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Abstract—Recent Infrastructure as a Service (IaaS) solu-
tions, such as Amazon’s EC2 cloud, provide virtualized on-
demand computing resources on a pay-per-use model. From the
user point of view, the cloud provides an inexhaustible supply
of resources, which can be dynamically claimed and released.
In the context of independent tasks, the main pricing model
of EC2 promises two exciting features that drastically change
the problem of resource provisioning and job scheduling. We
call them free elasticity and free CPU power. Indeed, the price
of CPU cycles is constant whatever the type of CPU and the
amount of resources leased. Consequently, as soon as a user
is able to keep its resources busy, the cost of one computation
is the same using a lot of powerful resources or few slow
ones. In this article, we study if these features can be exploited
to execute bags of tasks, and what efforts are required to
reach this goal. Efforts might be put on implementation, with
complex provisioning and scheduling strategies, and in terms
of performance, with the acceptance of execution delays. Using
real workloads, we show that: (1) Most of the users can benefit
from free elasticity with few efforts; (2) Free CPU power
is difficult to achieve; (3) Using adapted provisioning and
scheduling strategies can improve the results for a significant
number of users; And (4) the outcomes of these efforts is
difficult to predict.
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I. INTRODUCTION

Cloud computing sets a new paradigm for hardware in-
frastructure management by offering unprecedented possibil-
ities to deploy software in distributed environments. Amazon
EC2 is one of the most well-known solution to provide
a utility computing model. Their solution has contributed
to popularizing IaaS paradigm, which enables on-demand
provisioning of computational resources, operated by virtual
machines (VMs) in cloud providers’ data centers. Resources
can be reserved on a pay-per-use basis, thereby eliminating
capital and maintenance costs for customers. Resource pro-
visioning consists of finding how many VMs are needed,
for how long, and the type of hardware configuration fitting
the job needs. From a technical view point, prior to request
a resource, the client must have prepared and transferred a
customized VM image at the provider’s site. Instances of
these VM images can then be started, becoming ready to
accept work tasks, and eventually released once they are no
longer needed. Afterwards, the provider invoices the client
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according to the billing model, the VM type, and the up-time
of the VMs.

This work focuses on the Amazon’s pricing model called
on-demand, in which users pay by the hour for active VMs.
It is now widely adopted by other provider such as GoGrid,
OVH or Rackspace... Although per-hour billing is widely
spread, some companies propose billing time units (BTU)
different from the hour, or alternative pricing models.

This type of pricing model presents two interesting fea-
tures. First, the cost of deployment is linear in the BTUs
spent, independently of the number of started VMs (modulo
the deployment and shutdown overheads). Hence, one VM
instance running for two hours costs the same as two
instances for one hour. We call this property free elasticity.
Second, the cost of deployment is linear in the number of
available CPU cycles, independently of the speed of the
CPU rented. Amazon expresses the power of the resources in
EC2CU units, 1EC2CU being the power equivalent to what
a 1-core Xeon 1.7GHz is able to deliver. A small instance
at Amazon’s costs 0.08$/hour for a power of 1 EC2CU,
while the extra-large instance costs 0.64$/hour for a total
power of 8 EC2CU: 8 times the price for 8 times the CPU
power. They both share the same price per hour per EC2CU.
Hence, running an extra-large instance during one hour costs
the same as running the small instance during eight hours.
However, this instance is actually 4 virtual cores of 2 EC2CU
each. We call this property free CPU power.

Nevertheless, theses features present an important draw-
back: because BTUs are relatively coarse grain (e.g 1 hour)
and each started unit of time is due, any job whose runtime
does not last exactly this time unit leaves idle time on the
deployed instances. However, this idle time, that would be
charged anyhow, can be recycled to run jobs for no extra-
cost. This leaves room for different type of provisioning
strategies, which could exploit unused CPU time. A previous
work of ours [1] explored the effectiveness of various
strategies designed to scale the amount of VMs according
to users’ preferences. Our results showed how using queues
on the provisioned VM allows to delay the execution of the
jobs in order to both recycle idle time and make provisioning
decisions. We assessed a dozen provisioning strategies and
found out that: (1) the cheapest strategy, using only one
VM in order to optimally reuse the idle time is not an
option, because of the enormous waiting time it incurs for
the waiting jobs; (2) the most expensive strategy, using one



VM per job to obtain the best execution time, often does not
imply significant cost increase and is thus very interesting;
and (3) when this last strategy is not interesting, a trade-off
between cost and performance can be achieved using bin-
packing based algorithms, provisioning a new VM only if
the queues of the already provisioned ones are filled enough
to cover their BTUs.

