
More Legal Transformations for Locality

Cédric Bastoul1 and Paul Feautrier2

1 Laboratoire PRiSM, Université de Versailles Saint Quentin
45 avenue des États-Unis, 78035 Versailles Cedex, France

cedric.bastoul@prism.uvsq.fr
2 École Normale Supérieure de Lyon
46 Allée d’Italie, 60364 Lyon, France

paul.feautrier@ens-lyon.fr

Abstract. Program transformations are one of the most valuable com-
piler techniques to improve data locality. However, restructuring compil-
ers have a hard time coping with data dependences. A typical solution is
to focus on program parts where the dependences are simple enough to
enable any transformation. For more complex problems is only addressed
the question of checking whether a transformation is legal or not. In this
paper we propose to go further. Starting from a transformation with no
guarantee on legality, we show how we can correct it for dependence sat-
isfaction with no consequence on its locality properties. Generating code
having the best locality is a direct application of this result.

1 Introduction

Exploiting data locality is one of the keys to achieve high performance level
in most computer systems and hence one of the main challenges for optimizing
compilers. The basic framework for increasing the cache hit rates aims at moving
references to a given memory cell (or cache line) to neighboring iterations of some
innermost loop. Let us consider for instance two accesses to the same memory
cell. It seems probable that the longer the time interval between these accesses
is, the higher the probability of the first reference to be evicted from the cache.
Since such a transformation modifies the operation execution order, the existence
of a good solution highly depends on data dependences.

To bypass the dependence problem, most of the existing methods apply only
to perfect loop nests in which dependences are non-existent or have a special
form (fully permutable loop nests) [18]. To enlarge their application domain
some preprocessing, e.g. loop skewing or code sinking, may enable them [18, 1,
8]. More ambitious techniques do not lay down any requirement on dependences,
but are limited to propose solution candidates having some locality properties
then to check them for legality [10, 5]. If the candidate is proved to violate
dependences, then another candidate having less interesting properties is studied.
In this paper, we present a method that goes beyond checking by adjusting
an optimizing transformation for dependence satisfaction, without modifying
its locality properties. This technique can be used to correct a transformation
candidate as well as to replace preprocessing.



2

This paper is organized as follows. In section 2 is outlined the background of
this work. Section 3 deals with the transformations in the polyhedral model and
focuses on both their dependences constraints and locality properties. Section 4
shows how it is possible to correct a transformation for legality. Lastly, section
6 concludes and discusses future work.

2 Background and Notations

A loop in an imperative language like C or FORTRAN can be represented using
a n-entry column vector called its iteration vector :

x =







i1
i2

.

.

.
in






,

where ik is the kth loop index and n is the innermost loop. The surrounding
loops and conditionals of a statement define its iteration domain. The statement
is executed once for each element of the iteration domain. When loop bounds
and conditionals only depend on surrounding loop counters, formal parameters
and constants, the iteration domain can always be specified by a set of linear
inequalities defining a polyhedron [11]. The term polyhedron will be used in a
broad sense to denote a convex set of points in a lattice (also called Z-polyhedron
or lattice-polyhedron), i.e. a set of points in a Z vector space bounded by affine
inequalities [15]. A maximal set of consecutive statements in a program with such
polyhedral iteration domains is called a static control part (SCoP) [4]. Figure 1
illustrates the correspondence between static control and polyhedral domains.
Each integral point of the polyhedron corresponds to an operation, i.e. an in-
stance of the statement. The notation S(x) refers to the operation instance of
the statement S with the iteration vector x. The execution of the operations
follows lexicographic order. This means in a n-dimensional polyhedron, the op-
eration corresponding to the integral point defined by the coordinates (a1...an)
is executed before those corresponding to the coordinates (b1...bn) iff

∃i, 1 ≤ i < n, (a1...ai) = (b1...bi) ∧ ai+1 < bi+1.

Each statement may include one or several references to arrays (or scalars,
i.e. some particular cases of arrays). When the subscript function f(x) of a
reference is affine, we can write it f(x) = Fx+a where F is called the subscript
matrix and a is a constant vector. For instance, the reference to the array B in

figure 1(a) is B[f(x)] with f
„

i

j

«

=
»

1 1
2 0

– „

i

j

«

+
„

0
1

«

.

