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Abstract. This chapter describes the P2P-MPI project, a software framework aimed
at the development of message-passing programs in large scale distributed net-
works of computers. Our goal is to provide a light-weight, self-contained software
package that requires minimum effort to use and maintain. P2P-MPI relies on three
features to reach this goal: i) its installation and use does not require administra-
tor privileges, ii) available resources are discovered and selected for a computation
without intervention from the user, iii) program executions can be fault-tolerant on
user demand, in a completely transparent fashion (no checkpoint server to config-
ure). P2P-MPI is typically suited for organizations having spare individual comput-
ers linked by a high speed network, possibly running heterogeneous operating sys-
tems, and having Java applications. From a technical point of view, the framework
has three layers: an infrastructure management layer at the bottom, a middleware
layer containing the services, and the communication layer implementing an MPJ
(Message Passing for Java) communication library at the top. We explain the de-
sign and the implementation of these layers, and we discuss the allocation strategy
based on network locality to the submitter. Allocation experiments of more than
five hundreds peers are presented to validate the implementation. We also present
how fault-management issues have been tackled. First, the monitoring of the infras-
tructure itself is implemented through the use of failure detectors. We theoretically
evaluate several candidate protocols for these detectors to motivate our choice for
the gossiping protocol called binary round robin. A variant of this protocol is also
proposed for a greater reliability. Finally, the system scalability and the theoretical
findings are validated through experiments. The second aspect of fault management
concerns program executions. Fault-tolerance is provided by the communication
library through replication of processes. We describe the underlying protocol and
the properties that need to be met in order to insure the correctness of execution.
We then discuss how to choose the number of replicas by quantifying how much
more robust is an application using replication, depending on the failure model
parameters.
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Introduction and Motivation

The concept of Grid [22] has emerged to express the unprecedented perspectives offered
by a large number of computers arranged in a distributed telecommunication infrastruc-
ture. At the same time, the trend in computational science shows an increasing need for
computational power. This makes parallel and distributed computing an unavoidable so-
lution. Thus, grids have been seen these last years as a promising infrastructure to deploy
massively parallel applications.

However, the efficient exploitation of shared heterogeneous resources (based on dif-
ferent platforms, hardware/software architectures) located in different places, belong-
ing to different administrative domains over a network is still an issue. Numerous soft-
ware projects aim at supporting grid computing, such as the Globus Toolkit [21], UNI-
CORE [18], or Condor [44], to name a few among the most well-known projects. Yet, the
parallel applications deployed are often much simpler than those ran on supercomputers.
Most applications are structured as embarrassingly parallel programs or workflows. Fur-
ther, grids build upon resources from established institutions are currently heavyweight
and complex, and require a strong administrative support for users. The burden is espe-
cially unreasonable for occasional users or users submitting small jobs. This contradicts
the initial metaphor for the grid being as easy as a power grid.

Simultaneously to the development of institutional grids, volunteer computing has
gained much popularity. This trend is exemplified by the BOINC approach [2], which en-
ables to build Desktop grids using computers typically owned by members of the general
public (typically home-PCs). However, the class of applications that can benefit from
such an approach is also limited to embarrassingly parallel problems.

With the same spirit of easing the access to grids, many projects have added tech-
niques borrowed from peer-to-peer (P2P) systems. The main benefit is the absence of
central server, which dramatically lessens the need for system administration. However,
some issues are still unclear regarding the question of deploying parallel applications.
What is the best design for the middleware to keep the desired ease of use, while be-
ing able to add new plug-ins features (scheduling strategies for example) ? Do general
programming models (such as message passing) have any chance to succeed, or should
we limit programming models to client-server, workflows or embarrassingly parallel
models? To which extent can we expect message passing parallel programming to scale
in such environments? How will the communication to computation ratio impact this
scalability? Do there exist appropriate fault-tolerance fault-tolerance techniques for these
faulty environments? Can middleware middleware systems tackle the heterogeneity of
the software and hardware? How can we improve the ease of use while maintaining these
features?

The contents of the chapter will describe the P2P-MPI project, and its contributions
to the above questions. Before we present our contribution, Section 1 presents some re-
lated work in the major research fields connected to our project. Then comes the descrip-
tion of our contribution, that we have split into two main parts. The first part deals with
the framework design, which targets a user-friendly and functional software. Inside this
part, Section 2 gives a quick overview of our project’s targets, and the middleware de-
scription is the object of Section 3. In the second part we address the unavoidable ques-
tion of fault management. Two distinct issues are linked to fault management. First, in



Section 4, we propose a transparent mechanism to provide some fault-tolerance for pro-
grams being executed by the framework. Then, in Section 5, we discuss the techniques
used to detect failures in an efficient, predictable and scalable fashion.

Each contribution is of a different nature, and therefore we will present an evalu-
ation of the work inside each section itself. In the first part, we will present the vari-
ous modules, with an emphasis on the P2P layer. We will describe how peers agree to
form a group to execute a parallel program. The protocol involves the discovery and
the reservation of resources, and executable and data files staging. We will detail further
the reservation process as it is linked to scheduling: in our context of message passing
programs, all the tasks making up the program have to be co-allocated, that is we must
choose how to simultaneously assign the tasks to a set of resources. We will discuss
the pre-defined allocation strategies proposed to the user. While both strategies use the
closest resources in terms of network latency to the submitting computer, one will load
all computing capabilities of selected computers, while the other spreads computations
over selected hosts. These strategies allow to express the user’s preference to exploit the
multi-core architecture of a host or not. The evaluation will show the effects of strategies
on real examples through experiments involving up to 600 processors on a nation-wide
grid (Grid’5000 [12]).

In the second part, we will present the protocols proposed for fault-tolerance and
fault detection. We propose process replication to increase the robustness of applications.
After a description of the underlying protocol needed to insure the coherence of the
system, we evaluate how much more reliable is a replicated application. Next, we review
the gossiping protocols used for fault detection. Our contribution is an extension of the
binary round robin protocol, and we evaluate its behavior through simulation. Finally,
the fault detection protocols are evaluated in a real experiment involving 256 processes
scattered over three sites of Grid’5000.

1. Related Work

P2P-MPI spans a number of topics that have emerged recently in the field of grid mid-
dleware. The major topics addressed by our work relate to the middleware design on a
P2P basis, to fault-tolerance, and to the message passing library implementation.

1.1. P2P based middleware and scheduling

The advantages of an organization of the grid resources in a P2P fashion over an orga-
nization using a centralized directory are now widely accepted [23]. Some of the issues
addressed by P2P systems are fault tolerance, ease of maintenance, and scalability in re-
source discovery. One important task of the middleware is to schedule jobs on the grid.
The goal of scheduling can be to maximize the grid utilization or the performance of
each individual application. In the former case, the metric is for instance the job through-
put of the whole system, while for the latter case the metric may be the makespan of the
application (finishing time of latest job) or the flowtime (sum of finishing times of jobs).
However, most grid projects only target the individual application performance [31].

The constraints on the scheduling and the metrics used may however largely differ
depending on whether the jobs are independent tasks, workflows, parallel programs, etc,



and depending on the knowledge the scheduler has about the jobs. In our context of par-
allel programs, all jobs are dependent one from the others. The scheduler must there-
fore co-allocate (i.e. allocate simultaneously) a set of resources to start the jobs simul-
taneously. Moreover, the job durations are generally not known, so it is not possible to
compute an optimal scheduling. The scheduling decision in that case, may be based on
extra criteria known to influence the targeted metric. For parallel programs, the objective
is often to maximize the efficiency of the execution to minimize the makespan. Known
factors influencing the performance of parallel programs executed in distributed environ-
ment are network locality and available bandwidth between hosts, load unbalance among
processors or processor heterogeneity. Ideally, the scheduler should take all these factors
into account to choose the resources to allocate. Yet, combining these factors is a diffi-
cult heuristic process. Further, much of the information is not known in a decentralized
organization because individual peers have generally no global knowledge of all other
peers’ state, distance, etc.

