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Abstract. This work is devoted to the numerical resolution of the 4D
Vlasov equation using an adaptive mesh of phase space. We previously
proposed a parallel algorithm designed for distributed memory architec-
tures. The underlying numerical scheme makes possible a parallelization
using a block-based mesh partitioning. Efficiency of this algorithm re-
lies on maintaining a good load balance during the whole simulation.
In this paper, we propose a dynamic load balancing mechanism based
on a relevant cost metric and a geometric partitioning algorithm. This
mechanism is deeply integrated into the parallel algorithm in order to
minimize overhead. Performance measurements on a PC cluster show
the good quality of our load balancing and confirm the pertinence of our
approach.
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1 Introduction

The Vlasov equation is a non-linear partial differential equation that describes
the evolution in time of charged particles under the effects of external and self-
consistent electro-magnetic fields. It is used to model important phenomena in
plasma physics such as controlled thermonuclear fusion. This equation is defined
in the phase space which has 6 dimensions in the real case (one dimension of
velocity for each dimension of position).

Amongst the numerical methods for solving the Vlasov equation, recent Eu-
lerian methods (see [6, 5]) based on the semi-Lagrangian scheme [11] are of great
interest to get an accurate description of the physics. These methods have proven
their efficiency on uniform meshes in two dimensional phase space. But when
the dimensionality increases, the number of points on a uniform grid becomes
very important which makes numerical simulations challenging.

Two approaches have been investigated to simulate four dimensional prob-
lems: adaptive methods and parallel algorithms. Adaptive methods decrease
computational cost drastically by keeping only a subset of all grid points. Some
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semi-Lagrangian adaptive methods have been developed, like in [10] and [2,7]
where the authors use a moving grid or a multi-resolution analysis based on
interpolating wavelets. But, few works use both approaches. A main difficulty in
developing a time-dependent highly adaptive solver is achieving a good load bal-
ancing. At our knowledge, existing parallelized version of these adaptive methods
are essentially designed for shared memory architectures [8, 4].

In the present work, we investigate another adaptive method for solving the
four dimensional Vlasov equation. This scheme is based on a hierarchical finite
element decomposition [3] and on a convenient time splitting. It has been de-
signed for targeting distributed memory architectures. This scheme and its paral-
lelization have been introduced in [9]. This previous work tackles load balancing
through a static partitioning based on initial function values. In this paper, we
address the crucial problem of maintaining a good load balancing during the
whole simulation. In order to solve this problem, we developed a suited dynamic
load-balancing mechanism based on a geometric partitioning algorithm.

The paper is organized as follows: next section recalls our numerical scheme
and parallel algorithm. Section 3 presents our load balancing mechanism and its
integration into the algorithm. Section 4 reports performances obtained on a PC
cluster before concluding.

2 The parallel adaptive solver

Evolution of particles in the phase space is given by a distribution function
f((x,v),t) where (x,v) € RIxR? d = 1,...,3. Value of this function is given by
the normalized Vlasov equation,

af

B +v.Vxf+ E(x,t).Vyf=0 (1)
where the self-consistent electric field E(x,t) is computed using the Poisson’s
equation from the charge density p(x,t)

p(x,t) = [ f(x,v)dv (2)

Rd
In this work we consider the reduced case of a four dimensional phase space
(d = 2) where x = (z,y) € R? and v = (v,,v,) € R?. We refer the reader to [9]
for more details about this numerical resolution scheme and its parallelization.

2.1 Numerical scheme

Our adaptive mesh is a structured dyadic mesh, i.e., a hierarchical mesh with
at most J levels, where each cell at level j is a 4-cube that may be subdivided
into 16 equal-sized cells at level j+1. Coarsest cells (at level 0) belongs to an 4D
uniform grid that we call the coarse grid.

Our resolution scheme is based on the splitting in time of the Vlasov equation
into three transport equations in x, in y and in v. Time is discretized and at



each time step At = t"+!1 —¢"  the three transport equations are solved in turn.
The solution of a transport equation is used as initial condition for solving the
following one.

For any axis direction z, we solve a transport equation in z by using a semi-
Lagrangian scheme based on the conservation property [11] of solution:

f((xa V), thrl) = f(-AZAt(Xa V)’ tn) (3)

where A%, is called advection operator. This advection operator defines the
particles motion along z direction. We have A%,(x,v) = ((v — v;.4¢,y), v),
A% (x,v) = ((z,y —vy.At), v) and A%, (x,V) = (x,v—E(x,t").At). The proce-
dure to solve a transport equation in z is called advection. It finds a representa-
tion (on a dyadic mesh) of the solution at time t" ! from a known representation
of the solution at time ¢" in three steps:

1. (prediction) We build a new dyadic mesh with enough nodes to get an ac-
curate representation of solution at time ¢"+!.

