (row-major), while this is the case of columns in
FORTRAN (column-major). To improve locality for a certain code with program transformations
would lead to a different result for each of these cases. So, instead of adapting program to a
certain layout to improve locality, this approach adapts the layout to the program. Contrary to the
program transformations, with which we can obtain an optimized code equivalent to source code,
the data transformation take place more profoundly within the compiler and leave code intact. So,
they are not limited by dependences. Every data structure of the program can have a different
layout in memory.

O’Boyle and Knijnenburg showed how the data transformations improved locality where pro-
gram transformations could not [OBo96]. Before them, Anderson, Amarasinghe and Lam proposed
an algorithm based on this approach to allow the processors of shared memory machines to reference
consecutive data [And95].
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It was demonstrated that for a given loop nest, if we were able to improve spatial locality
by program transformation, we will be able to make this improvement by data transformation
[Kan98]. This powerful law also puts in evidence the big limitations of the data transformations.
On one hand, they can improve only spatial locality, and on the other hand, we can guarantee
their efficiency only for a given loop nest. Indeed, the array layout must be fixed during all the
program, so you can be in the case where for a loop nest, a certain data layout is the best, and
not for another loop nest of the same program. Other ways were investigated in the direction of
the data transformation. One of it advocates dynamic layout change, but compromises have to be
made between time lost in changing the layout and time gained by having made it. Another one
suggests to calculate new array references in order that data layout corresponds exactly to the data
utilisation order [Cla00], but this approach is still limited to simple cases.

53.2.3 Mixed approach

Most of current researches in the locality improvement domain tend to propose a mixed approach.
It is natural considering the good complementarity of possibilities and limits of the first. One
approach is limited by dependences but can be applied to fragments of program when the other
one can be applied to the complete program but can ignore dependences. Cierniak and Li have
been the first to use such an approach [Cie95], and were able to obtain in most of cases better
performances than separate approaches. Kandemir, Choudhary and Ramanujam proposed a more
complete method [Kan97, Kan99, and others . . . ], but still suffering some deficiencies (for example
it does not take advantage of tiling).

54 Towards a new solution: chunking

Combining the techniques of program transformations and data transformations does not remove
their respective limitations. All difficulties: choice of transformations, order of their application as
well as dynamic transformation of data layout, remains present, even if clevers combinations may
limit their impact.

Researchers restrain themselves in only using these two techniques, only because their basis
hypothesis is that cache management is left to a purely hardware mechanism. But there are
already methods, although still limited, for controlling cache content (such as the primitive Write
Back Invalidate WBINVD of the i386 instruction set). More cache control features may appear in
new architectures, as IA64. Our technique for locality optimization is based on the availability of
these new tools.

Besides releasing us from limits of the usual methods, the choice of a technique using cache
controls is going to allow guarantees of real-time type. Indeed, the prediction of the contents of the
cache and its stability at the same point in various executions become possible. This solution, not
suffering inconveniences of those already existing, and in addition adapted to real-time processing
is called chunking.

54.1 Preliminaries

54.1.1 Notations

• P is a program, considered as the set of its statements and its arrays;

• A ∈ TP : A is an array of P. ρ(A) is the rank of A, i.e. its number of subscripts, and DA its
subscript domain (in most languages, a rectangular parallelepiped);
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• if i ∈ DA, then A[i] is the cell of A with subscripts i. The disjoint union of all DA is the data
set of P, MP ;

• S ∈ IP : S is a statement of P. ρ(S) is the rank of S, i.e. the number of surrounding loops,
and DS is its iteration domain.;

• if x ∈ DS , the statement S[x] is the instance of S with iteration vector x. The disjoint union
of all DS is the set of operations of P, EP ;

• a reference is a pair 〈A, f〉 where A is an array, and f an index function. A statement is
considered as the set of its references;

• if u ∈ EP , D(u) is the access domain of u, the set of memory cells that u access;

• <P is the sequential execution order of P, <P⊆ EP × EP ;

• δP is the dependence relation of P, δP ⊆<P .

54.1.2 Hypothesis

To allow the functioning of the chunking or temporarily to simplify the study of the problem, some
hypothesis were put on the program source and on the target architecture. The source programs
are supposed to have static control:

• the C for loop is the only control statement, with affine bounds;

• arrays are the only data structures, with affine subscripts;

• affine bounds and subscripts depends only on outer loop counters and structure (or size)
parameters;

• no subroutine of function calls.

The target architecture should have:

• a main memory and only one cache level between it and the processor, the main memory
being big enough to contain MP ;

• a fully associative cache memory, in which a line can occupy any place [Hen90], and where
the replacement policy is indifferent (the principle of the method is never to use it);

• an instruction set dedicated to the control of the cache:
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Instruction Description

LOAD CACHED a memory line is fetched to the cache and to the
processor

LOAD NOT CACHED a memory line is fetched to the processor but
not to the cache

STORE CACHED a cache line is modified from the processor
STORE NOT CACHED a memory line is modified directly from the pro-

cessor
INVALIDATE a line is evicted from the cache and, if modified,

written back to memory
FLUSH generalize INVALIDATE for all the contents of

the cache

54.2 Principle

Chunking is a new method for reorganizing the operations of a program. The principle is to
partition the set of operations EP in smaller subsets such that the accessed data fit in the cache:
the chunks. These subsets must be such that their execution following a definite total order is
equivalent to the execution of the original program P. The operations belonging to the same chunk
are executed according to <P . A set of chunks answering these requirements is called a chunk
system for P.