However, the P2P network management software can be designed to provide to the
scheduler some of this information. Let us review how other P2P based projects support-
ing message-passing parallel programs have addressed this concern. The early Power
Plant P3 project [41] used JXTA [45] to build its P2P overlay network, and offered both
a message-passing and a client-server oriented API. However, there was no control on
the peers selected by the middleware system as those are returned by JXTA. Another
example is the long-lived project ProActive [13], to which has been added a P2P infras-
tructure to ease resource discovery. This P2P infrastructure offers a discovery service
to the ProActive system, allowing a manager task to dynamically acquire peers at the
beginning or during a program execution. However, the infrastructure has no knowledge
about the network topology and therefore the selection of peers used in a computation
does not take into account network locality. Very close to our work are Zorilla [17] (a
part of the Ibis project, see below) and Vigne [32]. They are two middleware systems
which also build a P2P overlay network aware of peer locality. For that purpose, Vigne
uses algorithms from the Bamboo project [38]. In Vigne, close resources are found using
a simple (yet sometimes misleading) heuristic based on DNS name affinity: hosts sharing
a common domain name are considered as forming a local group. Zorilla (which also
uses Bamboo) proposes flood scheduling: the co-allocation request originated at a peer
is broadcasted to all its neighbors, which in turn broadcast to their neighbors until the
depth of the request has reached a given radius. If not enough peers accepted the job,
new flooding steps are successively performed with an increasing radius until the number
of peers is reached. The difficulty in this strategy, lies in finding suitable values for the
flooding parameters, such as the radius and minimum delays between floods.

1.2. Fault management

As will be detailed in Section 4 and 5, fault-management includes two distinct research
fields. The first is fault-detection. Several works have addressed the problem of detect-
ing in an efficient and scalable way faults in a distributed system. We will describe the
principle of gossiping, which is a very efficient technique to tackle this issue.

The second field is fault recovery. With MPI programs, the approach used is al-
most always rollback and recovery. Rollback-recovery protocols have been studied ex-
tensively, and numerous projects have been proposed. The protocols are either based



on a coordinated checkpoint i.e, one coordinator process orders all processes to take a
snapshot of their local state and then form a global checkpoint in order to recover from
that point, or are based on message logging normally completed by asynchronous check-
points. The coordinated checkpoint approach is very simple to implement but has a high
overhead because of synchronizations and is not efficient: frequent checkpoints slow the
execution, while infrequent checkpoints lead to a large loss of execution. The alternative
message logging protocol stores non-deterministic events (e.g message arrivals) on a re-
liable media. When a process crashes, its state is restored by replaying the communica-
tions. In this family, the protocols falls in three categories [1]. In pessimistic logging, the
reception of a message is locked until the received message has been stored on the reli-
able media. In case of failure, the process state recovery is straight-forward: the process
is re-executed from its last-checkpoint, and further messages are replayed from the log.
In optimistic logging, the message backups on the reliable media are asynchronous to
gain performance. However, recovery is more complicated since a part of the execution
between the last saved message and the failure might have affected other processes. Re-
turning to the last consistent state for all processes may force the recovery to rollback up
to the beginning of the execution (domino effect). Causal log protocols try to combine
the advantages of the optimistic and the pessimistic approaches by piggybacking events
to normal messages until these events are safely logged.

There have been implementations for many of these approaches. For example, the
early CoCheck project [43], as well as the popular implementation LAM/MPI [39] have
added fault-tolerance using coordinated checkpointing. In MPI-FT [33], all the traffic is
buffered either by a monitoring process or by each individual process, following the pes-
simistic message log strategy. More recently, some research works have proposed mixed
or alternatives strategies. MPICH-V adds fault tolerance to the MPICH implementation.
The first version [9] is based on uncoordinated checkpointing with pessimistic message
logging, but suffers a high overhead as logging to the reliable media divides the band-
width by two. Moreover, it is preferable to dispatch messages over many reliable servers
to avoid bottlenecks. This represents a non-trivial system constraint. The same authors
have proposed MPICH-V2 [10], in which the message logging is split into two parts:
the message data itself is stored on the computing node while the logical date and the
identifier of the message are stored on the reliable server by the receiving process. The
performance of MPICH-V2 is reported to get close to execution without fault-tolerance,
except for small messages.

With a different perspective, FT-MPI [20] is a framework able to detect failures,
and let the user code handle the possible failure cases. The application is informed, via
the MPI primitive return code, of the error type and should take appropriate actions. An
enriched set of primitives is provided to the programmer in order to react upon the fail-
ure. Actions focus on the communicator management (e.g shrinking the communicator
when a dead process is detected). However, FT-MPI does not provide an API for fault
notification and for checkpointing.

To the best of our knowledge, MPI/FT [6] is the only project that has proposed pro-
cess replication to tackle fault-tolerance with MPI. MPI/FT is derived from the MPI/Pro
implementation, and adds fault detection and fault tolerance features. Fault detection is
implemented through extra self-checking threads, which monitor the execution by send-
ing heartbeat messages or vote to reach a consensus about processes’ states. Comparable
to our approach, fault tolerance is based on process replication (termed modular redun-



dancy). Different strategies of replication are recommended depending on the applica-
tion model (e.g master-slave, SPMD, ...) but anyhow, their protocol relies on a coordi-
nator through which all messages (transparently) transit. This is a bottleneck that limits
scalability.

Notice also that little attention has been paid to fault-tolerance in the context of wide
area networks. In that respect, we only know the effort made to enable FT-MPI to work
across several administrative domains using the H20 metacomputing framework [16].

1.3. Message Passing Library

The ease of use intended for P2P-MPI led us to develop its communication library in
Java, for its “run everywhere” feature particularly suited to environments with hetero-
geneous operating systems. For a better integration, the message-passing programming
model we offer should be in Java as well. MPI [42], the de-facto message passing stan-
dard library, with popular implementations such as MPICH [29] and OpenMPI [24], has
no bindings defined for Java. However, an alternative recommendation called MPJ [14]
MPJ has been proposed for Java. An example of MPJ program is presented in Figure 1.
This is what we have chosen to implement in P2P-MPI. Among the few other MPJ im-
plementations in “pure” Java (with no use of JNI) are MPJ Express [5] and MPJ/Ibis [8].
MPJ Express is an efficient implementation supporting communications over TCP or
myrinet devices. The library however, is standalone and has no extra facility to de-
ploy applications on grids. MPJ/Ibis from Vrije Universiteit in Amsterdam, relies on the
Ibis [46] system. Ibis is a multi layer system, one of these being the Portability Layer
(IPL). IPL provides an object-oriented interface to network communication primitives.
Different programming models can be implemented above this layer, using the IPL in-
terface. MPJ/Ibis is one of these programming models. Though MPJ/Ibis belongs to a
much larger project than our integrated framework, we share the objective of keeping the
use simple, even when targeting grids. To that aim, MPJ/Ibis can be used with Zorilla
(see Section 1.1) to discover available computing resources. However, MPJ/Ibis has no
support for fault-tolerance. In that respect, and to the best of our knowledge, no other
MPJ implementation provide fault-tolerance features.

2. The P2P-MPI Approach

P2P-MPI’s final goal is to allow the seamless execution of parallel programs in grid en-
vironments. The master word here, is ease of use. We have privileged a tightly integrated
environment, programmed in Java only consisting in a single jar and a few scripts. The
installation requires no administrator privilege. The development of parallel programs
requires only a Java compiler and the jar file. In the following, we will see that the tight
integration of software modules allows a user program to get a straight connection with
the middleware layer to retrieve the information it needs.