In this paper, matrices are always denoted by capital letters, vectors and
functions in vector spaces are not. When an element is statement-specific, it
is subscripted like AS , excepted in general formulas where all elements are
statement-specific in order to avoid too heavy notations.



3

do i = 1, n

do j = 1, n

if (i<=n+2-j)

S1: B[i+j][2*i+1] = ...

1

2

21 n

j

n+2

n

n+2 i

i>=1 i<=n

j>=1

j<=n

i<=n+2−j

2

6

6

6

4

1 0
−1 0

0 1
0 −1

−1 −1

3

7

7

7

5

„

i

j

«

+

0

B

B

B

@

−1
n

−1
n

n + 2

1

C

C

C

A

≥ 0

(a) surrounding control of S1 (b) iteration domain of S1

Fig. 1. Static control and corresponding iteration domain

3 Affine Transformations for Locality

3.1 Formulation

The goal of a transformation is to modify the original execution order of the
operations. A convenient way to express the new order is to give for each op-
eration an execution date. However, defining all the execution dates separately
would usually require very large scheduling systems. Thus optimizing compilers
build schedules at the statement level by finding a function specifying an exe-
cution time for each instance of the corresponding statement. These functions
are chosen affine for multiple reasons: this is the only case where we are able to
decide exactly the transformation legality and where we know how to generate
the target code. Thus, scheduling functions have the following shape:

θS(xS) = TSxS + tS , (1)

where xS is the iteration vector, TS is a constant transformation matrix and tS

is a constant vector (possibly including affine parametric expressions using the
structure parameters of the program i.e. the symbolic constants, mostly array
sizes or iteration bounds).

It has been extensively shown that linear transformations can express most of
the useful transformations. In particular, loop transformations (such as loop re-
versal, permutation or skewing) can be modeled as a simple particular case called
unimodular transformations (the TS matrix has to be square and has determi-
nant ±1) [2, 16]. Complex transformations such as tiling [17] can be achieved us-
ing linear transformations as well [19]. These transformations modify the source
polyhedra into target polyhedra containing the same points, thus with a new
lexicographic order. Considering an original polyhedron defined by the system



4

of affine constraints Ax + c ≥ 0 and the transformation function θ leading to
the target index y = Tx, we deduce that the transformed polyhedron can be
defined by (AT−1)y + c ≥ 0 (there exits more convenient way to describe the
target polyhedron as discussed in [3]). For instance, let us consider the polyhe-

dron in figure 2(a) and the transformation function θ
„

i
j

«

=
»

1 1
0 1

– „

i
j

«

. The

corresponding transformation is a well known iteration space skewing and the
resulting polyhedron is shown in figure 2(c).

1 2 3 4 5 6

1

2

3

i

j

0
0

0 1 2 3 4 5 6 i’
0

1

2

3

j’

=⇒

2

6

4

1 0
−1 0

0 1
0 −1

3

7

5

„

i
j

«

+

0

B

@

−1
3

−1
3

1

C

A
≥ 0

„

i′

j′

«

=

»

1 1
0 1

– „

i
j

«

2

6

4

1 −1
−1 1

0 1
0 −1

3

7

5

„

i′

j′

«

+

0

B

@

−1
3

−1
3

1

C

A
≥ 0

(a) original polyhedron (b) transformation function (c) target polyhedron

Ax + c ≥ 0 y = Tx (AT−1)y + c ≥ 0

Fig. 2. A skewing transformation

3.2 Legality

It is not possible to apply any transformation to a program without changing its
semantics. Statement instances reading and writing the same memory location
should be kept in the same order. These operations are said to be dependent on
each other. The dependence relations inside a program must direct the transfor-
mation construction. In this section, we recall how dependences can be expressed
exactly using linear (in)equalities. Then we show how to build the legal trans-
formation space where each program transformation has to be found.