Chunking is a reordering operation: it must be compatible with the dependences of the original
program. We say that there is a dependence when references access the same memory cell and
when at least one of these accesses is made in writing:

S[x] δPT [y] ≡ ∀x ∈ DS y ∈ DT , S[x] <P T [y] & ∃〈A, f〉 ∈ S, 〈A, g〉 ∈ T : f(x) = g(y) (45)

such as 〈A, f〉 or 〈A, g〉 or both are writes. Let us construct a graph Γ whose vertices are the
chunks. There is an edge from c to c′ iff ∃u ∈ c, u′ ∈ c′ : u δPu′ The chunk system has a valid
execution order if Γ has no cycle. The execution order can then be found by topological ordering.
In practice, chunks will be numbered and executed in order of increasing numbers. Let θ(u) be the
number of the chunk operation u belongs to. The constraint is:

∀S, T ∈ IP , S[x] δPT [y]⇒ θ(S[x]) ≤ θ(T [y]).

We call the footprint of a chunk all the memory cells accessed by the operations of this chunk.
The footprint of a chunk t is:

F (t) = ∪S∈P ∪〈A,f〉∈S {A[f(x)] | θ(S[x]) = t}. (46)

All chunks must satisfy the capacity condition, where C is the cache size:

∀t, Card F (t) ≤ C. (47)

Schematically, the progress of a program having been submitted to chunking would be made
step by step, chunk after chunk, as if there was between each of them a kind of context switch. The
new program is constructed from the source program and the chunking function θ. The first step is
to reorder the program according to θ, which is a well known Z-polyhedron scanning problem when
θ is affine [Anc91]. We next have to write the cache management code. This consists in writing
INVALIDATE instructions for all memory cells in F (t) − F (t + 1). If this solution proves to be
too complicated, a brute force solution is to INVALIDATE all of F (t). This is summarized by the
following pseudo-code:
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FLUSH
for (t = 0; t < L; t + +) {

execution of chunk t according to <P ;
INVALIDATE F (t) ;
}

where L is the number of chunks. At the end of the new program, all the operations of the original
have been executed, the only misses being compulsory misses at the beginning of each chunk.

54.3 Quantitative tools

Our present purpose is to know how to build, in a totally automatic way, a chunk system for every
program P. The construction should supply an optimal chunk system. It will be the case when
every cell of P appears in as few footprints as possible. This condition is enough to guarantee that
one has found the best possible chunk system, and to limit their number L. This section propose
tools to describe a chunk system and to estimate its quality. In particular, one will find there the
ways to estimate cell redundancy and footprints size, which are the main characteristics of chunk
systems.

54.3.1 Computing the memory traffic

Memory traffic T is the number of comings and goings between main memory and cache memory.
In the chunking case, we can estimate it to the double of the total size of chunk footprints. Indeed,
every data will be at first read from the main memory then rewritten there after use. This value is
an overestimate because only data which were modified are being updated in memory:

T = 2
∑

t

Card F (t).

Since we are only considering the order of magnitude of T , we can ignore the factor of 2, and we
can then define the traffic as:

T =
∑

a∈MP

Card {t | a ∈ F (t)}. (48)

Proof Let iS(a) be the indicator function of a set S, i.e. the function which is equal to 1 if a ∈ S
and zero otherwise. We have:

T =
∑

t

Card F (t) =
∑

t

∑

a∈MP

iF (t)(a)

inverting the order of summation gives:

T =
∑

a∈MP

∑

t

iF (t)(a)

which is clearly equivalent to (48).

We deduce immediately that the minimum value of T is obtained when Card {t | a ∈ F (t)} = 1,
or, equivalently, when footprints are disjoint. The value of this minimal traffic, that we will call
the compulsory traffic is:

T = Card MP .
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A chunk system with this property is said to be perfect. All programs have at least one perfect chunk
system which corresponds to ∀u ∈ EP : θ(u) = 0. This is useful only if the chunk system satisfies
the capacity condition Card MP ≤ C, which rarely happens in practice. Most programs do not
have any other perfect chunk system. The reason is that a program which has a non trivial perfect
chunk system corresponds to L independent programs. Such programs, of the embarrassingly

parallel variety, are neither frequent nor interesting. In the general case, we should form imperfect
chunk systems, where the same cell is accessed by operations belonging to different chunks. The
objective in such a case is to minimize the traffic, that is to minimize multiple accesses to identical
memory cells.