While we focused on the provisioning strategies in the
previous work, we now concentrate on assessing whether
the features of such pricing models allow actual elasticity
with more powerful CPUs at no extra cost.

The paper is organized as follows. Section II explains
our assumptions and the problem we address in this paper.
In Section III, we present the different provisioning and
scheduling strategies, while Section IV evaluates the pricing
model. The results are further discussed in Section V.
Finally, we present some related work in Section VI and
conclude with our future work plans.

II. ASSUMPTION AND PROBLEM STATEMENT

Assumptions: First, we assume that jobs are indepen-
dent scientific computations with known durations. This is
for example the case when users submit their jobs through
a local resource management system, which requires users
to specify a maximum runtime. Second, we consider that
tasks are not preemptible, e.g the migration of a running
task is not possible and jobs cannot be suspended to run
another one. Third, we assume each user has its own VM,
i.e a job from a given user cannot be run on a VM from
another user. Fourth, we assume a semi-online scheduling
system: tasks are dynamically scheduled but transit through
waiting queues, their final assignment to a resource being
computed at each scheduling round. Last, the pricing model
is a piece-wise linear pricing model, such as on demand
instances at Amazon. The billing period is discretized, each
started billing time unit (BTU) being fully charged.

Problem statement: In this article, we focus on two
types of EC2 on-demand standard instances: small instance
with 1EC2CU and medium instance with 2EC2CU . We
choose these instances because they both provide a single
core, and hence allow a direct comparison in the power of
the CPUs. More powerful instances proposed make use of
several cores. Job runtimes are normalized according to the
small instance power. Therefore, during one BTU, one small
instance can handle 3 600 seconds of computation whereas
one medium instance can handle 7 200 seconds. In other
words, one job with normalized runtime 3 600 s occupies
one full BTU of small instance, but only half the BTU of
a medium instance. Their respective prices are 0.08$/h and
0.16$/h as specified by Amazon on May 2012. Thus, for
0.16$ one can get either:

a) 2 BTUs of one small instance.
b) 1 BTU of 2 small instances.
c) 1 BTU of one medium instance.
The most interesting choices in general might seem b) and

c) because the computations will finish sooner, and overall

c) because it is the quickest choice. However, to benefit
from this feature, one must be able to keep the BTU fully
occupied. For instance, executing only one single 1 000 s
job costs 0.08$ with one small instance, but 0.16$ with
one medium instance. Therefore, only VM idle times induce
extra-cost, and taking advantage of free CPU power and free
elasticity requires to be able to keep the leased VMs busy.
Our main objective is to check whether this requirement can
be met and what are the implications in terms of workload
management.

Let us introduce the problem of VM provisioning in the
example of Fig. 1. The workload is composed of four job
requests according to the chronology indicated on the time-
line. The cheapest solution is to provision a single resource
and to execute the jobs sequentially in the order they were
submitted, as shown on the row labelled 1VM4All. In this
case, enqueuing the jobs for execution on one single VM
leads to minimize the idle time, and thus the cost. An
alternative is to reserve simultaneously several resources in
order to execute some jobs in parallel, as exemplified on the
other rows on Fig. 1. These executions will complete earlier
but the cost is likely to be higher since the chances to waste
the remaining time after the last job’s end are greater.
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Figure 1. Illustration of the provisioning strategies

III. DEFINITION OF STRATEGIES

A. Provisioning Strategies

We propose four strategies, illustrated in Fig. 1:
• 1VM4All : The first strategy provisions a single VM

and put all the jobs in its queue. It gives a lower bound
on cost for the given workload because idle time is
minimized.