2. (valuation) We compute the values at the new mesh nodes from conservation
property: each value at point (x,v) is obtained by a biquadratic Lagrange
interpolation from the values at the old mesh nodes close to point A%, (x, V).

3. (compression) We coarsen some new mesh cells to remove unnecessary nodes
that were improperly created during prediction step.

The electric field E is computed on a uniform grid at the finest level J of the
2D position space. We first integrate f to get the discrete charge density p at
each point of this uniform grid. This is achieved by computing the contribution
of every cell of the dyadic mesh and then by computing the sum of all these
contributions. Then, we solve the Poisson’s equation by using Fourier trans-
forms. Since the value of E is required for performing the advection in v, the
computation of E precedes this advection within each time-step iteration.

Figure 1 summarizes our resolution scheme and shows the successive opera-
tions within each time-step iteration. For sake of conciseness, specific treatments
for diagnostics have been omitted.
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Fig. 1. The time-step iteration of our resolution scheme.

2.2 Parallel algorithm

An important property of our numerical scheme is that each step of an advec-
tion (prediction, valuation and compression) can be performed locally within
a region of the phase space independently of the others. Therefore, given any
partitioning of the phase space, an advection can be performed by applying the



same treatment to every partition independently. This is the base of our data-
parallel algorithm. Each processor is assigned to one partition. It holds in its
local memory all the data within this partition, i.e., the corresponding parts of
the old and new meshes. According to the classical owner computes rule, it is in
charge of all the computations local to this partition. We define a partition as
an union of blocks, where a block is defined as the 4D cube-shaped phase space
area corresponding to a cell of the coarse grid. Our partitioning aims at reducing
communication volume and is based on the following dependency analysis.

The data dependencies are defined by the advection operators: value at
point (x,v) depends on the values at a few points close to point A%,(x, V).
Given the advection operator only acts on one particular axis (x, y or v) while
letting the other coordinates unchanged, the treatment of any block only requires
data within some blocks along the same axis. For example, let us consider a block
of integer coordinates (i, 4y, %y, ,%v,) Within phase space. During any advection
in x, the treatment of this block only requires data within some blocks having
the same coordinates iy, iy, , v, -

The block dependencies during an z-advection (similarly during an y-ad-
vection) are predictable and linear. Figure 2 (left) shows their projection on
the plane (z,v,) for two distinct values of At. Parameters [xmin,zmax] X
[vzmin, vemaz] in the figure define the borders of the domain on which we solve
the Vlasov equation. Blocks in light grey are ones needed to compute blocks in
dark grey. We observe that provided some assumptions on simulation parameters
(for xmin = —xmax, vemin = —vrmaz, and At < %, see the right part
of figure 2), the treatment of any block only needs the data within two blocks:
the block itself and a neighboring block at the left or at the right depending on
the v, sign. On the other hand, any v-advection exhibits irregular and unpre-
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Fig. 2. Dependencies during an advection in z.

dictable block dependencies because the advection operator is determined by the
self consistent electrostatic field E which depends itself on the values of f. These
block dependencies may induce costly communications. Therefore, the partitions
we consider are such that all blocks having the same coordinates i, %, in position
space (for any coordinates i,,,i,, in velocity dimensions) are contained in the
same partition. With such a partitioning, any v-advection induces no commu-
nication. Let us call slice of coordinates (i5,1,), the set of all the blocks having
the same coordinate i, 7, in position dimensions. Each partition is thus a group
of slices.



The remaining communications during z- and y-advection are implemented
by using ghost cells to replicate needed remote data. We also use overlapping
of communications with computations to reduce the overhead for updating the
ghost cells. This update operation is performed one advection ahead in order to
maximize computations/communications overlap. Figure 3 shows the location of
this update operation within each time step. The computation of electric field F
requires one all-to-all communication of p contributions.
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Fig.3. The time-step iteration of our parallel algorithm including communica-
tions/computations overlapping.

3 Load-balancing mechanism

Our mechanism is based on three issues: a cost metric to measure the load of
a partition and detect imbalance, a partitioning algorithm and a procedure to
map new partitions to processors.