54.3.2 Decompositions

Let us rewrite the formula of the traffic (48) by introducing the usage relation: the set of all
pairs 〈cell,chunk〉 where ”cell” is accessed during the execution of ”chunk”:

U = {〈a, t〉 | ∃u ∈ EP : θ(u) = t, a ∈ D(u)}. (49)

Given the equality

Card {t | a ∈ F (t)} = Card {〈a, t〉 | 〈a, t〉 ∈ U}

and because the sets {〈a, t〉 | 〈a, t〉 ∈ U} are disjoint for different values of a, one has:

T =
∑

a∈MP

Card {〈a, t〉 | 〈a, t〉 ∈ U}

= Card ∪a∈MP
{〈a, t〉 | 〈a, t〉 ∈ U}

= Card U.

Hence to find a correct and optimal chunk system, our job is to minimize Card U under the
constraints ∀t : Card F (t) ≤ C.

We can give a more detailed definition of U , knowing that:

• a memory cell a ∈MP is in fact an array cell A[i], A ∈ TP , i ∈ DA;

• an operation u ∈ EP is an instance of a statement S[x], S ∈ IP , x ∈ DS ;

• a ∈ D(u) iff ∃〈A, f〉 ∈ D(S) : i = f(x);

this gives finally:

U = ∪A∈P ∪S∈P ∪〈A,f〉∈S{〈A[i], t〉 | ∃x ∈ DS : f(x) = i, θ(S[x]) = t}.

The first observation is that the sets:

UA = ∪S∈P ∪〈A,f〉∈S {〈A[i], t〉 | ∃x ∈ DS : f(x) = i, θ(S[x]) = t}

are disjoint. Hence, when computing the traffic, we can compute their size independently and sum
the results. Next, we observe that we can now dispense with A and introduce sets:

uA = ∪S∈P ∪〈A,f〉∈S {〈i, t〉 | ∃x ∈ DS : f(x) = i, θ(S[x]) = t}.
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We finally arrive at the traffic decomposition:

uS,A,f = {〈i, t〉 | ∃x ∈ DS : f(x) = i, θ(S[x]) = t}

= {〈f(x), θ(S[x])〉 | x ∈ DS}. (50)

The sets uS,A,f are not disjoint. Indeed, an array A can be accessed in various instructions, which
means that we should have the union ∪S∈P so that these sets are separate. Furthermore, the same
array can be accessed with several index functions in the same instruction, we should also keep
the union ∪〈A,f〉∈S so that they are disjoint. However, for heuristics reasons, one will suppose that
they are effectively disjoint. Because at the moment, we limit ourselves to the programs in which
every array is accessed only once.

The same decomposition applies also to footprints cardinals. We are lead to the study of the
following sets:

vS,A,f(t) = {i | ∃x ∈ DS : f(x) = i, θ(S[x]) = t}

= {f(x) | x ∈ DS , θ(S[x]) = t}. (51)

54.3.3 Asymptotic Evaluation

Let us first study a set:

H = {Ux | V x = 0, x ∈ D}

where U and V are arbitrary integral matrices of the right dimension, and where D is a bounded
full dimensional domain. Let us first study the dimension of the supporting subspace:

K = {Ux | V x = 0}.

Let {v1, . . . vk} be a basis for ker U∩ker V . This basis can clearly be extended to a basis {v1, . . . vm}
for ker V .

Lemma 54.1 The vectors {Uvk+1, . . . Uvm} are a basis for K.

Proof Vectors such that V x = 0 are linear combinations of v1, . . . vm, and, when multiplied by
U , vectors v1, . . . vk disappear. Hence, Uvk+1, . . . Uvm generate H. Suppose they are not linearly
independent. There exists λk+1, . . . λm not all zero such that:

m∑

i=k+1

λiUvi = 0.

This implies that the vector x =
∑m

i=k+1 λivi is in ker U . Since it already is in ker V , it belongs to
ker U ∩ ker V , hence is a linear combination of v1, . . . vk. From this we deduce that the v1, . . . , vm

are linearly dependent, a contradiction.

The dimension of K is thus l = dim ker V −dim (ker U ∩ker V ). This means in fact that, given
l of the components of y = Fx, we can compute the remaining ones by a linear transformation:

(yl+1, . . . , yd)
T = L(y1, . . . yl)

T .

From this follows:

Card {Ux | V x = 0, x ∈ D} = Card {(Ux)[1..m] | V x = 0, x ∈ D}.
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Suppose now that D is such that the value of each component of x is an integer in a segment of
length w. It follows that each component of Ux also is integral and belongs to a segment of length
proportional to w. Hence, the size of H if of the order of wl.

Since dim ker V + rank V = number of column V , one has finally

Card H is of the order of wl, with l = rank

(
U
V

)

− rank V. (52)

54.3.4 Application to the estimation of the traffic and footprint sizes

Let us consider first formula (51); because we suppose that the program has static control, the
index function is affine:

f(x) = Fx + a

where F is a matrix of dimension ρ(A)× ρ(S) and a is a constant vector which can be ignored for
size computation. For instance, for the program:

for (i = 0; i < N ; i + +)
for (j = 0; j < M ; j + +)

S: A[j + 2]+ = constant ;

the statement S has 〈A, f〉 where A is an array and f its index function:

f(i, j) = F

[
i
j

]

+ a, where F =
[

0 1
]

and a =
[

2
]
.