• 1VMperJobPlus : On the opposite side of the spectrum,
we devise an “expensive” strategy, which minimizes the



waiting time thanks to a new VM deployment each time
a job is submitted. We include to this strategy a straight-
forward optimization, which is to reuse a running VM
if one is immediately available. On the example, the
job J2 is executed on VM1 with no extra-cost, on
the contrary to J3 and J4. This strategy is the most
attractive because it is efficient in terms of performance
(minimum waiting time), and its implementation has a
low time complexity and only requires the knowledge
of idle VMs.

• FirstFit : In our previous paper, we implemented
adapted versions of the classic heuristics used for the
online bin-packing problem [2]. Their general objective
is to map the submitted jobs to already running VMs
in priority, so as to minimize the number of started
BTUs. As these strategies all showed to produce similar
results, we choose only one of them here, namely
FirstFit. It scans the list of already deployed VMs and
maps the job to the first VM that does not require to
extend the lease time over a new BTU, i.e. we map
the job for no extra-cost. If no such already started
VM exists, a new VM is deployed immediately. On
the example, the execution of J3 is delayed in order
to reuse the idle time of VM1, while a new VM is
deployed to run J4 because it cannot be handled at
constant cost otherwise. While the FirstFit strategy (like
the other bin-packing strategies) aims to minimize the
rental cost, it results in longer wait times for jobs.

• Min-min : FirstFit, by design, makes an online schedul-
ing decision, i.e it decides in which VMs BTU the
job will fit as soon as the job arrives. This is not
necessarily the best decision and this is the reason why
a considerable average waiting time can be observed
when processing real workloads. Better decisions can
be made by relaxing the online constraint. Meanwhile
a job waits in the queue, the scheduling algorithm can
recompute, each time a new event happens, to which
VM the job should be best assigned. This results in the
reduction of the slowdown at constant cost. This semi-
online scheduling is complementary to FirstFit and can
be chosen among the heuristics described in [3]. Among
these, only Min-min has been kept as a representative
since our experiments showed similar results with the
others. On the example, J3 is initially enqueued on
VM1 before VM2 is deployed to handle J4. At the
time of this new deployment, Min-min schedules J3 on
VM2, reducing the slowdown induced. This strategy
has a higher complexity, which might impose tight
constraints to schedule a large number of arriving jobs
in real time.

These two last strategies require more details from the
workload. The duration of the jobs must be known, and
Min-min requires to know what is the queue of waiting jobs
for each VM.

B. Model

As stated previously, we consider an online scheduling
system. To model the dynamic state of the system, we
essentially need to account at a given instant, for the active
VM we have started. We also maintain a queue of jobs
assigned to each active VM.

The notations used are:

• V : Set of active virtual machines
• qv: The job queue of v ∈ V
• bv: The boot date of v ∈ V (s)
• sv: The shutdown date of v ∈ V (s)
• iv: The date when v ∈ V becomes idle (s) (when

qv becomes empty)
• J : Set of arriving jobs
• rj : The run time of j ∈ J (s)
• wj : The average wait time of j ∈ J (s)
• c(x): Cost of one virtual machine for x seconds

of up-time. For EC2: c(x) = pph ∗ dx/3600e
where 3600 is the BTU and pph is its cost.

C. Common Algorithmic Phases

The strategies we propose can be expressed through
algorithms sharing a common structure. These algorithms
have two phases:

1) a deploy phase, invoked at each job submission. It
consists of deciding (1) whether or not a new VM
must be deployed, and (2) which active VM the job
must be mapped to. It is described in Algorithm 1.

2) a release phase, triggered at a parametrized frequency.
This release procedure is common to all strategies.
It consists of deciding which active VMs must be
shutdown and released. Each running VM is examined
in turn, and an idle VM is kept running as long as it
does not increase the cost. A shutdown occurs when
it would incur additional charges.