Dependence Graph A convenient way to represent the scheduling constraints
between the program operations is the dependence graph. In this directed graph,
each program statement is represented using a unique vertex, and the existing
dependence relations between statement instances are represented using edges.
Each vertex is labelled with the iteration domain of the corresponding statement
and the edges with the dependence polyhedra describing the dependence relation
between the source and destination statements. The dependence relation can be
defined in the following way:



5

Definition 1. A statement R depends on a statement S (written SδR) if
there exits an operation S(x1), an operation R(x2) and a memory location m

such that:

1. S(x1) and R(x2) refer the same memory location m, and at least one of
them writes to that location;

2. x1 and x2 respectively belong to the iteration domain of S and R;
3. in the original sequential order, S(x1) is executed before R(x2).

From this definition, we can easily describe the dependence polyhedra of each
dependence relation between two statements with affine (in)equalities. In these
polyhedra, every integral point represents a dependence between two instances
of the corresponding statements. The systems have the following components:

1. Same memory location: assuming that m is an array location, this constraint
is the equality of the subscript functions of a pair of references to the same
array: FSxS + aS = FRxR + aR.

2. Iteration domains : both S and R iteration domains can be described using
affine inequalities, respectively ASxS + cS ≥ 0 and ARxR + cR ≥ 0.

3. Precedence order : this constraint can be separated into a disjunction of as
many parts as there are common loops to both S and R. Each case corre-
sponds to a common loop depth and is called a dependence level. For each
dependence level l, the precedence constraints are the equality of the loop
index variables at depth lesser to l: xR,i = xS,i for i < l and xR,l > xS,l if
l is less than the common nesting level. Otherwise, there are no additional
constraints and the dependence only exists if S is textually before R. Such
constraints can be written using linear inequalities: PSxS − PRxR + b ≥ 0.

Thus, the dependence polyhedron for SδR at a given level l and for a given pair
of references p can be described using the following system of (in)equalities:

DSδR,l,p : D
(

xS

xR

)

+ d =

[

FS −FR

AS 0
0 AR

PS −PR

]

(

xS

xR

)

+

(

aS − aR

cS

cR

b

)

=
≥

0 (2)

There is a dependence SδR if there exists an integral point inside DSδR,l,p. This
can be easily checked with some linear integer programming tool like PipLib3 [6].
If this polyhedron is not empty, there is an edge in the dependence graph from
the vertex corresponding to S up to the one corresponding to R and labelled
with DSδR,l,p. For the sake of simplicity we will ignore subscripts l and p and
refer in the following to DSδR as the only dependence polyhedron describing
SδR.

Legal Transformation Space Considering the transformations as scheduling
functions, the time interval in the target program between the executions of two
operations R(xR) and S(xS) is

∆R,S

(

xS

xR

)

= θR(xR) − θS(xS). (3)

3 PipLib is freely available at http://www.prism.uvsq.fr/∼cedb



6

If there exists a dependence SδR, i.e. if DSδR is not empty, then ∆R,S

(

xS

xR

)

−1

must be a nonnegative form in DSδR (intuitively, the time interval between two
operations R(xR) and S(xS) such that R(xR) depends on S(xS) must be at
least 1, the smallest time interval: this guarantees that the operation R(xR)
is executed after S(xS) in the target program). This affine function can be
expressed in terms of D and d by applying Farkas Lemma (see Lemma 1) [7].

Lemma 1. (Affine form of Farkas Lemma [15]) Let D be a nonempty polyhe-
dron defined by the inequalities Ax + b ≥ 0. Then any affine function f(x) is
nonnegative everywhere in D iff it is a positive affine combination:

f(x) = λ0 + ΛT (Ax + b), with λ0 ≥ 0 and ΛT ≥ 0,

where λ0 and ΛT are called Farkas multipliers.