Similarly, the chunking function is supposed to be of the form:

θ(S[x]) = Tx + b

where T is a matrix of dimension g× ρ(S) and b is a constant vector. We choose as first dimension
of T : g = max ρ(S) to have chunking functions having all the same dimension, given that to add
null lines to a matrix does not modify its rank. F can be extracted by analysis of the source code,
while T is the unknown of the problem.

In the case of footprints, there are two situations, depending on the value of t:

1. The system of constraints x ∈ DS , θ(S[x]) = t is unfeasible, and uS,A,f (t) is empty. This
means that S does not belong to chunk t, and the size of the corresponding footprint is 0.
Deciding which statement belongs to which chunk is a problem in program segmenting, and
is left for future research.

2. The above system of constraint is feasible. The asymptotic size of the corresponding footprint
is directly given by the preceding result, with T as V and F as U . The size is of the order of

O(wl), with l = rank

(
F
T

)

− rank T .

Card F (t) = O(wl), with l = rank

(
F
T

)

− rank T. (53)

- 142 -



MHAOTEU: Project No 24942

Consider now the estimation of the traffic as given by (50). In this case there is no constraint
on x, which can be represented by saying that V is the null matrix 0. The rank of the null matrix

is 0. U is clearly the block matrix

(
T
F

)

. Hence, we can finally estimate traffic:

T = O(wk), with k = rank

(
T
F

)

. (54)

54.4 Chunking functions search algorithms

The quality of a chunking operation is quantifiable thanks to the values of traffics (48) and cardinals
of footprints (46). Thanks to the asymptotic evaluation we have a way to estimate these values.
They result both of the application of chunking functions TS on the S statement characterized by
their index functions. The index functions are given, they directly depend on the source code. The
chunking functions are the unknowns which it is necessary to discover.

It is a question here of finding these functions to propose the best chunk system possible.
It means a system where footprints respect the capacity condition (47) and where the traffic is
minimal. This section is going to propose algorithms which will allow to determine such a chunk
system, that is to find the good chunking functions. We will study first of all the simplified case of
unique references, to finish by the general case of multiple references.

54.4.1 Unique references case

In this section, we consider the problem of finding chunk system for programs where each statement
access only one array. A statement is an unique reference one if it access only a single array:
∀S ∈ IP ,∀c ∈ D(S) : ∃!A ∈ TP ,∃i ∈ DA, c = A[i]. This implies that there is only one index
function FS per statement S.

The principle is to find, for each statement, the function TS which will generate least traffic, while
satisfying the capacity condition. TS and FS are the only parameters for traffic evaluations (54)

and footprint cardinals (53). Hence, we will search the best possible pair

〈

rank TS , rank

(
TS

FS

)〉

for each statement, and build the matrix TS which respect these constraints. Furthermore, we will
have to guarantee that chuncking function respects dependences. We will do that by reorganizing
source program operations. The unique references case algorithm is:

Unique References Algorithm

1. For each statement S of program P:

(a) Find the best pair

〈

rank TS , rank

(
TS

FS

)〉

.

(b) Build a TS matrix with respect to this pair.

In the following, we look over the algorithm operations. We will see first that we can always
find a pair in part (1a), and then that the part (1b) always succeeds, provided that rank TS and

rank

(
TS

FS

)

respect obvious inequalities.
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(1a) In order to find the best pair

〈

rank TS , rank

(
TS

FS

)〉

for a statement S, we have to

evaluate traffic (54) and footprint cardinals of generated chuncks (53). We must do it for each
possible pair and the solution comes with the one that offers the best results. rank (T ) can take

values between 0 and the number of lines of T , which is ρ(S). For each possibility, rank

(
TS

FS

)

can take its values between max(rank FS , rank TS) and min(ρ(S), rank TS + rank FS). Hence, the
algorithm to find the best pair is :

Best Pair Search Algorithm

1. m =∞.

2. Best pair = ∅.

3. For rank TS from 0 to ρ(S):

(a) For rank

(
TS

FS

)

from max(rank FS , rank TS) to min(ρ(S), rank TS + rank FS):

i. If l = rank

(
FS

TS

)

− rank TS respects capacity condition AND

If rank

(
TS

FS

)

< m:

A. m = rank

(
TS

FS

)

.

B. Best pair =

〈

rank TS , rank

(
TS

FS

)〉

.

This algorithm requires the FS matrix in order to calculate its rank and use the number of
columns: ρ(S). It is also necessary that it knows the order of magnitude of C (47): C = O(wl),
to determine if the capacity condition is respected. For instance, if the reference access a vector
which does not fit completely in the cache, we would look for a solution where C = O(w0). Let us
note that there is always a solution. Indeed, the hardest constraint for the capacity condition is

l = 0, and the last choice will always be the one for rank TS = rank

(
TS

FS

)

= ρ(S) giving l = 0,

and where the traffic is maximun: T = O(wρ(S)).