Algorithm 1 Deploy(j,t)
// a new job j is submitted, at date t

C ← ∅ // C is the set of candidate VMs (C ⊂ V )
for v ∈ V do

if eligible(v, j) then
C ← C ∪ {v}

end if
end for
if C 6= ∅ then
v ← optimum(C)

else
v ← deploy() // Create and run a new VM
V ← V ∪ {v}

end if
enqueue(qv, j) // Map the job to the VM



Table I
THE PROVISIONING STRATEGIES WITH THEIR RESPECTIVE PARAMETERS FOR ALGORITHM 1.

strategy eligible(v, j) returns true optimum(C) returns
v ∈ C such that ...

comment

1VM4All always v = v0 Slowest/Cheapest - Reference
1VMperJobPlus if qv = ∅ any Fastest/Most expensive
FirstFit if c(sv − bv) = c(sv − bv + rj) any Regular bin-packing strategy

Table II
WORKLOAD TRACE

Trace #jobs #CPUs #user Arrival Runtime Diameter
LCG 188 041 24 115 190 0 / 16 282 / 265 584 47 / 14 126 / 262 484 1 / 20 / 279.2
AuverGrid 336 086 475 337 1 / 265 542 / 6 222 766 1 / 13 726 / 134 973 1 / 9.5 / 141.5
NorduGrid 781 356 2 000 350 8 / 319 708 / 11 854 876 43 / 54 003 / 1 223 884 1 / 18.3 / 1 327
SharcNet 180 376 6 828 355 0 / 219 997 / 6 481 390 5 / 45 855 / 1 673 102 1 / 22.6 / 3 753
Unistra 306 605 1 000 74 0 / 117 006 / 4 638 583 3 / 51 906 / 638 346 1 / 26.4 / 142.7

Where:
• eligible(v, j) is true if j can be assigned to qv ,
• optimum(C) returns the virtual machine to which a

job j is to be assigned,
• deploy() provisions and starts a new VM and returns

its identifier,
• enqueue(qv, j) adds the job to the queue of a given

VM v. If v is available (i.e qv is empty) the job actually
starts immediately on v without being queued.

eligible and optimum allow us to define all our pro-
visioning strategies. eligible filters out the set of active
VMs to which a job can be assigned depending on the
current state of VMs. If this set is empty, then a new VM is
deployed, otherwise optimum selects the VM to assign the
job to among the set of candidate VMs. These definitions are
summarized in Table I. The Min-min scheduling algorithm
is executed after this provisioning phase when FirstFit is
applied.

Figure 1 shows an example use case. We can see that,
whatever the strategy is, the VMs are only released at the
end of the BTU, even after the execution of J1 when there
is no more job to run.

The efficiency of these strategies essentially depends on
the characteristics of the workload, which is precisely what
we evaluate in the next section.

IV. EVALUATION

Our study is based on the analysis of real workloads. We
used four datasets from production grids, publicly available
from the Grid Workload Archive [4] and a dataset from
a local computing center at our University. The datasets’
characteristics are presented in Table II, which lists the total
numbers of jobs, the number of distinct CPUs used, and the
number of users. Remaining columns present the minimum /
average / maximum for the inter-arrival time between jobs,
the average runtime of jobs and the diameter (the number
of concurrent jobs). All times are in seconds.

LCG is a data storage and computing infrastructure for
the high-energy physics community using the Large Hadron
Collider at CERN. This production Grid has about 180 sites
with around 30,000 CPUs. The traces collected include only
high-energy physics (HEP) data processing. Eleven days of
activity starting from Nov. 20, 2005 were logged. AuverGrid
is a multi-site grid, part of the EGEE project. This grid is
mainly used for biomedical and HEP applications. The logs
account for one year of activity starting from Jan. 2006.
NorduGrid is a production grid for academic researchers
composed of over 75 non-dedicated clusters contributed
mostly by academic but also industrial, scientific or private
organizations. Applications are from the areas of chemistry,
graphics, biomed, and HEP. The traces used here contain
the grid jobs for three years starting from March 2003.
SharcNet is a consortium of Canadian academic institutions
who share a network of high performance computers. The
traces analyzed were produced for a setup with 10 clusters
over one year of activity starting from Dec. 2005. They
where originally provided by the Parallel Workload Archive
and analyzed in [5]. The trace from the computing center
of University of Strasbourg (unistra) represents two years of
activity (March 2009-March 2011) originating from different
labs of the University. It consists of jobs reserving one or
several processors, some being parallel jobs (e.g. MPI jobs).
To respect our assumptions, we consider one job per reserved
processor.