According to this Lemma, for each edge in the dependence graph, we can find a
positive vector λ0 and matrix ΛT (the Farkas multipliers) such that:

TRxR + tR − (TSxS + tS)− 1 = λ0 + ΛT
(

D
(

xS

xR

)

+ d
)

, λ0 ≥ 0, ΛT ≥ 0. (4)

This formula can be split in as many equalities as there are independent vari-
ables (xS and xR components, parameters and scalar value) by equating their
coefficients in both sides of the formula. The Farkas multipliers can be elim-
inated by using the Fourier-Motzkin projection algorithm [15] in order to find
the constraints on the transformation functions. The constraint systems describe
the legal transformation space, where each integral point corresponds to a legal
solution.

3.3 Properties

Program transformations for locality aim at bringing the processing of some
memory cells closer. The general framework using affine schedules is to find
partial transformation functions (only the first few dimensions of the functions
are defined) such that the partial execution dates of the operations referring to a
given datum are the same. In this way, the operations have neighboring schedules
and the datum may stay in the cache during the time intervals between the
accesses. The framework ends by applying a completion procedure to achieve an
invertible transformation function (see [18] for references).

For instance, let us consider self-temporal locality and a reference B[f(x)]
to an array B with the affine subscript function f(x) = Fx + a. Two instances
of this reference, B[f(x1)] and B[f(x2)] refers the same memory location iff
f(x1) = f(x2), that is when Fx1 + a = Fx2 + a, then iff Fxr = 0 with xr =
x1 − x2. Thus there is self-temporal reuse when xr ∈ kerF . The basis vectors
of kerF give the reuse directions for the reference B[f(x)], if kerF is empty,
there is no self-temporal reuse for the corresponding reference. The reuse can be
exploited if the transformed iteration order follows one of the reuse directions.
Then we have to find an orthogonal vector to the chosen reuse direction to be



7

the first part of the transformation matrix T . If this partial transformation do
not violate dependences, we have many choices for the completion procedure in
order for the transformation function to be instance-wise, by considering artificial
dependences [13, 9] or not [3]. For instance, let us consider the following pseudo-
code:

do i = 1, n

do j = 1, n

S1: ... B[j] ...

the subscript function of the reference B[j] is f
„

i
j

«

=
»

0 1
0 0

– „

i
j

«

, the kernel of the

subscript matrix is then kerF = span {(1, 0)}. Thus there is reuse generated by
the reference B[j], and we can exploit it thank to a transformation matrix built
with an orthogonal vector to the reuse direction, e.g. [0 1] and its completion to

a unimodular transformation matrix as described in [9]: T =
»

0 1
1 0

–

. The transfor-

mation function would be θ
„

i

j

«

=
»

0 1
1 0

– „

i

j

«

, i.e. a loop interchange (the reader

may care to verify that this solution do exploit the reuse of the reference B[j]).
It is easy to generalize this method for several references by considering not only
a reuse direction vector, but a reuse direction space (built with one basis vector
per reference). It appears that there are a lot of liberty degrees when looking for
a transformation improving self-temporal locality, since it is possible to choose
the reuse direction space, the completion method and the constant vector of the
transformation function.

Let us consider self-temporal locality and a transformation candidate before
completion θSc(xS) = TScxS . This function has the property that, modified in
the following way:

θS(xS) = CSTScxS + tS , (5)

where CS is an invertible matrix and tS is a constant vector, the locality prop-
erties are left unmodified for each time step. Intuitively, if θSc gives the same
execution date for x1 and x2, then the transformed function θS does it as well. In
the same way if the dates are different with θSc, then the transformed function
θS returns different dates. But while the values of CS and tS do not change the
self-temporal locality properties4, they can change the legality of the transfor-
mation.

Transformation expressions similar to (5) and having the same type of degrees
of freedom can be used to achieve every type of locality (self or group - temporal
or spatial) [16, 5]. The challenge is, considering the candidate transformation
matrices TSc, to find the corrected matrices CSTSc and the constant vectors tS

in order for the transformation system to be legal for dependences.

4 A more formal discussion on this property, showing that locality transformations
have to respect rank constraints not modified by CS and tS can be found in [5].