Example I To illustrate the search for the chunking functions, let us execute the algorithm on
an example. This example consists of a program containing only one statement S which reference

the array A with index function F =





−1 2 −1
−2 4 −2
−1 2 −1



. If this example has nothing realistic, it is

going to show the details of the algorithm. We will suppose that the array accessed in this program
is too big for the cache, the capacity condition is then C = O(w0). Given that rank F = 1, the
possibilities set studied by the algorithm is given in the table below. We can see that the optimal
solution is obtained for the pair 〈1, 1〉.
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rank T rank

(
T
F

)

Footprint Traffic

0 1 O(w1) ×

1 1 O(w0) O(w1)
2 O(w1) ×

2 2 O(w0) O(w2)
3 O(w1) ×

3 3 O(w0) O(w3)

(1b) When the optimal pair is found, it remains to build the matrix T from the information
which it contains. Let us change this optimal pair of ranks by the optimal pair of the dimensions

of kernels 〈n,m〉, with m = ρ(S)− rank

(
T
F

)

. We know the following facts:

• F is of size ρ(A)× ρ(S), and dim ker F = ρ(S)− rank F = p,

• T is of size g × ρ(S), and dim ker T = n,

• dim ker

(
T
F

)

= m.

To find a matrix T respecting these data, we begin by calculating a basis e1..ep of the kernel of
F , that we complete in a basis e1..eρ(S) of Nρ(S). We form then the matrix M , whose columns
are ei. We calculate the inverse M ′ of M , possibly multiplying lines by their respective common
denominator to stay with integral coefficients. The matrix formed for its ρ(S)−n first lines by the
lines of M ′ numbered of m + 1 in ρ(S) + m− n and for the g− ρ(S)−n last lines, of null lines is a
valid matrix T . This process is summarized in the following algorithm:

T Building Algorithm

1. Calculate B, a basis of ker F .

2. Complete B in B2, a basis of Nρ(S).

3. Build matrix M :

(a) For i from 1 to ρ(S):

i. ith column of M = ith vector of B2.

4. Calculate M ′, inverse of M which all lines will be multiplied by the PPCM of the denominators
of their constituents.

5. Build matrix T :

(a) For i from 1 to ρ(S)− n:

i. ith line of T = (m + i)th line of M ′.

(b) For i from ρ(S)− n + 1 to g:

i. ith line of T = null line.

Proof We demonstrate here that algorithm builds a matrix T answering requirements:
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dim ker T = n: T is formed of ρ(S) − n linearly independent lines (they come from an invertible
matrix), hence rank T = ρ(S) − n and as by definition dim kerT = ρ(S) − rank T , we have
finally dim ker T = n.

dim ker

(
T
F

)

= m: If M ′ is the inverse of a matrix M of size c× c, the kernel of any submatrix

of M ′ formed by i of its lines is generated by vectors corresponding to c − i columns of M
of additional numbers of those of the i line taken from M . T is formed with the lines of M ′

from m + 1 to ρ(S) + m− n. The kernel is so generated with ei for i from 1 to m and from

ρ(S) + m − n + 1 to ρ(S). Now, the kernel of

(
T
F

)

is the intersection of the kernel of T

with the kernel of F . So, intersection is generated by the first m ei, and is then of dimension
m.

This algorithm is useful only under three conditions. First of all we must have m ≤ n and
m ≤ p. Because m is the dimension of the intersection of kernels, its value is necessarily less or
equals of the dimensions of these kernels. The algorithm to find the best pairs guarantees that it
is always the case, because it looks for the solutions only in the correct domains. Then, we must
have g ≥ ρ(S) − n. It is a mathematical constraint, because rank T = ρ(S) − n and because the
rank is raised with the number of lines, and for the algorithm, which forms ρ(S)−n lines of T with
ρ(S) − n columns of M ′. As the choice of g is max ρ(S), this constraint is respected, and there is
always a solution.

Let us resume the example above. The best pair in term of kernel dimensions is 〈n,m〉 = 〈2, 2〉.
The various steps of contruction of the chunking function are then:

1. We calculate dim ker F = p = 2 and a basis of ker F : B =











2
1
0



 ,





−1
0
1










.

2. We complete B to form B2, a basis of N3:

• we change first of all the vectors of B by combinations so that they have the shape of
columns of a lower diagonal matrix:

B =











1
0
−1



 ,





0
1
2










;

• we add then the vectors of the canonical basis to form the diagonal matrix:

B2 =











1
0
−1



 ,





0
1
2



 ,





0
0
1










.

3. We form matrix M , whose columns are the vectors of B2 (pay attention to the order):

M =





1 0 0
0 1 0
−1 2 1



.

4. We calculate M ′, inverse of M :

M ′ =





1 0 0
0 1 0
1 −2 1



.
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5. We form T with ρ(S) − n = 1 lines of M ′ from m + 1 = 3 to ρ(S) + m − n = 3 and
g − ρ(S)− n = 2 null lines:

T =





1 −2 1
0 0 0
0 0 0



.

Note on dependences The chunking is a technique of operations reordering. Hence, it has to
respect dependences and not allow the placement of an operation in a chunk of lower number than
those containing operations on which it depends. In the case of programs having only statements
with unique references, dependences can exist only between the same statement instances. Now
in that restricted case, we can not find two operations that do not commute. It means that any
reorganization is legal.