3.1 Imbalance detection

Our imbalance detection relies on measuring the cost of any partition. Ideally,
this cost takes both computations and communications into account [12]. In the
scope of this work, we decide to neglect the communications cost. We do this
approximation because communications are overlapped with computations and
thus their cost is partially hidden. Therefore, the chosen cost metric is time spent
in computing one block. The measure is taken dynamically using the processor
real time clock. This metric is well adapted to homogeneous architectures where
all processors are cadenced at the same frequency. By definition, the cost of
any partition is the sum of the costs of all the slices that are contained in this
partition. The cost of any slice is the sum of the costs of all the blocks in this slice.
Load imbalance is detected when the difference between the greatest partition
cost and the lowest one is over a given threshold.

3.2 Partitioning algorithm

Our partitioning algorithm aims to build partitions having approximately the
same cost. We propose a heuristic which is based on the well-known Recursive
Coordinate Bisection (RCB) [1]. The RCB technique is a geometric-based par-
titioning method, which has the advantages of being simple and well suited to



Cartesian meshes. The geometric domain that we consider in our variant, is a
2D uniform grid of the position space. Each cell (7, j) of this grid identifies a slice
and therefore a sub-domain made of several cells defines a partition. As in the
classical algorithm, a divide-and-conquer approach is taken. The domain is first
cut in largest dimension to yield two sub-domains. Cuts are then made recur-
sively in the new sub-domains until we have as many sub-domains as processors.
Each cut is made so that the two partitions corresponding to sub-domains have
approximately the same cost. In the case of our parallel algorithm, we do not
want to subdivide a cell: the cut can only be made between adjoining cells.

If we use a straight line cut, then the cost of the two resulting partitions may
be too different. We propose an inexpensive optimization with the aim at reduc-
ing the difference between the costs of resulting partitions. This optimization
consists in using a zig zag cut rather than a straight line cut This is shown in
figure 4: on the left, the set of cells is optimally bisected with a straight line cut
between two columns. On the right, the optimal bisection (the dotted straight
line) passes through a column of cells. In this case we use a zigzag cut: the or-
thognal segment is chosen to better divide the cost. Our RCB variant is given

joj+1

Fig. 4. Bisection of a set of slices.

in algorithm 1. It uses three local variables : rank, the rank of the processor
associated to the current partition, part, the current partition that corresponds
to a sub-domain of the 2D uniform grid, and nbis, the number of cuts that have
been already made. It could happen that our algorithm generates an empty par-
tition or new partitions such that the imbalance is not better than the previous
one. In that case, the new partitioning is considered as not valid and the current
one remains unchanged.

3.3 Partitions re-mapping on processors

The mapping of the new partitioning onto processors involves communication
of slices amongst processors, which may cause a significant overhead. In order
to reduce this overhead and not to waste the gain of a better load balance,
this redistribution and the other issues of load balancing are mixed up with the
successive operations within a time-step iteration. Thus communications can
be overlapped with computations which would not be possible if re-mapping
was performed in a seperate phase. When a load balancing occurs, the time-step
iteration given in figure 3 is slightly modified as shown in figure 5. Load balancing
issues (in grey) are integrated into the computation of E and two advection steps.
Migration of slices is overlapped with v-advection computations.



Algorithm 1: Recursive partitioning function

Data: nproc, the number of processors (assumed to be a power of 2)
Input: rank, part,nbis (initially rank = 0, part is the whole 2D domain,
nbis = 0)

if 2"%¢ = nproc then

| maps partition part to processor rank
else
compute (HxW), the height and width extent of the current partition part
if H > W then

| switch dimensions x and y
let w(n, m) be the cost of slice (n,m) if (n,m) € part (0 otherwise)
compute cost w[n] of every column n of partition part (w[n] =3, w(m,n))
compute cost sum of the whole partition part
find column j = max{k | Sk < sum/2} with S, =3 _, wn]
if S; = sum/2 then

| the straight line cut is between columns j and j + 1
else

the cut pass through the column j + 1
L find row ¢ which minimizes |sum/2 — (S; + s;)| with s, = >, w(m, j)
the cut is between rows ¢ and 7 + 1 -

let part; and partz be the subsets of part defined by bisection
call partitioning function with rank,parti,nbis + 1
call partitioning function with rank + nproc/(2m**+1)

,parta,nbis + 1

Let us describe these changes in details. The cost of each partition is com-
municated during computation of electric field E within the same message as p
contribution. These costs are used to perform the imbalance test. If the workload
is not sufficiently balanced, then all processors exchange the cost of their slices.
This does not penalize solver performance since processors are already synchro-
nized. Then, on each processor, the partitioning algorithm is used to compute
new partitions and then, a re-mapping of partitions is planned. For any given
processor, say P, let us note P,;q4, its old partition and P, its new one. During
v-advection, processor P computes all the (local) blocks of P,i4, sends locally
computed blocks belonging to the difference P,q \ Prew and receives remote
computed blocks belonging to Pey \ Poig (including ghosts cells in « for Pyeq).
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Fig. 5. The time-step iteration including load balancing.