8

4 Finding Legal Transformations

Optimizing compilers typically decouple the properties that the transformation
functions have to satisfy to achieve optimization and legality. The basic frame-
work is first to find the best transformations (e.g. for data locality improvement,
which references carry the most reuse and necessitate new access patterns, which
rank constraints should be respected by the corresponding transformation func-
tions, etc.), then to check if a candidate transformation is legal or not5. If not,
build and try another candidate, and so on. The major advantage of such a
framework is to focus firstly on the most interesting properties, and the main
drawback is to forsake these properties if a legal transformation is not directly
found after a simple check of a candidate solution. We saw in section 3.3 that
there exists an infinity of transformation functions having the same properties
as a candidate transformation (see formula 5). Thus, it is not possible to check
all these transformations to find a legal one. In this section we study another
way: we show how to find, when possible, the unknown components CSTSc and
tS of formula 5 in order to correct the transformations for legality.

This problem can be solved in an iterative way, each dimension being consid-
ered as a stand-alone transformation. Each row of CSTSc is a linear combination
of the rows of TSc. Thus, the unknown in the ith algorithm iteration are, for each
statement, the linear combination coefficients building the ith row of CSTSc from
TSc and the constant factor of the corresponding tS entry. After each iteration,
we have to update the dependence graph because there is no need to consider the
dependences already satisfied. Thus, to find a solution is easier as the algorithm
iterates. The algorithm is shown in figure 3.

Let us illustrate how the algorithm works using the example in figure 4.
Suppose that an optimizing compiler would like to exploit the data reuse gen-
erated by the references to the array A of the program in figure 4(a) and that
it suggests the transformation candidates in figure 4(b). As shown by the graph
describing the resulting operation execution order, where each arrow represents
a dependence relation and each backward arrow is a dependence violation, the
transformation system is not legal. The correction algorithm modifies succes-
sively each transformation dimension. Each stand-alone transformation splits
up the operations into sets such that there are no backward arrows between
sets. The algorithm stops when there are no more backward arrows or when
every dimension has been corrected. Then any polyhedral code generator, like
CLooG6 [3], can generate the target code. Choosing transformation coefficients
as small as possible (step 1(c)i) is a heuristic helping code generators to avoid
control overhead.

The correctness of the algorithm comes from two properties: (1) the tar-
get transformations are legal, (2) the CS matrices are invertible. The legality is
achieved because each transformation part is chosen in the legal transformation

5 This can be done easily by instantiating the transformation functions in the legal
transformation space as defined in section 3.2 then checking for the feasibility of the
constraint system with any linear algebra tool.

6 CLooG is freely available at http://www.prism.uvsq.fr/∼cedb



9

Correction Algorithm: Adjust a transformation system to respect dependences.

Input: a dependence graph DG, the transformation candidates θSc(xS) = TScxS.
Output: the legal transformations θS(xS) = CSTScxS + tS .

1. for dimension i = 1 to maximum dimension of TSc

(a) build the legal transformation space with:
– for each edge in DG, the constraints of (4) for the ith row of TRc and TSc

– the constraints equating the ith row entries of each CSTSc with a linear
combination of TSc entries whose coefficients are unknown

(b) for each statement, remove from the solution space the trivial solution where
∀j ≥ i the linear combination coefficient of the jth row of TSc is null

(c) if the solution space is empty, return ∅, else
i. pick the solution giving for each statement the minimum values for the

entries of the ith row of CSTSc and the ith element of tS

ii. update DG: for each edge in DG, add to the dependence polyhedron
the constraint equating the ith dimension of CSTScxS + tS of the state-
ments labelling the source and destination vertices (this may empty the
polyhedron for integral solutions)

iii. if every dependence polyhedra in DG are empty, goto 2
iv. for each statement, update the candidate transformation TSc:

– replace a row such that the corresponding linear combination coeffi-
cient is not null with the ith row

– replace the ith row with the ith row of CSTSc

2. return the transformation functions θS(xS) = CSTScxS + tS .

Fig. 3. Algorithm to correct the transformation functions

space (step 1a). The second property follows from the updating policy (step
1(c)iv): at start the CS matrices are identities. During each iteration, we ex-
change their rows, multiply some rows by non null constants (as guaranteed by
step 1b) and add to these rows a linear combination of the other rows. Each of
these transformations does not modify the invertibility property.