We showed that the chunking algorithm in the unique references case gave always a solution.
The reorganization of the operations which it proposes is always legal.

Complete example Let us compute a chunking system for the program below, knowing that
array v can not fit in the cache.

/* original program */
for (i = 0; i < M ; i + +)

for (j = 0; j < N ; j + +)
S: v[j] = v[j] + constant ;

There is only a statement S of which the unique index function is F =
[

0 1
]
.

1. We calculate rank F = 1 to find the optimal pair 〈1, 1〉 among all possible solutions:

rank T rank

(
T
F

)

Footprint Traffic

0 1 O(w1) ×
1 1 O(w0) O(w1)

2 O(w1) ×
2 2 O(w0) O(w2)

2. We try then to build the matrix T :

• a basis of ker F is

{(
1
0

)}

;

• we complete the basis of ker F to form a basis of N2:
{(

1
0

)

,

(
0
1

)}

;

• M =

[
1 0
0 1

]

;

• we calculate M ′, inverse of M :

M ′ =

[
1 0
0 1

]

;
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• we build T from ρ(S)−n = 1 lines of M ′ from m+1 = 2 to ρ(S)+m−n = 2 then until
the last line (g = 2) by null lines:

T =

[
0 1
0 0

]

.

The matrix T thus obtained corresponds to the following chuncking function:

θ(S[i, j]) = j

and the final program is:

/* Program after chunking */
FLUSH ;
for (j = 0; j < N ; j + +) {

for (i = 0; i < M ; i + +)
S: v[j] = v[j] + constant ;

INVALIDATE &v[j] ;
}

This transformation is the simplest program transformation: loop permutation. Supposing that
time taken by instructions FLUSH and INVALIDATE is null, we can simulate the transformation
and see the performance evolution, a 15% improvement:
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54.4.2 Multiple references case

This section is devoted to the general case of statements with multiple references. A statement S has
multiple references if it access various arrays, or several times the same array with different index
functions. Difficulty with regard to unique references case is to obtain a correct chunking function
from several index functions. Let xS be the number of index functions in statement S. Our purpose

is so to find for every statement S the ideal pair

〈

dim ker TS ,

{

dim ker

(
TS

FSi

)}

1≤i≤xS

〉

, such

that every

〈

dim ker TS ,dim ker

(
TS

FSi

)〉

satisfies the capacity condition associated to the array

which FSi
indexes, and such as the global traffic generated for S: TS =

∑xS

i=1 TSi
is minimal. Besides,

this ideal pair should allow the construction of a chunking matrix TS which respect dependences.
An algorithm to search for the chuncking functions for multiple reference statement programs is:

- 148 -



MHAOTEU: Project No 24942

Multiple References Algorithm

1. For each S statement of P program:

(a) List of pairs = {∅}.

(b) For rank TS from 0 to ρ(S):

i. Find all sets

{

dim ker

(
TS

FSi

)}

1≤i≤xS

such that for the array indexed by FSi
we

have li = rank

(
TS

FSi

)

− rank TS satisfying the capacity condition, and form for

each of them a new pair

〈

dim ker TS ,

{

dim ker

(
TS

FSi

)}

1≤i≤xS

〉

in the list.

(c) Classify the pairs in order of increasing TS.

(d) Look for the first pair in the list for which a matrix TS exists.

This algorithm requires as data the matrices FSi
and the orders of magnitude for the capacity

conditions ((47) and (51)) for every array. The first part is similar to the best pair search algorithm
seen in section 54.4.1. In particular, we can prove that there is always at least a pair to be placed

in the list because for every FSi
, there is a possibility rank

(
TS

FSi

)

= ρ(S) respecting the hardest

condition: l = 0 and corresponding to the pair

〈

0,

{

dim ker

(
TS

FSi

)

= 0

}

1≤i≤xS

〉

.

Example II Let us illustrate the first step of the algorithm by the study of a program consisting
of a unique statement containing x = 2 references. Each reference access a different array. The two
index functions, the capacity conditions and the results of the study which would make the best
pair search algorithm for each reference are the following ones:

• F1 =

[
2 −1 −1
1 0 −1

]

(rank F1 = 2) with capacity condition ∀t, Card F (t) ≤ O(w1
1):

dim ker T dim ker

(
T
F1

)

Footprint Traffic

3 1 O(w2
1) ×

2 1 O(w1
1) O(w2

1)
0 O(w2

1) ×

1 1 O(w0
1) O(w2

1)
0 O(w1

1) O(w3
1)

0 0 O(w0
1) O(w3

1)

• F2 =

[
1 −2 1
1 −2 1

]

(rank F2 = 1) with capacity condition ∀t, Card F (t) ≤ O(w0
2):
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dim ker T dim ker

(
T
F2

)

Footprint Traffic

3 2 O(w1
2) ×

2 2 O(w0
2) O(w1

2)
1 O(w1

2) ×
1 1 O(w0

2) O(w2
2)

0 O(w1
2) ×

0 0 O(w0
2) O(w3

2)

The pairs

〈

dim ker T,

{

dim ker

(
T
Fi

)}

1≤i≤2

〉

classified in order of increasing global traffic

are: 〈2, {1, 2}〉, 〈1, {1, 1}〉, 〈1, {0, 1}〉, 〈0, {0, 0}〉.