Before discussing how the communication library interacts with the middleware, we
give an overview of the whole architecture of P2P-MPI. The set of modules and functions
that constitute P2P-MPI may conceptually be seen as a three layers stack (the three levels
of grey in figure 2).

On top of the stack is the communication library which exposes an MPJ API. The
communication library represents the execution model. The communication library relies



import p2pmpi . mpi . ∗ ;

p u b l i c c l a s s Pi {
p u b l i c s t a t i c vo id main ( S t r i n g [ ] a r g s ) {
i n t rank , s i z e , i ;
double PI25DT = 3.141592653589793238462643;
double h , sum , x ;
MPI . I n i t ( a r g s ) ;
s i z e = MPI .COMM_WORLD. S i z e ( ) ;
r ank = MPI .COMM_WORLD. Rank ( ) ;
i n t [ ] n = new i n t [ 1 ] ;
double [ ] mypi = new double [ 1 ] ;
double [ ] p i = new double [ 1 ] ;

i f ( r ank == 0)
n [ 0 ] = 1000000; / / number o f i n t e r v a l s

MPI .COMM_WORLD. B c a s t ( n , 0 , 1 , MPI . INT , 0 ) ;
h = 1 . 0 / ( double ) n [ 0 ] ;
sum = 0 . 0 ;
f o r ( i = r ank + 1 ; i <= n [ 0 ] ; i += s i z e ) {

x = h ∗ ( ( double ) i − 0 . 5 ) ;
sum += ( 4 . 0 / ( 1 . 0 + x∗x ) ) ;

}
mypi [ 0 ] = h ∗ sum ;
MPI .COMM_WORLD. Reduce ( mypi , 0 , p i , 0 , 1 , MPI .DOUBLE, MPI .SUM, 0 ) ;
i f ( r ank == 0) {

System . o u t . p r i n t l n ( " P i i s a p p r o x i m a t e l y " + p i [ 0 ] ) ;
System . o u t . p r i n t l n ( " E r r o r i s " + ( p i [ 0 ] − PI25DT ) ) ;

}
MPI . F i n a l i z e ( ) ;

}
}

Figure 1. An example MPJ program for computing an approximation of π

on a middleware layer which provides different services to the communication library
through a set of modules. The services offered are the fault-detection service (FD), the
file transfer service (FT), the reservation service (RS), and discovery service. For exam-
ple, while a peer is running an application process, it may be notified by its fault-detection
service of a failure on another peer. The discovery service is in charge of selecting re-
sources to fulfill a user request, and is implemented by the multi-purpose daemon (MPD)
module3 This module relies itself on a lower layer that deals with the resource manage-
ment. Resource management consists to attribute identifiers to resources, locate available
resources, etc. We call this layer infrastructure because the way resources are managed
strongly depends on how the resources can be located and reserved (e.g. through a cen-
tral directory). As mentioned earlier, we assume that a P2P approach is best suited for
our need. Let us discuss the role of the infrastructure layer in this context.

3This name is a reference to the MPD in the MPICH distribution.
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Figure 2. P2P-MPI structure.

3. A P2P based-middleware

3.1. The infrastructure layer

The role of the infrastructure management module is to maintain a local knowledge of
the infrastructure. To implement this layer, we can use any software able to discover re-
sources. For example, we initially used JXTA [45] to manage the P2P infrastructure layer.
A peer in JXTA, advertizes its presence by means of an advertisement (a small XML
message describing it). Advertisements are stored or retrieved from a distributed hash
table maintained by special peers called rendezvous. Each rendezvous maintains a list of
known other rendezvous, called the rendezvous Peer View (RPV). When a rendezvous
is given an advertisement to store, it applies a hash function to determine to which ren-
dezvous in the RVP the advertisement must be forwarded for storage. The lookup pro-
cess requires the use of the same hash function to discover the rendezvous in charge of
storing that advertisement. Another incentive to use JXTA is its ability to cross firewalls
using relay peers.

However, JXTA suffers several pitfalls with respect to our requirements. First, there
is no mechanism to enforce the consistency of all RPVs across the JXTA network, so a
given RPV can have a temporary or permanent inconsistent view of the other rendezvous
peers. As a result, the system can not guarantee to discover all existing advertisements
in a given delay. The experiment [3] conducted in an environment similar to ours shows
that the PRV consistency is always very limited. Second, crossing firewalls using the
JXTA messaging system would involve bottlenecks at the relay peers, and hence make
this feature of little use for high-performance applications. Third, JXTA does not account
for network locality between peers, which is an important information to improve perfor-
mance of message-passing oriented application. In replacement of JXTA, we have devel-
oped our own peer-to-peer infrastructure management system, which is simple, light, and
fast. The benefits over JXTA in our context are the completeness and speed of resource
discovery, and the network latencies we can capture.

From a user’s point of view, there is barely no change, except that the rendezvous
terminology of JXTA is replaced by the supernode concept. A supernode is a necessary
entry point for boot-strapping a peer willing to join the overlay. The first action of a
starting MPD is to connect to the supernode to register itself. The supernode keeps tracks



of all peer registrations or unregistrations, recording for each host, its services ports, and
a “last seen” timestamp.

On first connection to the supernode, a MPD retrieves the list of known peers, and
then maintains a local cache of this list. It then periodically contacts its supernode to
update its cached list. A network latency value is associated to each host in the list. For
that, each MPD periodically contacts hosts in the list and measures the round-trip time
(RTT) of an empty message sent to it. Notice that this “ping” test is a standard P2P-MPI
communication and does not rely on an ICMP echo measurement, such as ping system
command. This approach would involve portability issues. It could also fail because the
ICMP traffic is often blocked or limited by firewalls.

The current implementation has a single supernode since it is not our primary con-
cern to demonstrate the scalability of the P2P infrastructure. The extension of the system
to a distributed set of supernodes is left to a future work. However, from our experience
involving up to 600 peers, the single supernode is not throttled by requests because the
peers use most of the time information they have cached locally.

3.2. The middleware layer

The role of the middleware layer is to manage the program needs depending on the user’s
request, by provisioning, allocating a proper set of resources, and then monitoring the job
execution. Let us illustrate how modules of the layer cooperate to achieve to start a par-
allel program execution. The program locally starts and requests the middleware module
to find some other resources to run all processes in parallel. Here, the middleware task
is to build a temporary set of processors, which will make up the initial communicator
(MPI_COMM_WORLD). The communicator in MPI is an opaque object containing the
necessary information for a process to contact any other in the same communicator (pro-
cesses are identified by their rank in the communicator). A communicator may be seen
as the “universe” in which a point-to-point or collective operation is to operate during
program execution. The initial communicator must be known at each process. Building
this communicator in our framework requires a number of steps illustrated on Figurer 3
and described below.

(1) Booting up: The user must first join the P2P-MPI platform by typing the com-
mand mpiboot, which starts the local background daemons MPD, FT, FD, and
RS. MPD makes the computer join the P2P-MPI network and represents the local
computer as a peer as long as it runs.

(2) Job submission: The job is then submitted by invoking p2pmpirun -n
n -r r -a alloc prog. The mandatory arguments are the n processes re-
quested to run the prog program. The other arguments are optional: r is the
replication degree used to request some fault tolerance (explained later), and
alloc tells the MPD which strategy must govern the allocation of the n processes
on available resources (explained later). Then, it will start the process with rank
0 of the MPI application on local host. We call this process the root process.

(3) Requesting Peers: The application contacts its local MPD to discover enough
nodes to have the capacity to execute a job of n× r processes.