A. Evaluation Objectives
The objective of the evaluation is to highlight whether

reducing the makespan, through the use of more powerful in-
stances (CPU) or more instances simultaneously (elasticity),
can be achieved for free. To that end, we have implemented
the aforementioned provisioning and scheduling algorithms
in a simulator of our own. We have extracted from the work-
load the submissions of each user (1 306 users). Afterwards,
we have simulated the provisioning for each of these datasets
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Figure 2. Distribution of users according to the difference between the cheapest strategy and 1VMperJobPlus (left) and FirstFit (right)

and computed a wide range of metrics, both about simulation
results and workload characteristics. Only the most relevant
are presented in the following.

Total cost: Costs for the leasing of the provisioned
resources, in $.
Slowdown: Average ratio of the wait time to the
runtime for each job. It is defined as sdj =

rj+wj

rj
[6],

and measures the user’s satisfaction. For instance, given
one job j, sdj = 1 means wj = 0, and sdj = 3 means
wj = 2× rj .

From now on, we note S1x and S2x, the execution of strategy
S using respectively small instances (1x) and medium
instances (2x).

B. User Segmentation

In the following, we are mainly interested in near cost-
optimal solutions defined as not exceeding the optimal by
a factor ε. Our goal is to present a segmentation map of
the 1 306 users of the 5 traces, depending on the extra-cost
involved by using more elasticity and more powerful CPUs.
We define 1VM4All1x as the reference strategy. As explained
in section III-A, this strategy gives the minimum cost, and
hence used with small instances, represents the lower bound
on cost. We consider the gain obtained for a very small cost
increase is perceived by the user as “free”, hence we term
it in the following ε-free. We note R the reference cost:
R = (1 + ε) · cost(1VM4All1x). This cost is then used to
isolate the users in different exclusive categories with the
following predicates:

e = cost(1VMperJobPlus1x)≤R
e′= ¬e ∧ (cost(FirstFit1x)≤R)
ē = ¬(e ∨ e′)
p = cost(1VMperJobPlus2x)≤R
p′= ¬p ∧ (cost(FirstFit2x)≤R)
p̄ = ¬(p ∨ p′)

Fig. 2 shows, for each user, two extra-cost values as a
couple of points (∆e,∆p): ∆e represents the cost increase
implied by using a given strategy S on small instances, while
∆p shows the cost increase due to the application of the
same strategy but with medium instances. The extra-costs
are expressed in percentage of the reference cost. On the
figure, results are shown for S = 1VMperJobPlus (left plot)

and S = FirstFit (right plot). Precisely, the cost incresases
plotted are defined as

• ∆p =
cost(S2x)−R

R
× 100,

• ∆e =
cost(S1x)−R

R
× 100

The dashed lines on the plots represent the ε thresholds
chosen in the analysis.

For instance, a point at position (10,100) (resp. x-axis,
y-axis) means the corresponding user would see a 10%
cost increase if he/she increases elasticity, and 100% if,
in addition, CPUs with twice the normal power (medium
instances) are used.

First, we observe that a large majority of users stay within
a budget that is twice the lowest reference cost. However,
1VMperJobPlus yields for some users, costs that are in the
order of ten times the optimal (maximum of 3100%). In
contrast, FirstFit is cheaper, with a cost always lower than
twice the optimal. Second, we highlight that FirstFit reduces
the price for most users (93.49%). Last, we see that for all
users, the additional costs due to the increase in CPU power
are always greater than those due to elasticity increase. In
the following, we consider that a 5% increase is reasonable
as no user get 0% price increase. So we focus on the case
where ε=0.05.