We have then to find the first pair for which a correct matrix T exists. It is not possible to
rule on the existence of a solution from information contained in a pair only, even without taking
into account the dependence problem . Indeed, the matrix T is closely linked to the properties of
matrices Fi, and in particular to the basis vectors of their kernels. The construction of a matrix

T will be tried case by case considering the constraints that are matrices Fi and dim ker

(
T
Fi

)

values. The dependence constraint will be treated last. The algorithm which is going to be presented
is a generalization for x index matrices of the T building algorithm presented in section 54.4.1. To
build T , we then know:

• matrices Fi, of sizes ρ(Ai)× ρ(S), and with dim ker Fi = ρ(S)− rank Fi = pi,

• of the matrix T : its size g × ρ(S), and dim ker T = n,

• the dim ker

(
T
Fi

)

= mi.

The major difference between the generalized algorithm and the unique references version is
in the construction of the set B. This set is a partial generator of the kernel of T . To have the
required mi, it contains a limited number of linearly independent vectors of the basis of ker Fi.
Indeed, to have a solution T such that dim ker T = n , T has to be formed of ρ(S) − n linearly
independent vectors. The kernel of such a matrix can be generated only by n linearly independent
vectors, hence B has to contain at most n vectors.

The principle of construction of B is to begin with B = {∅} and to successively include for each
Fi, mi vectors of a basis of ker Fi. The choice of vectors to be included in B is essential. The order
in which we add vectors of ker Fi is not important. But we sometimes have for the same Fi several
choices of vectors. Some choices will lead to exceed the n vectors limit in B or to make impossible
the obtaining of a mj , for any j 6= i. We have an interest to take as many vectors as possible from
vect B∩ker Fi because it limits the number of vectors in B, within interference on a constraint mj ,
for any j 6= i. We can not foresee the best choice of dim ker Fi − dim (vect B ∩ ker Fi) vectors of
ker Fi remaining to include before having studied every Fi. That’s why proposed algorithm uses a
tree to retain every set B possible. The T search algorithm in the multiple references case will be:

T Building Generalized Algorithm

1. Tree initialization: root at level 0 and a leaf at level 1 carrying B = {∅}.
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2. For i from 1 to x:
For all the leaf of the tree at level i:
If dim vect B + mi − dim (vect B ∩ ker Fi) ≤ n:

(a) Find the r combinations of mi − dim (vect B ∩ ker Fi) vectors of a basis of ker Fi such
that for every combinations C we have:

• dim (vect B ∩ vect C) = 0,

• ∀j, j 6= i,dim vect B + dim vect C + dim ker Fj − dim (vect (B ∪C)∩ ker Fj) ≤ mj .

(b) Transform the current leaf in node with r leaf of i + 1 level contening for each a new set
B formed with one of the combinations:
B = {B, combination}.

(c) If we are on level x, for every created leaf:

i. Complete B to B2, a basis of Nρ(S).

ii. Form the matrix M :

A. For i from 1 to ρ(S):
ith column of M = ith vector of B2.

iii. Calculate M ′, inverse of M and multipy it by Det(M).

iv. Form the T matrix:

A. For i from 1 to ρ(S)− n:
ith line of T = (dim B + i)th line of M ′.

B. For i from ρ(S)− n + 1 to g:
ith line of T = null line.

v. If T respects dependences, or can be modified to respect them, T is a solution.

Proof This algorithm guarantees that the set B is formed for every Fi of exactly mi vectors of a
basis of ker Fi. The vectors of B are linearly independent, which is a consequence of our choice to
use every time that we treat one Fi the vectors of vect B ∩ ker Fi. Finally, B contains at most n
vectors. In these conditions, we can refer to the demonstration of the T building algorithm seen in
section 54.4.1 to see that when a set B was found, a correct matrix T is built.

Let us resume example II. The first pair to be studied is 〈2, {1, 2}〉. We have:

• for the matrix F1 =

[
2 −1 −1
1 0 −1

]

, B1 = vect ker F1 =











1
1
1










;

• for the matrix F2 =

[
1 −2 1
1 −2 1

]

, B2 = vect ker F2 =











1
0
−1



 ,





0
1
2










;

• vect B1 ∩ vect B2 =











1
1
1










.

The tree until the obtaining of a complete B set is:

{∅} →











1
1
1










→











1
1
1



 ,





0
1
2










.
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We use then the T construction algorithm:

• we form M =





1 0 0
1 1 0
1 2 1



,

• we calculate M ′ =





1 0 0
−1 1 0
1 −2 1



,

• T is formed by ρ(S)−n = 1 lines of M ′ from the line dim B+1 = 3, and with g−(ρ(S)−n+1) =
2 null lines:

T =





1 −2 1
0 0 0
0 0 0



.