(4) Discovery and Reservation: the local MPD selects a subset of the peers it al-
ready knows, and issues a reservation request to them via the local RS. The local
RS then asks in turn to each remote RS to reserve the corresponding resource.
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Figure 3. Steps taken to build an MPJ communicator mapped to several peers.

The local RS gathers these reservation results and returns them to the MPD. In
case not enough peers are found or reserved, the MPD may initiate a new query
to the supernode to know more peers, and iterate the reservation process with
the new peers. If not enough new peers are returned by the supernode, the MPD
aborts the request.

(5) Registering: After the reservation is done, the local MPD directly contacts the
reserved nodes’ MPDs, by sending them the application name, its MPI rank re-
garding the application to spawn, and the IP and port of the root process for the
MPI application to be able to contact it. The application can then form its MPI
communicator.

(6) Hand-shake: the remote peer sends its FT and FD ports directly to the submitter
MPI process.

(7) File transfer: program and data are downloaded from the submitter host via the
FT service.

(8) Execution Notification: once the transfer is complete the FT service on remote
host notifies its MPD to execute the downloaded program.

(9) Remote executable launch: MPD executes the downloaded program to join the
execution platform.

(10) Execution preamble: the spawn processes give their rank, IP and application
port to the root process. Then, the root process creates the rank to IP address
mapping communication table called communicator. Finally, the root process
sends the communicator to all other processes.

(11) Fault detection: MPI processes register to their local FD service and starts. Then,
FD will exchange their heart-beat message and will notify MPI processes if they
become aware of a node failure.

In the previous section, we have enumerated the steps taken to start a parallel ap-
plication. Among these, step (4) hides the complex scheduling process, that is choosing
where and when the processes execute. In the following, we explain only the problemat-



ics of the resource selection and how P2P-MPI tackles the issue. The reader is referred
to [28] for details about the algorithms used.

As mentioned in the related work section, there is no freedom for when the tasks
execute because an MPJ program requires its processes to be started simultaneously.
Moreover, we do not support postponed execution so it is scheduled as soon as possible.
Yet, choosing a “good” set of resources is not straight-forward.

First, in a decentralized and multi-user system, it is not possible to get an instanta-
neous information about resource states. It is necessary to query each resource during
the co-allocation process to get an up-to-date information. This inspection first reveals if
the peer is still alive, and if its dynamic state is compatible with the request. This task
is the purpose of the Reservation Service (RS). The local RS module contacts a remote
RS module, which then behaves as a gatekeeper of the resource. It interprets the owner
preferences, expressed in the configuration file, which may for instance allow or disallow
such or such other peers. The preferences also concern the way the CPU is shared, and
are expressed through two settings: the number J of different applications that a node
can accept to run simultaneously, and the number P of processes per MPI application
that a node can accept to run. For instance, J=2 and P=1 would allow two distinct users
to run simultaneously one process each for their respective applications. J=1 and P=2
would allow to simultaneously run two processes of a single application (this setting is
often used for dual-core CPUs). When a peer accepts to participate in a execution, the
local RS locks the resource by issuing a reservation token to the remote RS, until a final
decision is made about its participation in the execution. As some peers may not be se-
lected to participate, we use overbooking. Eventually, if more than the n × r processes
requested in step (3) agree to participate, we cancel extra reservations.

The second issue deals with selecting the most adequate resources. In P2P-MPI,
we take into account two criteria: network locality and memory access contention. It is
well known that an MPI application benefits from locality of allocated resources since it
minimizes the communication costs. As multicore CPUs are becoming the most common
type of processor, an option would be to favor the allocation of processes on all cores
of available multicores to increase process locality. However, this strategy decreases the
amount of memory available to each process mapped on a same multicore. We think
the user knows its application’s requirements and should advice the middleware of its
specific needs. Therefore, we propose simple and understandable strategies to the user.
When requesting an execution, the user can choose on the command line:

• the spread strategy, which maps as few processes as possible on each host (hence
maximizing the available memory per process when processors share the mem-
ory), while maintaining locality as a secondary objective. The algorithm assigns
one process per host in the list of selected peers, sorted by increasing latency. If
the list is exhausted, processes are mapped round-robin from the beginning of the
list (first host will receive a second process, etc).

• the concentrate strategy, which increases locality between processes by using as
many cores as hosts offer. The algorithm assigns as many processes as possible
to the first peer (with respect to its capacity P ) in the list sorted by increasing
latency. It then continues with next peers in the list, until all processes have been
mapped.



3.3. The communication library layer

P2P-MPI provides to the programmer a communication library implementing the MPJ
recommendation [14]. The implementation supports TCP network devices only, but
comes into two flavors corresponding to two different objectives. Initially, we mainly
targeted large scale environments with resources scattered over several domains, and the
objective was to be competitive with other communication models such as RMI for ex-
ample. Thus, we developed a communication library solely based on Java TCP sockets,
in which connections are opened one at a time, so that a single open port is required.
We call this implementation single-port. This implementation is well adapted to environ-
ments where the security policy imposes many port opening restrictions. Recently, we
have achieved a new implementation which assumes no restriction on open ports. This
allows us to use as many sockets as needed to speedup communications. We rely on the
Java nio class, which provides the equivalent of the C select operation, allowing to mon-
itor multiple file descriptors concurrently. This new implementation is called multiple-
ports. Both implementations use well-known algorithms to optimize collective commu-
nications. The discussion about such optimization techniques is out of our scope, and the
reader is referred to [37] for details about the algorithms used. We only summarize here
(Table 1) which algorithms are used.

Operation Algorithm Operation Algorithm

Allgather Gather then Bcast Gather Flat tree
Allgatherv Gatherv then Bcast Gatherv Flat tree
Allreduce Butterfly[35] or Reduce then Bcast Reduce Binomial tree or flat tree
Alltoall Asynchronous rotation Reduce_scatter Reduce then Scatterv
Alltoallv Asynchronous rotation Scatter Flat tree
Barrier 4-ary tree Scatterv Flat tree
Bcast Binomial tree

Table 1. Algorithms currently implemented for collective communications

An other important issue is related to fault-tolerance. Numerous works have ad-
dressed this problem for message passing systems, as reported in Section 1. Most ap-
proaches are based on check-point and restart, which rely on a common network file sys-
tem or dedicated checkpoint servers. As the presence of central servers does not fit into
our P2P framework, we propose a different approach based on replication of computa-
tions. The communication layer must therefore integrate all the management operations
required to handle replication transparently. This is explained in the following Section 4.
The layer must also cooperate with the failure detection service in the middleware layer,
and we will see how faults are detected in Section 5.

3.4. Evaluation of Allocation and Performance

Allocation Strategies We evaluate the effectiveness of the allocation strategies at a large
scale, and then its impact on performance of the communication library, in an exper-
iment on the grid testbed Grid5000. The computers in our experiment are taken from
eight clusters located at six geographical distant sites: Nancy, Lyon, Rennes, Bordeaux,
Grenoble, and Sophia-Antipolis. The job submitter is located at a host in Nancy’s site.
The bandwidth between sites is 10Gbps everywhere except the link to Bordeaux which is



at 1Gbps. The network latencies from Nancy to the other sites are measured by an ICMP
echo (ping) between frontal hosts at each site and we report the corresponding RTTs in
legends of figures (top-left corners in Figure 4 and 5). We can see that latencies between
Nancy and distant sites are very close for most of them. For all peers, the configuration
parameter J is set to the number of cores in the host CPU.

In the experiment, we run a program whose each process simply echoes the name of
the host it runs on. We run 11 times the program, requesting from 100 to 600 processes by
steps of 50. Through this experiment, we observe where processes are mapped depending
on the chosen strategy and the number of processes requested by counting hosts and
cores allocated at each site.