Table III presents an overview of this segmentation pro-
cess for ε=0.05. Columns represent the effort to achieve
ε-free elasticity: for the population of users in column
(e), using 1VMperJobPlus is enough; for the population in
column (e′), FirstFit must be used to reach this goal; column
(ē) counts the users for who none of the strategy can offer
free elasticity. Rows represent the effort to achieve ε-free
CPU power: (p) when 1VMperJobPlus is enough; otherwise
(p′) when FirstFit must be used; otherwise (p̄) when it cannot
be achieved.

Each table cell represents the share of users who match the
conjunction of predicates in corresponding row and column.
Values between brackets are the absolute number of these
users. For instance, the second row left cell says that 4.29%
of the users can benefit either from ε-free elasticity applying
the strategy 1VMperJobPlus1x or ε-free CPU power apply-
ing FirstFit2x. It yields, in both cases, a cost not greater than
ε the lower bound. Notice also, that though not shown here,
the distribution of users in the different categories is roughly
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Figure 3. Cumulative distribution functions of users according tothe average runtime (left) and diameter (right) for strategies achieving ε-free elasticity
(ε = 0.05).

the same whatever the workload is.

Table III
USER SEGMENTATION FOR ε = 0.05. SHARE OF USERS (AND NUMBER)

IN CATEGORIES.
XXXXXXXCPU

Elasticity
e e′ ē

p 17.08% (223) 0.08% (1) 0% (0)
p′ 4.29% (56) 1.68% (22) 0.23% (3)
p̄ 31.16% (407) 23.28% (304) 22.21% (290)

By summing up the values in the first column, we notice
that 52.53% of the users would take advantage of using
1VMperJobPlus1x, thereby getting elasticity for free. If we
extend to the two first columns, this share grows up to
77.57%. Reading the table row-wise shows that only a small
share of the users is able to use medium instances at the cost
of the small ones. There are 17.16% such users with no extra
waiting time, and 23.36% if we include the FirstFit strategy.
From these figures, we conclude that choosing FirstFit is
valuable in two cases: it allows 23.28% of the users to reach
the near-optimal cost with small instances, and for another
6.2% (4.29%+1.68%+0.23%), using medium instances is
possible for no extra-cost.

However, if FirstFit allows to keep the price low, it also
induces unacceptable slowdowns very often. This effect can
be lowered by applying the Min-min scheduling, which in
our experiment, reduces slowdowns to acceptable values:
the median slowdown falls down to 2.14. Out of the 386
concerned users (those in the grayed out central cells in the
table), 252 see no improvement using Min-min, while for
the 134 remaining ones (34%) the slowdowns are reduced
of 32% on average. But just 21 users (5.4%) fall down to a
slowdown less than 3. Consequently, to stay within the 5%
cost increase, users in these categories must overall accept
considerable wait times. It is not enough to compete with
1VMperJobPlus as it represents a significant effort in term
of performance.

C. Per-characteristics Analysis

We now try to answer the question: ”Is there a good
workload characterization which would allow us to predict

the effects of strategies?”. In our previous work [1], we
tested the strategies with the objective to put forward good
cost-wait trade-offs, and we found out a direct relationship
between the diameter, the runtime and the cost. Therefore,
we examine if the runtime and the diameter are also key
factors regarding the categories. For this analysis, we leave
out the three table cells containing only a few users. We
plot in Fig. 3 the average runtimes and diameters for the
six categories left. For a sake of comparison, the particular
category of users who cannot keep their additional cost
within 5% of the reference cost, with any strategy (i.e. p̄∧ ē)
is highlighted by the grayed background which delimits the
range of values for runtimes and diameters observed for
this category. The label of the curves (only on the right
figure) are common to both figures. On left figure, each curve
corresponds to the cumulative distribution function (CDF) of
per-user average runtimes in a category. For instance, about
70% of the users belonging to the category p̄ ∧ e′ have a
job average runtime greater or equal to 3600 s. Similarly, the
right figure shows the CDF of per-user average diameter, i.e
the number of VMs running simultaneously.