5 Related Work

In compensation of the need for very simple dependences, first works on com-
piler techniques for improving data locality discuss enabling transformations to
modify the program in such a way that the proposed method can apply. Wolf
and Lam [16] proposed in their seminal data locality optimizing algorithm to
use skewing and reversal7 to enable tiling as in previous works on automatic
parallelization. McKinley et al. [14] proposed a technique based on a detailed
cost model that drives the use of fusion and distribution mainly to enable loop
permutation. Such methods are limited by the set of directives they use (like fuse

7 An exhaustive survey on loop transformations can be found in [18].



10

do i = 1, n

do j = 1, n

do k = 1, n

S1: A(j,k) = A(j,k) + B(i,j,k) / A(j,k-1)

S2: c = A(n,n) + 1

(a) Original program

θS1c

0

@

i

j
k

1

A =

2

4

1 0 0
0 1 0
0 0 1

3

5

2

4

0 1 0
0 0 −1
0 0 0

3

5

2

4

i

j
k

3

5 +

0

@

0
0
0

1

A ; θS2c =

0

@

0
0
0

1

A

S2
S1 S1

1,1,1
S1 S1 S1 S1 S1 S1

1,1,2 2,1,2 2,1,1 1,2,2 2,2,2 1,2,1 2,2,1

(b) Transformation function candidates

θS1c

0

@

i

j
k

1

A =

2

4

1 0 0
0 1 0
0 0 1

3

5

2

4

0 1 0
0 0 −1
0 0 0

3

5

2

4

i

j
k

3

5 +

0

@

0
0
0

1

A ; θS2c =

0

@

n

0
0

1

A

S2
S1 S1

1,1,1
S1 S1 S1 S1 S1 S1

1,1,2 2,1,2 2,1,1 1,2,2 2,2,2 1,2,1 2,2,1

(c) First correction iteration

θS1c

0

@

i

j
k

1

A =

2

4

1 0 0
0 −1 0
0 0 1

3

5

2

4

0 1 0
0 0 −1
0 0 0

3

5

2

4

i

j
k

3

5 +

0

@

0
0
0

1

A ; θS2c =

0

@

n
n

0

1

A

S2
S1 S1 S1 S1 S1 S1 S1 S1

1,1,1 2,1,1 1,1,2 2,1,2 1,2,1 2,2,1 2,2,21,2,2

(d) Second and last correction iteration

do j = 1, n

do k = 1, n

do i = 1, n

S1: A(j,k) = A(j,k) + B(i,j,k) / A(j,k-1)

S2: c = A(n,n) + 1

(e) Target program

Fig. 4. Iterative transformation correction principle (n = 2 for graphs)



11

or skew) and because they have to apply them in a definite order. We claim that
giving (and correcting) scheduling functions is more complete and has better
compositionality properties.

A significant step on preprocessing techniques to produce fully permutable
loop nests has been achieved by Ahmed et al. [1]. They use the Farkas Lemma to
find a valid code sinking-like transformation if it exists. But this transformation is
still independent from the optimization itself and it is limited to produce a fully
permutable loop nest. The method proposed in this paper may find solutions
while it is not possible to achieve such a loop nest. Recently, Griebl et al. [8]
proposed to use well known space-time mapping [12] as a preprocessing technique
for tiling. Our method can be included in their framework to find legal time
mapping with locality properties.

Reasoning directly on scheduling functions, Li and Pingali proposed a com-
pletion algorithm to build a non-unimodular transformation function from a
partial matrix, such that starting from a legal transformation, the completed
transformation stay legal for dependences [13]. In the same spirit, Griebl et al.
extended an arbitrary matrix describing a legal transformation to a square in-
vertible matrix [9]. In contrast, we show in this paper how to find the valid
functions before completion.

6 Conclusion and Future Work

In this paper is presented a general method correcting a program transformation
for legality with no consequence on the data locality properties. It has been im-
plemented in the Chunky prototype [5], advantageously replacing usual enabling
preprocessing techniques and saving a significant amount of interesting trans-
formations from being ignored. It could be used combined with a wide range of
existing data locality improvement methods, for the single processor case as well
as compiling techniques for parallel systems using space-time mappings [12].