For the concentrate strategy, we consider the closer the processes are from Nancy,
the better are the results. For the spread strategy, a good allocation should map only
one process per host as much as possible, and hosts selected should be the closest from
Nancy. The effectiveness of the strategies essentially depends on the accuracy of the
latency measurement, which may differ from the RTT given by an ICMP echo command
(ping). The latency we measure with P2P-MPI must not necessarily be very close to the
ICMP RTT, but should preserve the ranking between hosts relatively to RTT.

Figures 4 and 5 graphically represent the distribution of processes on the sites for
the two strategies.
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Figure 4. Hosts and cores allocated with Concentrate

With concentrate (Figure 4) the processes are allocated on the 60 hosts available at
Nancy only, up to 200 processes. Next, when the capacity of 240 cores at Nancy is ex-
ceeded by the request, further hosts are first allocated at Lyon (5 for -n 250), as expected
with respect to the RTT ranking. Subsequent requests (from -n 300) reveal that hosts
from Lyon, Rennes and Bordeaux fiercely compete for the latency ranking. We observe
that the latency ranking for these hosts is interleaved with respect to sites. The reason of
such an interleaving comes from the latencies between Nancy and any of the three sites,
which are very close (they are within 0.6ms), and from the latency measurement, which
is sensible to CPU and TCP load variations. Finally, the strategy selects close processes,
and hence is adapted to applications involving many inter-process communications. As
mentioned at the end of Section 3.2 the drawback is that the processes allocated to a
same multi-core host must share the memory. Hence, memory contention is higher and
the global amount of memory available to the application is limited.
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Figure 5. Hosts and cores allocated with Spread

With spread (Figure 5) hosts are chosen from the four closest sites up to 250 pro-
cesses, but contrarily to concentrate more hosts are allocated in each site. From 300 pro-
cesses, spread takes hosts from all sites so that we have one process per host only. We
can clearly see on Figure 5(b), the round-robin allocation of processes once the host list
is exhausted: the cores allocated at Nancy makes a stair at 400 processes since there are
not enough hosts (350) to map one process per host. Therefore, the closest peers are first
chosen for the second process as they have extra available cores. On the whole, we ob-
serve that all peers have been discovered and the strategy tends to use them all. Hence,
as compared to concentrate, this strategy is better suited for applications requiring much
memory or making extensive memory accesses since processes have more chance not to
be co-allocated with another process.

Notice also that the above experiment takes place in a stable environment made of
clusters. Hence, the experiment may not evidence problems related to more volatile and
heterogeneous P2P networks made up of volunteer peers.

Application Performance To observe how allocations impact applications, we have
chosen two programs from the NAS benchmarks (NPB3.2) [4], a set of benchmarks
originally developed for the performance evaluation of highly parallel supercomputers.
The two program we have chosen to port from Fortran and C to Java have opposite
characteristics regarding the computing to communication ratio. IS (Integer Sorting) in-
volves many communications of small and large messages while EP (Embarrassingly
Parallel) makes independent computations and only four final collective communication
(MPI.Allreduce of one double).

The graph on the left of Figure 6(a) shows that EP using 32 to 256 processes is
slightly faster with spread. We can think of two factors to explain that execution is slower
with concentrate. First, the two computing processes running on different cores of a same
host contend for access to the main memory. Second, although some inter-process com-
munications could be optimized using the shared memory, our implementation currently
uses the Ethernet stack in all communications. As each application process is monitored
by one failure detector sending periodic administrative messages, the number of mes-
sages handled by a host network interface is bigger. These factors seem not to be counter-
balanced by locality in the collective communication. With 512 processes, the problem



size per process becomes smaller and the overheads related to memory and communica-
tions seem to reach an equilibrium at this point.
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Figure 6. Execution time for EP and IS depending on allocation strategies.

The performance curves for IS, in Figure 6(b), are due to the low computations
to communications ratio. With 32 processes, spread leads to better performances than
concentrate: with spread all processes are in the same cluster so that communications
pay a low latency while there is no overhead due to concurrent memory accesses. This
appears to be the case with concentrate. Using 64 processes with spread means that four
processes are allocated outside the local cluster and the communication overhead leads
to a slowdown. Keeping the processes inside the cluster with concentrate gives a roughly
constant execution time. Figures for 128 processes and above show the same phenomena.

As a reference, we compare in Figure 7 the performance of EP obtained on a cluster
with three different communication libraries. The results for IS are not significant and
not shown here (it does not scale beyond eight processors in OpenMPI). The two other
frameworks are MPJ Express [5], another MPJ implementation with which we run our
Java benchmark, and OpenMPI [24], a popular MPI implementation, with which we run
the original Fortran code.

MPJ Express and P2P-MPI performances are very close, but are outperformed by
OpenMPI. OpenMPI is known for its efficiency, and further, it runs in this case a native
binary code while MPJ implementations have the overhead of using a JVM.

4. Fault-tolerance

As stated in the introduction, the robustness of an execution is of tremendous impor-
tance for MPI application since a single faulty process makes the whole application fail.
As pointed out in the related work section, we argue that usual approaches to support
fault-tolerance for MPI, based on rollback recovery, do not fit easily in our peer-to-peer
paradigm because they assume a reliable server where checkpoints can be stored. This
is why we propose a solution based on process replication. The replication management
is absolutely transparent for the programmer. When specifying a desired number of pro-
cesses, the user can request the system to run for each process an arbitrary number of
copies called replicas. An exception is made for the process running on the submitter
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host, numbered 0 by convention, which is not replicated because we assume a failure
on the submitter host is critical. In practice, it is shorter to request the same number of
replicas per process, and we call this constant the replication degree.

In the following, we name a “usual” MPI process a logical process, noted Pi when it
has rank i in the application. A logical process Pi is implemented by one or several repli-
cas noted P 0

i , . . . , P
n
i . Figure 8 shows an example of two logical processes communi-

cating. In that example, P1 is implemented by three replicas mapped onto three different
computers. In all cases, the replicas are run in parallel on different hosts since the goal is
to allow the continuation of the execution even if some hosts fail. Note that we can have
replicas from different logical processes on a same host (e.g P0,0 and P1,0 on host A).

4.1. Assumptions

Before we can describe the replication management, we should qualify our system re-
garding the nature of the distributed system addressed:

• We only consider fail-stop failures (or crash failures). It means that a failed pro-
cess stops performing any activity including sending, transmitting or receiving
any message. This includes the three following situations: a) the process itself
crashes (e.g. the program aborts on a DivideByZero error), b) the host execut-
ing the process crashes (e.g. the computer is shut off), or c) the fault-detection
monitoring the process crashes and hence no more notifications of aliveness are
reported to other processes. This excludes transient or byzantine failures.

• We consider a partially synchronous system: a) the clock drift remains the same,
or the differences in the drifts are negligible, for all hosts during an application
execution, b) there is no global clock and c) communications deliver messages in
a finite time.

• We consider the network links to be reliable: there is no message loss.

The assumption about network communication reliability is justified by the fact that we
use TCP, which is reliable, and that the middleware checks on startup that the required
TCP ports are not firewalled.



4.2. Replicas coordination protocol

An execution of an application with replication must be equivalent to the execution of
the same application without replication. We say an execution E is equivalent to an exe-
cutionE′ if the output ofE is the same as any outputE′ could produce. To guarantee this
property, we need a specific protocol that emulates an atomic broadcast when sending
messages from one process to another. This is the role of the coordination protocol pre-
sented hereafter. Its behavior regarding atomic broadcast is examined in Section 4.3. The
protocol relies on specific control structures and roles. First, in each logical process, one
replica is elected as master. If this process fails, one replica of the group will be elected
as a new master, and it will update its state to be in the same state as the master before its
failure. Second, to be able to return or get to a certain state, replicas need to store some
information about messages sent or received. We have added extra data structures in each
process: a backup table and a log table used by a process when sending, and a history
table used when receiving. Their roles will be explained along with the description of
the protocol.