The first observation from the runtime CDF is that the
users from the category p∧e are characterized by very long
runtimes (160 610 s on average), allowing to keep medium
BTU busy.

Second, users from the category p′ ∧ e show slightly
shorter runtimes (42 813 s on average). However, 40% of
the users have an average runtime in the highlighted zone.
This implies that the VMs cannot be kept busy using only
1VMperJobPlus2x, as some jobs become small according to
the medium BTU (7 200 s), leading to idle times. However,
FirstFit succeeds to reuse these idle times in some cases.

Third, we see that the runtime is not a decisive character-
istics for the four remaining categories. A user with a given
average runtime could be in either p̄ ∧ ē, p′ ∧ e′, p̄ ∧ e, or
p̄ ∧ e′.

Finally, we expected that a high diameter would increase
the possibilities to reuse idle time. However, the CDF of
diameter surprisingly shows that whatever the diameter, we
are not able to prognosticate the outcome of a strategy given



a workload. For instance, the user sharcnet-U111 has a diam-
eter of 3 753 and cannot benefit from either free elasticity or
free CPU power. The only exception is the diameter equals
to one which works fine with 1VMperJobPlus1x.

The most interesting observation is that it is impossible
to predict in which pool a given workload will be, except
for 1VMperJobPlus2x which concerns very long runtimes.
Furthermore, most of the pools have workloads sharing
exactly the same characteristics, especially the not ε-free
case (p̄∧ ē) which cannot be separated from the rest, as the
highlighted zones show. We conducted an intensive study
of each individual workload and strategy behaviour, using
chart of submission and provisioning, together with more
advanced metrics, like the heterogeneity of runtimes and
diameters. Our conclusion is that the thresholds due to coarse
grained BTU impose micro management and micro analysis
of each single submission. It actually makes it impossible
to predict the outcome of each strategy according to macro
metrics like average runtime or diameter. For instance, let
us consider two jobs of 3 599 s and 3 601 s. The first fits
perfectly in one small BTU, while the second leads to double
the cost. Moreover, if they are submitted simultaneously,
FirstFit performs well, but not 1VMperJobPlus; if they are
submitted consequently 1VMperJobPlus performs well, but
not FirstFit; but none works if there is a gap of 1 s between
the two submissions.

D. Conclusions
While achieving free elasticity is easy, taking advantage

of free CPU power is more difficult. Only very peculiar
workloads, with very large runtimes, can achieve both with
few efforts using 1VMperJobPlus2x. Users with slightly
lower runtimes might use FirstFit2x.

With small instances, free elasticity is achievable, since
for most of the users 1VMperJobPlus1x is sufficient, and
FirstFit1x works well for a large share of them.

Whatever the CPU power, using FirstFit implies important
slowdowns. They can however be significantly reduced with
the Min-min scheduling algorithm.

However, predicting the outcome of these choices given
global workload characteristics only is impossible. Our
recommendation is that, either some peculiar conditions are
gathered (very long runtimes), or assessment tools should
be used as decision support.

V. DISCUSSION

We have shown that even though IaaS pricing model
promises free CPU power and elasticity, it is impossible to
go by the characteristics of the trace to make a good choice
of the strategy. However, our study is limited on several
aspects.

First, certain technical details have been abstracted from
the simulation, like the startup times (deployment, boot) and
stop times (shutdown, release) of VM. These details do not
impact the relevance of our study, as they are negligible
face to the BTU length. For example, the time to instantiate

and start a VM instance at Amazon’s EC2 is 60 to 130
seconds according to a comprehensive study [7], while the
BTU is 3 600 seconds. Moreover, we suppose that the SLA is
respected. According to Dejun et al. [8], this is not always
the case as the computing power can vary from a VM to
another. Such details, together with the economic model
of communications, have to be taken into account by a
real brokering system, and should be handled carefully to
optimize the solutions.