Further implementation work is necessary to handle real-life benchmarks
in our prototype and to provide full statistics on corrected transformations.
Moreover, the question of scalability is left open since, for several tenth of deeply
nested statements, the number of unknown in the constraint systems can become
embarrassingly large. Splitting up the problem according to the dependence
graph is a solution under investigation.

Acknowledgements

The authors would like to thank the CC’12 International Conference on Compiler
Construction anonymous reviewers for having inspired this paper by pointing
out their interest on this part of our work. We also wish to thank the Euro-Par
anonymous reviewers for their help in improving the quality of the paper.



12

References

1. N. Ahmed, N. Mateev, and K. Pingali. Tiling imperfectly-nested loop nests. In
SC’2000 High Performance Networking and Computing, Dallas, november 2000.

2. U. Banerjee. Unimodular transformations of double loops. In Advances in Lan-

guages and Compilers for Parallel Processing, pages 192–219, Irvine, august 1990.
3. C. Bastoul. Efficient code generation for automatic parallelization and optimiza-

tion. In ISPDC’03 IEEE International Symposium on Parallel and Distributed

Computing, pages 23–30, Ljubljana, october 2003.
4. C. Bastoul, A. Cohen, S. Girbal, S. Sharma, and O. Temam. Putting polyhedral

transformations to work. In LCPC’16 International Workshop on Languages and

Compilers for Parallel Computers, LNCS 2958, pages 209–225, College Station,
october 2003.

5. C. Bastoul and P. Feautrier. Improving data locality by chunking. In CC’12

International Conference on Compiler Construction, LNCS 2622, pages 320–335,
Warsaw, april 2003.

6. P. Feautrier. Parametric integer programming. RAIRO Recherche Opérationnelle,
22(3):243–268, 1988.

7. P. Feautrier. Some efficient solutions to the affine scheduling problem: one di-
mensional time. International Journal of Parallel Programming, 21(5):313–348,
october 1992.

8. M. Griebl, P. Faber, and C. Lengauer. Space-time mapping and tiling – a helpful
combination. Concurrency and Computation: Practice and Experience, 16(3):221–
246, march 2004.

9. M. Griebl, C. Lengauer, and S. Wetzel. Code generation in the polytope model.
In PACT’98 International Conference on Parallel Architectures and Compilation

Techniques, pages 106–111, 1998.
10. I. Kodukula, N. Ahmed, and K. Pingali. Data-centric multi-level blocking. In ACM

SIGPLAN’97 Conference on Programming Language Design and Implementation,
pages 346–357, Las Vegas, june 1997.

11. D. Kuck. The Structure of Computers and Computations. John Wiley & Sons,
Inc., 1978.

12. C. Lengauer. Loop parallelization in the polytope model. In International Con-

ference on Concurrency Theory, LNCS 715, pages 398–416, Hildesheim, August
1993.

13. W. Li and K. Pingali. A singular loop transformation framework based on non-
singular matrices. International Journal of Parallel Programming, 22(2):183–205,
April 1994.

14. K. McKinley, S. Carr, and C. Tseng. Improving data locality with loop transforma-
tions. ACM Transactions on Programming Languages and Systems, 18(4):424–453,
july 1996.

15. A. Schrijver. Theory of linear and integer programming. John Wiley & Sons, 1986.
16. M. Wolf and M. Lam. A data locality optimizing algorithm. In ACM SIGPLAN’91

Conference on Programming Language Design and Implementation, pages 30–44,
New York, june 1991.

17. M. Wolfe. Iteration space tiling for memory hierarchies. In 3rd SIAM Conference

on Parallel Processing for Scientific Computing, pages 357–361, december 1987.
18. M. Wolfe. High performance compilers for parallel computing. Addison-Wesley

Publishing Company, 1995.
19. J. Xue. On tiling as a loop transformation. Parallel Processing Letters, 7(4):409–

424, 1997.