Message Identifier (MID) First, our protocol requires a unique identifier for messages.
The communication library computes MIDs on the fly, from local information only. The
MID is a 5-uple built from the communicator, the source, destination and tag of the mes-
sage, plus a logical time (ticks are incremented at each send or receive). For example,
two consecutive messages sent in the world communicator (numbered 0), from process
of rank 0 to rank 2 with tag 9, will have the identifiers (0, 0, 2, 9, 0) and (0, 0, 2, 9, 1)
respectively. The MID is incorporated into the message itself and logged at the receiving
side. Thus, the MID has two properties: it is a unique identifier for messages, and it
reflects the order in which messages are sent and received. In the example, the messages
could be received in any order in the receive queue, but the extraction from the queue
to the user program would follow the MID order. Hence, we preserve the message order
according to the MPI standard.

Sending agreement protocol On the sender side, we limit the number of messages sent
by introducing the following agreement protocol. In each logical process, one replica is
elected as master of the group for sending. The other processes do not send the message
over the network, but store it in their memory. Figure 8 illustrates a send instruction from
P0 to P1 where replica P 0

0 is assigned the master’s role. When a replica reaches a send
instruction, two cases arise depending on the replica’s status:

• if it is the master, it sends the message to all processes in the destination logical
process. Once the message is sent, it notifies the other replicas in its own logical
process to indicate that the message has been correctly transmitted. We say the
master commits its send. The commit is done by sending the message’s MID. The
MIDs are stored into the log tables of each replica.

• if the replica is not the master, it first looks up its log table to see if the message
has already been sent by the master. If it has already been sent, the replica just
continues with subsequent instructions. If not, the message to be sent is stored into
the backup table and the execution continues. (Execution stops only in a waiting
state on a receive instruction.) When a replica receives a commit, it writes the
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message identifier in its log and if the message has been stored, it removes it from
the backup table.

Reception agreement protocol When a message arrives in the message queue, the com-
munication library compares the message’s MID with MIDs stored earlier in the history
table. If MID is a duplicate, the message is simply discarded, otherwise the communica-
tion library delivers the message to the application.

Recovery When a failure is detected, the following fault recovery action is taken. If the
failed process is a replica, each other process simply updates the information about the
corresponding logical process, not to send further messages to the failed process. If the
failed process is the master, a new master is elected among its replicas. This new master
checks its backup. If it is not empty, it means the messages in the backup have not been
sent at all by the previous master, sent partially, or totally sent but not committed. In any
case, it starts over the multiple send operations. Thus, processes on the receiving side
might have received the message from the master before it failed, and once again from
the new master after the failure. This situation is handled by the reception agreement
protocol that discards duplicate messages.

4.3. Theoretical Foundations

Our protocol can be considered as an active replication strategy [40] because the senders
send their messages to all replicas of the destination group. However, our protocol differs
(for a sake of performance) because we restrict the group of senders to a single process
only, the group master. The conditions for such group communication to work properly
have been well studied in the literature. We review below what are the requirements
stated in the literature, and how our system complies to these requirements.

It is well known that active replication requires atomic broadcast (or total order
broadcast) to insure the coherence of the system. The specification of the atomic broad-



cast has been formally defined using the two primitives broadcast(m) and deliver(m)4

[30]. It is assumed that every messagem can be uniquely identified, and carries the iden-
tity of its sender, denoted by sender(m). This assumption holds in P2P-MPI because
we use MIDs. A process that suffers no failure is termed correct process. The atomic
broadcast is defined by the following properties, written in italics. For each property, we
state how it applies to our system.

Validity if a correct process broadcasts a message m, then it eventually delivers m.
From our assumption that our system is partially synchronous and that our com-
munication links are reliable, this property is satisfied.

Agreement If a correct process delivers a message m, then all correct processes even-
tually deliver m. If the sender does not crash, the validity property satisfied above
insures that the message will be delivered to all destination processes. If the sender
crashes between any send to the destination processes, a replica of the sender will
become the new master in a finite time. (Or the application crashes if it does not
remain any replica in the logical process of the sender). It will then retransmit the
message5to the destination processes. Thus, in the end all destination processes
will receive the message. Hence, the property is satisfied.

Integrity For any message m, every correct process delivers m at most once, and only if
m was previously broadcasted by sender(m). On the receiver side, MIDs and the
history table are used to detect and discard duplicated received message. Hence,
we never deliver duplicated message and the property is satisfied.

Total order If process p and q both deliver messages m and m′, then p delivers m
before m′, if and only if q delivers m before m′. In other words, every process gets
the messages in the same order. The received message will be delivered upon the
MPI.Recv call from the user program. The communication library fetches the
received message from its temporary buffer in the order indicated by the program,
as encoded in the MID.

We must note however, that MPI allows the programmer to describe communications
that do not satisfy the last property. MPI has the special specifiers MPI_ANY_TAG and
MPI_ANY_SOURCE that may be used in a receive call, respectively as tag or source
values. Using any of these specifiers can formally lead to an inconsistent state. Let us
illustrate the situation with a simple example. Suppose a process P0 implemented by
two replicas (P 0

0 and P 1
0 ) whose code executes two successive receive operations, both

specifying MPI_ANY_SOURCE. Then, assume two other processes P1 and P2 send to
P0 (nearly at the same time) messages m1 and m2 respectively. It can happen that P 0

0

receives m1 before m2 while P 1
0 receives m2 before m1. Therefore, the outputs pro-

duced by the master and its replica may not be the same. However, one can argue that
this programming pattern denotes that the subsequent computations depending on the
received values make no assumptions on the order of the receptions, and either sequence
of reception is acceptable. A common example of such computation is the summation

4deliver is used instead of receive to mean that the message is really available to the application and not just
received by the network interface.

5Note that the messages must be the same on the master and on the replicas. We assume the same instructions
produce the same values, except for random(), which we overload so that drawn values are the same in the
replicas and in the master.
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Figure 9. Time spent for 1000 ping-pong messages with different replication degrees.

of values gathered in an unspecified order which is correct because sum is associative,
commutative, and has a neutral element.

4.4. Replication Overhead

The replication protocol obviously incurs an overhead. Each message normally sent
once, is sent to all replicas of the destination process. An extra step is necessary as well
for the master to commit the message sent to its own replicas,which requires sending a
small message. To assess the overhead from an experimental point of view, we measure
the performance of a simple ping-pong program between two processes. We report in
Figure 9 the time taken by the round trip time of 1000 message exchanges, with different
replication degrees and message sizes. The measurements are average values over ten
tests, which are run on a standard cluster (1Gbps link). If we consider t1 the execution
time without replication, we observe that the overhead for replication degree r is a bit
less than rt1. For example, the communication overhead induced by a replication degree
of two (r=2) appears almost negligible for messages up to 64 KB. For a 64 KB message,
the overhead is 17% for r=3, and 50% for r=4. It goes up to 42% and 73% respectively
for 128 KB messages. This test can be certainly considered partial but a thorough study
of performance overhead would require to get through a lot of configurations. Yet, it al-
lows us to set a realistic upper bound for the overhead. This is helpful for modeling the
effect of replication on fault-tolerance, as will be seen in next section.

4.5. Replication and Failure Probability

We have examined so far how replication could be designed and implemented. In this
section, we quantify the benefits and the costs of replication on program execution. We
give an expression of the failure probability of an application and how much replication
improves an application’s robustness.