In order to temporarily store both computed and received data, a new mem-
ory space is allocated. Its extent corresponds to the union Py, = Poig U Prew-
During z-advection, the only change made for load balancing issues is to read
needed data from the temporary memory space. At the end of the x-advection
step, the temporary memory space becomes useless and thus is deallocated. Then
the time-step iteration returns to a normal state.

4 Performance measurements

Our code has been written in C with calls to MPI. Our test case is the uniform
magnetic focusing of a semi-Gaussian beam of protons. A detailed description
of this test case is given in [9]. We perform 75 time steps. Coordinates x and
v live in [—6.5,6.5]%. Phase space is split into 16x16 slices of 8x8 blocks each
and J = 2, which corresponds to maximum grid of 128 x 128 x 64 x 64 points.
Simulation starts with a partitioning determined from the initial distribution
function. We test our code on a cluster of Opteron 2.4 GHz bi-processor nodes
with 4 GB RAM each, connected through a Myrinet network. Each node holds
2 Myrinet interfaces to achieve a theoretical bandwidth of 495 MB/s.

Impact of load balancing. Figure 6 shows the workload imbalance at
each time step of the simulation launched on 16 processors for 3 different load
balancing (LB) strategies. We approximate imbalance as the difference between
the greatest and the lowest partition cost and a mark indicates each balancing
step. Imbalance is given for a simulation without any dynamic load balancing,
with dynamic LB based on straight cuts (sDLB) and with zigzag cuts (zDLB).
With zDLB, we can observe that the imbalance cost always is under 1 second.

Figure 7 shows the impact of re-mapping on communications. Light grey
columns represent the number of sent blocks, and dark grey ones represent the
number of blocks that are waited at the MPI_Waitall barrier. We can observe
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Fig. 6. Imbalance evolution with different Fig.7. Impact of re-mapping on commu-
dynamic load balancing strategies. nications.



that most of the time, all sent blocks are received before the waiting barrier.
But for some re-mapping there is a strong increasing of the number of tansferred
blocks. When the number of blocks to be sent is over the number of blocks to
be computed, communication time can not be entirely overlapped with compu-
tation, thus there are some waiting times. This overhead is a drawback of our
partitioning algorithm that does not take communication cost into account.

Performance and speedup. We compare the impact of our dynamic load
balancing algorithm upon wall-clock time. We run the same simulation with
4 different LB strategies: zDLB, sDLB, and static LB with equal-sized areas
(eSLB) and partitioning of a bounding box (bSLB) based on the initial distribu-
tion function (as defined in [9]). Figure 8 shows the wall-clock time of the code
in each case for an increasing number of processors. We can see that zigzag cut
partitioning always achieves better performance than straight cut one.

Figure 9 shows speedup and efficiency obtained up to 32 processors. We also
made a run with 32 x 32 slices instead of 16 x 16. Speedup is quite good with
zigzag cuts, since it takes into account the computation of the electric field which
is still sequential and also the initial step whose imbalance can be penalizing. We
can see that a better load balancing is obtained when more slices are used. With
32 x 32 slices we reach an efficiency over 92% which is quite good considering
mesh adaptation and load balancing occur every time steps.
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Fig. 8. Wall-clock time with different load Fig.9. Speedup and efficiency for 16 x 16
balancing strategies. and 32 x 32 slices.

5 Conclusion

We provided our parallel algorithm presented in [9] with a mechanism to balance
the workload. This dynamic load balancing mechanism is based on an improved
recursive bisections and gives satisfying results up to 32 processors. This shows
that an adaptive 4D Vlasov solver can achieve satisfying efficiency on distributed
memory architectures in comparison with shared memory implementations.



Our mechanism may be improved on several points. We have seen that in-
creasing the number of slices gives better load balance. However, this implies to
use a smaller At because its value is bounded by the size of a block by assump-
tions on simulation parameters. If we want to use the same At then we could
increase the number of ghost cells in z and y. This would increase the number of
messages but not the volume of transferred data. We also could implement other
partitioning algorithms (for example to take communication costs into account)
and investigate their advantages for different test cases.

Future works will be devoted to scale the code on more processors. With the
multiplication of architectures based on SMP nodes and multicore processors it
becomes interesting to use both message passing and shared memory paradigm.
A straightforward idea is to distribute blocks within a slice onto several proces-
sors sharing the same memory space.
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