Also, we have considered the same runtimes on the cloud
platform as in the workload traces because these last do
not include information about the used CPU. This does not
change the conclusions of this study, but only implies that
the computed costs and waiting times are not realistic.

Next, we filtered some of the workloads to consider that
a job reserving several processors is one job per reserved
processor. However, some are parallel jobs (e.g. MPI).
Moreover, some instances are composed of several virtual
cores. These issues will be addressed with one stone thanks
to bound BTUs,starting and stopping together: while x cores
of one VM can be mapped to x bound BTUs, y parallel jobs
can lead to provision y bound BTUs.

Amazon EC2 split the different types of instances into
five categories. Instances among a category share the same
price per hour per EC2CU. Our study focuses on standard
instances as they are widely used. Using instances from
another category would change the price per hour per
EC2CU and thus, changing the paradigm of free CPU power.

Last, our study focused on bags-of-tasks only. This is
one of the hardest application field as it presents hardly
no specific submission pattern. Our results do not apply
to other fields of application. For instance, our strategies
are not suitable for web hosting applications, having very
numerous and very short jobs that cannot wait. They can fit
to a HPC usage although network traffic should be taken into
account. However, long jobs should suit with our best case
(1VMperJobPlus2x). Similarly, our study does not apply to
pricing models based on fine grained BTU.

VI. RELATED WORK

The problem of provisioning IaaS cloud resources has
been addressed by a number of works, but a minority of
them specifically address the client cost/benefit concern.
For example, Deelman et al. [9] illustrate with a concrete
example the need to analyze the cost-benefit of supple-
menting in-house computers with cloud resources. In [10]
a batch scheduling system able to submit jobs onto clusters
and/or a cloud is proposed. The authors investigate how
classic scheduling algorithms behave in terms of cost when
external cloud resource can be granted to increase the
performance. In contrast to these works, which consider
a mixed type of resources, other studies as ours consider
only cloud resources. In this category, [11] addresses the
problem of provisioning resources for independent tasks
with known durations, so as to maximize the speedup under



a budget constraint. Workloads made of independent tasks
of unknown durations are considered by Oprescu and Kiel-
mann [12]. In the context of a multi-cluster system (or multi-
cloud), they propose a batch scheduler which continuously
estimates the task execution runtimes on each cluster using
statistical inference based on previous observations. This
process drives the choice of the resources to use in order to
best meet a budget constraint. Closest to our previous work
is the recent paper by Villegas et al. [13]. They present a
similar performance-cost analysis for a set of provisioning
and allocation strategies. The provisioning heuristics they
propose can be seen as extensions to those proposed in [14]
to start an appropriate number of VMs face to different
workload types. They test their strategies both through simu-
lation and on reduced size cloud infrastructures. Differently
from us, they choose to work with synthetic workloads con-
sisting in jobs with very small runtimes (47 s on average),
which correspond to specific MapReduce workloads.

VII. CONCLUSION AND FUTURE WORK

In this article, we have put forward two properties induced
by the common pricing model for IaaS, which we call free
elasticity and free CPU power. We have shown, through the
simulation of different scheduling stategies using real traces
of bag-of-tasks applications, that free elasticity is possible
for a majority of user’s workloads, while free CPU power
applies in a few cases only. This latter property is only
observed with peculiar workloads having very long runtimes.

We have shown that for 54% of the users, 1VMperJobPlus
is sufficient to achieve at least free elasticity; and that First-
Fit, can be efficient in 25% of the cases inducing wait times.
We have also shown that applying scheduling strategies to
queued waiting jobs can improve the performance and the
user satisfaction by reducing the slowdown for 35% of them.

Nevertheless, we found out that predicting the outcome
of these efforts is very difficult in the general case. Indeed,
the thresholds implied by coarse grained BTU have a large
impact on provisioning strategies behaviour, that cannot
be predicted using macro metrics like average runtime or
diameter.

Therefore, our future work will focus on developing an
assessment tool to be used as a decision support. The main
idea is to create a simulator based on the SimGrid [15]
toolkit to simulate the different strategies each time a job
is submitted in order to make a more suitable choice.
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