Our failure model follows previous studies on the availability of machines in wide-
area environment such as the one of Nurmi et al. [34]. Such studies show that the Weibull



distribution effectively model machine availability. Based on [34], the probability that a
machine fails before time t is given by:

Pr([0, t]) = 1− e−(tλ)δ

(1)

where λ > 0 is the failure rate, and δ > 0 the shape of the Weibull distribution. The
authors show how to compute λ and δ according to traces. They also show that δ <
1, which means that we can consider that we have a failure rate decreasing with time
(unreliable machines tend to leave the system rapidly). Note that the Weibull distribution
is a generalization of the exponential distribution (constant failure rate) when δ = 1.

Now, recall that our parallel applications consist in a set of processes, and that the
failure of any of them makes the application fail. We assume failures are independent
events, occurring equiprobably at each host: we note f(t) the probability (that will be
instantiated with our failure model of Eq. (1)) that a host fails before t. Thus, considering
a p processes MPI application without replication, the probability that it crashes is :

Papp(p) = probability that 1, or 2, . . . , or p processes crash
= 1− (probability that no process crashes)
= 1− (1− f(t))p

With a replication degree r, a crash of the application occurs if and only if at least
one MPI process has all its r copies failed. The probability that all the r copies of an
MPI process fail is (f(t))r. Thus, like in the expression above, the probability that a p
process MPI application with replication degree r crashes is

Pappr(p,r) = 1− (1− f(t)r)p

= 1− (1− (1− e−(t λ)δ

)r)p using Eq. (1)
(2)

While replication makes the failure probability decrease, it also adds an overhead that
lengthens the overall execution time. Hence, the failure probability is greater during this
longer period. So, the question of the best tradeoff arises, which should determine the
optimal replication degree. A similar question can be: which replication degree induces
a given failure probability. It is out of the scope of this chapter to detail how such a de-
cision can be computed. These details can be found in [25]. In this work, we provide a
model of the duration of the program execution derived from Amdahl’s law. The duration
depends on the estimated sequential time, the parallel portion of the program, the number
of processes involved and the replication degree, which incurs an overhead considered
linear in r. We can then instantiate the failure probability of Eq. (2) with the duration
computed i.e., substituting t with our duration expression. We have shown that the as-
sociated function is convex for realistic values of λ. An illustration is given in Figure
10 for an application spawning ten processes. The convex curve shows that the failure
probability is quickly decreasing and reaches a minimum for r ≈ 7. More replication is
useless since it involves a higher failure probability (as the overall duration increases).

5. Fault Detection

For the replication to work properly, each process must reach in a definite period, a global
knowledge of other processes states to prevent incoherence. For instance, running pro-
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cesses should stop sending messages to a failed process. This problem becomes chal-
lenging when large scale systems are in the scope. When an application starts, it registers
with a local service called the fault-detection service, introduced in Section 2. In each
host, this service is responsible to notify the local application process of failures hap-
pening on co-allocated processes. Thus, the design of the failure detectors is of primary
importance for fault-tolerance.

5.1. Gossiping

Failure detection services have received much attention in the literature and since they are
considered as first-class services of distributed systems [15], many protocols for failure
detection have been proposed and implemented.

Among them, we retain the so-called gossiping protocol after the gossip-style fault
detection service presented in [47]. It is a distributed algorithm whose informative mes-
sages are evenly dispatched among the links of the system. Let us sketch the principle of
the algorithm.

A gossip failure detector is a set of distributed modules, one module residing at each
host to monitor, as illustrated on Figure 11. Each module maintains a local table with
one entry per detector known to it. This entry includes a counter called heartbeat. In a
running state, each module repeatedly chooses some other modules and sends them a
gossip message consisting in its table with its heartbeat incremented (the table on the
left of host on figure). When a module receives one or more gossip messages from other
modules, it merges its local table with all received tables and adopts for each host the
maximum heartbeat found (table on the right of host on figure). If a heartbeat for a host
A, which is maintained by a failure detector at host B has not increased after a certain
timeout, host B suspects that host A has crashed. In general, it follows a consensus phase
about host A failure in order to keep the system’s coherence.

Gossiping protocols are usually governed by three key parameters: the gossip time,
cleanup time, and the consensus time. Gossip time, noted Tgossip, is the time interval be-
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Figure 11. One step in random gossiping: each host sends its heartbeat table randomly (left tables) and updates
its table keeping maximum values (right tables).

tween two consecutive gossip messages. Cleanup time, or Tcleanup, is the time interval
after which a host is suspected to have failed. Finally, consensus time noted Tconsensus,
is the time interval after which consensus is reached about a failed node.

A major difficulty in gossiping implementations lies in the setting of Tcleanup: it is
easy to compute a lower bound, referred to as Tmincleanup, which is the time required for
information to reach all other hosts, but this can serve as Tcleanup only in synchronous
systems (i.e. using a global clock). In asynchronous systems, the cleanup time is usually
set to some multiple of the gossip time, and must neither be too long to avoid long
detection times, nor too short to avoid frequent false failure detections.

Starting from this basis, several proposals have been made to improve or adapt this
gossip-style failure detector to other contexts [36].

We briefly review advantages and disadvantages of the original and modified gossip
based protocols and what is to be adapted to meet P2P-MPI requirements. Notably, we
pay attention to the detection time (Tmincleanup) and reliability of each protocol.

Random. In the gossip protocol originally proposed [47], each module randomly
chooses at each step, the hosts it sends its table to. In practice, random gossip evens the
communication load among the network links but has the disadvantage of being non-
deterministic. It is possible that a node receives no gossip message for a period long
enough to cause a false failure detection, i.e. a node is considered failed whereas it is still
alive.

Round-Robin (RR). This method aims to make gossip traffic more uniform by employ-
ing a deterministic approach. Periodically, each node will receive and send a single gos-
sip message to a pre-determined destination node d, which is computed from the source
node s and the current round number r.

d = (s+ r) mod n, 0 ≤ s < n, 1 ≤ r < n (3)

where n is the number of nodes. After r = n− 1 rounds, all nodes have communicated
with each other, which ends a cycle and r (generally implemented as a circular counter)
is reset to 1. This protocol guarantees that all nodes will receive a given node’s updated



heartbeat within a bounded time. The information about a node’s state is transmitted
to one other node in the first round, then to two other nodes in the second round (one
node gets the information directly from the initial node, the other from the node pre-
viously informed), etc. At a given round r, there are 1 + 2 + · · · + r nodes informed,
and hence the minimum cleanup time (all nodes informed) is such that r(r+1)

2 = n.
Hence, we can deduce the minimum cleanup time: Tmincleanup = dre × Tgossip, where
r = (

√
1 + 8n− 1)/2.

Binary Round-Robin (BRR). The binary round-robin protocol attempts to minimize
bandwidth used for gossiping by eliminating all redundant gossiping messages. The in-
herent redundancy of the round-robin protocol is avoided by skipping the unnecessary
steps. The algorithm determines sources and destination nodes from the following rela-
tion:

d = (s+ 2r−1) mod n, 1 ≤ r ≤ dlog2(n)e (4)

The cycle length is dlog2(n)e rounds, and we have Tmincleanup = dlog2(n)e × Tgossip.
The elimination of redundant gossip lessens the network load and accelerates the

heartbeat status dissemination at the cost of an increased risk of false detections. For
example in a four nodes system, node 2 gets incoming messages from node 1 (in the 1st
round) and from node 0 (2nd round) only. Therefore, if node 0 and 1 fail, node 2 will not
receive any more gossip messages. After Tcleanup, node 2 will suspect node 3 to have
failed even if it is not true.