The T search algorithm can not always find solutions which may not exists. However, when
solutions exist, it always allows to find one, because it is going to study all the possibilities for B
(apart from the fact that there is a multiplicative coefficient by vector). But the algorithm will
always find a solution. Indeed, as we saw, the pair 〈0, {mi = 0}1≤i≤x〉 is inevitably in the list, and
the solution: T = I always exists.

54.4.3 The dependence problem

Contrary to the unique references case, operations involving several references can not always
commute. We have to make sure that when there are dependences, reorganization defined by
chunking function for a statement respects them. We can distinguish two cases:

• The case where accesses to identical memory cells are caused by operations from the same
statement only, that is when each dependence is a self-dependence. It will be in particular
the case of programs containing only one statement. In such a case, the dependence vectors
are reduced to the kernel basis vectors of the statement index functions, with a lexicopositive
shape (that is the first non null element of the vector is positive). For each dependence vector
~d, we should have T ~d lexicopositive, i.e. T ~d ≫ 0. Such a case will often solved by sign
changes of some T lines, which do not change the T properties. This case is already solved
by chunking.

• The case where several statements make reference to identical memory cells. We should then
find a set of matrices TS satisfying dependences. Let us remember that chunking suggests that
if an operation must be executed before an other one, that one has to belong to a chunk of
lower or equal number. Each chunking functions being independently determined in relation
to the others, nothing forbids an illegal interlacing of operations from different instructions.
It is a question of correcting introduced error by modifying the chunking matrices without
alteration of their properties that is the n and mi values. Only the following transformations
are possible:

– multiplication of lines by non null scalars;

– lines exchange;

– addition to a line of a linear combination of the other lines.
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This means finding an inversible adequate matrix of the same size as TS and to multiply it
by TS . For each matrix TS we should look for a correction matrix CS to have finally the
chunking function θS = CSTS . These matrices CS are determined by the dependence system
resolution. This system is formed in such a way that if an instance of V with iteration vector
i1 must be executed before an instance of W with iteration vector i2, there is an equation of
the shape:

CwTwi2 − CvTvi1 ≫ 0.

The automatic resolution of such a system is not easy, in particular because the ”CS invertible”
constraint is non linear. Besides, the existence of a solution can not be guaranteed. So it
will be necessary in some cases to choose a different matrix TS for some statements (the T
building algorithm can give all the independent solutions according to the transformations
above), even less effective and to envisage compromises. To automate the resolution of this
difficulty or to by-pass it are the objects of current reseach.

54.5 Future works

In what was presented here, only the data dependence issue in the general case remains unfinished.
Nevertheless, many other tools are needed to make chunking possible and to improve its efficiency.
Our objective is to produce a tool able to receive as input a source code, and to return an optimized
code which can be used in a real-time framework for machines with caches. We have mentioned
here only the main algorithm, which consists in finding the best chunking functions. This central
part can be improved, in particular by the use of better footprint size estimation methods, which
would allow us to find tiling-like optimization. It will be also necessary to try to minimize the
traffic when identical arrays are accessed in various statement by building correlated chunking
matrices. Secondly, we still have to design the code generation phase. This part will make operation
reorganization, using chunking functions and original code informations such as array sizes. We
should find there ways to improve spatial locality. The principle of the respect for the capacity
conditions is limited to the presence of a unique cache level, it will be also interesting to study a
generalization with several levels.

Once this tasks are complete, we will be able to study other applications of this method. For
instance, it could be a good solution for virtual memory management by the user.

55 Conclusion

This report presents, through various techniques and illustrations, the impact of the memory hi-
erarchy on performance. We recall the two major transformation families allowing data locality
improvement. Program transformations are well known, and effective tools have been designed;
they enable both temporal and spatial locality improvement, and can work on program parts.
Data transformations can be applied to more complex programs with dependences, and is well
adapted to parallel program optimizations. Their large complementarity generates an interest in
mixed solutions, results of which are promising, in spite of only partial integration of program
transformations. Nevertheless we were able to see that these techniques, combined or not, suffer
serious limitations. The NP-hard characteristics of the choice of program transformations to be
applied, as well as the order in which to apply them, imposes heuristics methods. Data layout
transformations lack flexibility, forbidding various layouts for the same array, this can be bad for
performances.
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We argued that the major deficiency of classical optimization techniques was not to take into
account software cache controls. We proposed chunking, a new method which takes advantage
of cache management tools. Eventually, this technique should allow maximal data locality use,
without limitations in existing techniques. More than improving locality, it is one of the first
optimization methods for program compilation on real-time systems with caches. Besides, it will
be possible to apply it lower in the memory hierarchy, between hard disk and main memory. We
will then be able to optimize out of core programs on classical architectures.

The methods presented in this paper are implemented in the ”chunky” prototype that takes as
input cache size and source code informations, and generate chunking functions which will subse-
quently be used for code generation. A lot of works should be done before chunking can compete
with existing techniques for performance. To solve the dependence problem in the multiple refer-
ence case will be the first of them. It will also be a question of allowing tiling-like transformations.
It will remain finally to integrate the spatial locality improvement.
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