5.2. Fault detection in P2P-MPI: BRR or DBRR

We have set up a list of requirements for our failure detection service. We require the
protocol to be a) scalable, i.e. the network traffic that it generates does not induce bottle-
necks, b) efficient, i.e. the detection time is acceptable relatively to the application exe-
cution time, c) deterministic in the fault detection time, i.e. a fault is detected in a guar-
anteed delay, d) reliable, .i.e. its failure probability is several orders of magnitudes less
than the failure probability of the monitored application, since its failure would result in
false failure detections.

From the previous proposals for failure detection, BRR meets almost all of these
requirements. It is deterministic, has a low bandwidth usage and a quick detection time.
However, we have shown in [27] that BRR is relatively fragile as compared to other
protocols, especially with a small number of nodes. To let the user trade off between
detection speed and reliability, we have derived a new protocol called double binary
round-robin protocol (DBRR). It detects failures in a delay asymptotically equal to BRR
(O(log2(n)), which is acceptably fast in practice, while reinforcing the robustness of
BRR. The idea is simply to avoid to have only one-way connections between nodes.
Thus, in the first half of a cycle, we use the BRR routing in a clock-wise direction while in
the second half, we establish a connection back by applying BRR in a counterclock-wise
direction. The destination node for each gossip message is determined by the following
relation:

d =
{

(s+ 2r−1) mod n if 1 ≤ r ≤ dlog2(n)e
(s− 2r−dlog2(n)e−1) mod n if dlog2(n)e < r ≤ 2dlog2(n)e (5)
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Figure 12. Failure probabilities of the FD system using BRR and DBRR (δ = 1, λt = 10−1).

The cycle length is 2dlog2(n)e and hence we have Tmincleanup = 2dlog2(n)e × Tgossip.
With the same assumptions as for BRR, we set Tcleanup = 3dlog2(n)e × Tgossip for
DBRR. We have compared BRR and DBRR through the simulation of a large number of
scenarios, in which each node may fail with a probability f . Then, we verify if the graph
representing the BRR or DBRR routing is connected: simultaneous nodes failures may
cut all edges from source nodes to a destination node. This situation implies a FD failure.
In Figure 12, we repeat the simulation for 5.8× 109 trials with δ = 1, λ = 10−3s−1 and
t = 102s. Notice that in the DBRR protocol, we could not find any FD failure when the
number of nodes n is more than 64, which means the number of our trials is not sufficient
to estimate the DBRR failure probability for such n.

The chosen protocol appears in the configuration file and may change for each ap-
plication (at startup, all FDs are instructed with which protocol they should monitor a
given application).

5.3. Fault Detection Time Evaluation

It is important for users to have an idea about the time it will take for a failure to be
signaled. Because they use a deterministic routing of information messages, BRR and
DBRR allow to theoretically predict the fault detection time. We have setup an experi-
ment in real conditions to compare the predicted detection time with the detection times
observed when failures occur in a real application. We run an application (without repli-
cation) which is distributed across three geographically distant sites, namely Nancy,
Rennes and Sophia-Antipolis on the Grid’5000 testbed. After 20 seconds we kill all pro-
cesses on a random node to simulate a node failure. We then log at what time each node
is notified of the failure and compute the time interval between failure and detection. For
both protocols BRR and DBRR, Tgossip is set to 0.5 second. Figure 13 plots the aver-
age of these intervals on all nodes. Also plotted for comparison is Tcleanup as specified
previously, termed “theoretical” detection time on the graph.

The detection speed observed is very similar to the theoretical predictions whatever
the number of processes involved, up to 256. The difference comes from the time taken
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to check that a suspected host has really failed through a ping of that host (this is the
consensus phase). We observed no false detection throughout our tests, hence the ping
procedure has been triggered only for real failures. There are two reasons for a false
detection: either all sources of information for a node fail, or Tcleanup is too short with
respect to the system characteristics (communication delays, local clocks drifts, etc).
Here, given the briefness of execution, the former reason is out of the scope. Given the
absence of false failures we can conclude that we have chosen a correct detection time
Tcleanup, and our initial assumptions are correct, i.e. the initial heartbeat adjustment is
effective and message delays are less than Tgossip. This experiment shows the scalability
of the system on Grid5000, despite the presence of wide area network links between
hosts.

6. Conclusion

We have described our proposal for an integrated middleware coupled with a commu-
nication library. This proposal has been implemented and is publicly proposed as a free
software project6.

In this chapter, we have explained our design choices to ease the deployment of
the framework and to minimize the maintenance operations. We propose a P2P basis to
organize the resources. The advantage lies in the greater peer autonomy, which eases the
software installation and maintenance, and avoids the single point of failure risk due to
central directories for resources. We put forward that the dynamic discovery of available
resources upon an execution request is a highly desirable feature. We have discussed
the resource allocation issue, and we have shown how the middleware could account for
network locality of peers, and which simple allocation strategies may be proposed to the
user.

6http://www.p2pmpi.org/



Another key feature of P2P-MPI is fault-tolerance. The middleware has a failure
detection service, which notifies failures to the application. We have explained the dif-
ficulties to build a scalable and fast detection system, and how our service has been de-
signed. The communication library supports fault-tolerance through replication of pro-
cesses, upon a simple user request. We have described the underlying protocol, and we
have shown how replication increases the robustness of applications. The overhead of
replication is also studied. Thus, our proposal on fault-management contributes to show
that the middleware support is beneficial to the communication library. Finally, we think
P2P-MPI can encourage programmers to parallelize their applications to benefit from
the computational power available even from individual computers. The applications
best suited to this framework are those which can take advantage of COTS hardware. A
P2P-MPI program is not as efficient as it would be in C or Fortran. Moreover, P2P-MPI
only handles TCP networking devices for the moment, and hence cannot make the most
of a cluster with myrinet or infiniband network cards. However, it allows to parallelize
existing Java programs using message passing, which is a more general parallel program-
ming model than the client-server model. Hence, a wide range of applications can be
targeted by P2P-MPI. Let us cite the various examples found in the Java Grande Forum
benchmark [11], which includes a financial simulation using Monte Carlo techniques
to price products, a molecular dynamics simulation based on a N-body code, a scene
renderer based on a 3D ray-tracer, etc. During this project, we have ourselves helped at
the parallelization of a data clustering method [7]. This work is described in [26]. This
method has a high complexity and its parallelization enhanced its usability. Clusterings
with a large number of classes have been completed on COTS hardware in tens of min-
utes instead of hours in the sequential version. In addition, a noteworthy aspect is that us-
ing P2P-MPI is more user-friendly than using traditional high-end computing facilities.
Instead of moving their application files to a cluster for example, users can keep running
the application from their usual computer, and the middleware transparently discovers
available computing resources.

Regarding the future work, let us list some possible directions. The middleware
should rely on a more decentralized infrastructure, composed of a distributed set of su-
pernodes, to scale beyond thousands of peers. A linked problem is to maintain an accu-
rate estimation of the network latencies between peers, or better, being able to guess the
topology of the physical network (similarly to the method used in [19]). As far as repli-
cation is concerned, a formal analysis of the protocol (e.g using model-checking) would
make it a solid brick. A comparison with other approaches of fault-tolerance regarding
for instance, the overhead depending on the number of faults injected, would be also in-
teresting. Last, much work could be done on the MPJ implementation. In particular, we
think P2P-MPI is a good framework to test new algorithms for collective communica-
tions involving mixed wide and local area communications. We believe the communica-
tion library could benefit from static or even dynamic information about the network that
could be retrieved from the middleware layer. Such information about topology, latency,
load, etc, could be used to make better decisions to choose such or such communication
strategy.
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