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ABSTRACT
This paper describes an algorithm that takes a trace (i.e., a
sequence of numbers or vectors of numbers) as input, and
from that produces a sequence of loop nests that, when run,
produces exactly the original sequence. The input format
is suitable for any kind of program execution trace, and
the output conforms to standard models of loop nests. The
first, most obvious, use of such an algorithm is for program
behavior modeling for any measured quantity (memory ac-
cesses, number of cache misses, etc.). Finding loops amounts
to detecting periodic behavior and provides an explanatory
model. The second application is trace compression, i.e.,
storing the loop nests instead of the original trace. Decom-
pression consists of running the loops, which is easy and fast.
A third application is value prediction. Since the algorithm
forms loops while reading input, it is able to extrapolate the
loop under construction to predict further incoming values.
Throughout the paper, we provide examples that explain
our algorithms. Moreover, we evaluate trace compression
and value prediction on a subset of the SPEC2000 bench-
marks.

Categories and Subject Descriptors
D.4.8 [Operating Systems]: Performance—Modeling and
prediction

General Terms
Performance, Algorithms

Keywords
Trace analysis, nested loop recognition, data access, trace
compression, value prediction

1. INTRODUCTION
Memory behavior is an important factor to consider when

attempting to optimize the performance of a program. One
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way to record such behavior is to use traces from the exe-
cution of the program. Traces of the instructions executed,
as well as memory locations accessed by the program are
both useful for optimization. Data accesses however, can
reveal many opportunities for optimizing for the memory
hierarchy of a system. Data access traces though can be ex-
tremely large, making the storage and the analysis of such
data a challenge.

A wide range of compression techniques have been pro-
posed in prior work [2, 4, 5, 7, 8, 9, 11]. These approaches
significantly reduce the size of traces, but unfortunately do
not employ a codec format that is human-readable or easy
to analyze directly. Many of these approaches for data ac-
cess encode access strides and the number of repeated in-
stances of these strides as a way of facilitating compression
and/or prediction of future access patterns. However, such
approaches are limited to encoding linear access patterns
and do not capture relationships between or across such pat-
terns.

In this paper, we propose to represent address traces as
sequences of loop nests whose loop bounds and innermost
level instructions are linear functions of the loop indices.
When calculated, these functions result in the address val-
ues of the compressed trace. This representation enables us
to compress data address traces with a compression rate that
outperforms the best-performing approaches for trace com-
pression and prediction. Moreover, our encoding method
captures (and makes available for direct analysis) repeti-
tions, hierarchical and linear relationships, stride values, and
access patterns.

Our algorithm for generating this representation is fast,
incremental and can be applied using one single pass. We
achieve decompression by executing directly the loop nest
program that our compression algorithm produces. Fur-
thermore, we are able to combine our approach with other,
general purpose compression algorithms such as bzip2. We
have evaluated our compression utility on data access traces
using a subset of the SPEC CPU2000 benchmarks, that we
execute on an Itanium-2 system.

In addition to compression, our algorithm can be used as
an on-line predictor of future data access behavior. After
a short learning phase, we use the detected loop nests to
predict the next referenced addresses, by artificially extend-
ing some loop bounds. Since the representation format is
a program, it can be dynamically compiled in the context
of a dynamic optimizer. We have evaluated our prediction
mechanism for several scenarios using the SPEC2000 loop
nest programs that our compression utility generates.



The paper is organized as follows. Section 2 details the
loop recognition process: it explains the loop detection and
formation techniques, details the structure of loop nests,
and describes an efficient algorithm. Section 3 presents a
straightforward application of loop nest recognition to trace
compression. The algorithm is evaluated in terms of its com-
pression ratio, and compared to some of the best known
compression algorithms. Section 4 describes the use of loop
nest recognition for value prediction. Using the algorithm’s
internal structures provides a means to predict future val-
ues, up to an arbitrary distance. The paper concludes with
some remarks on the algorithm, and presents some plans for
further development.

2. EXTRACTING LOOPS FROM EXECU-
TION TRACES

The problem we face consists in determining one or more
loop nests such that, when executed, these loop nests ex-
actly produce a given sequence of numbers. We describe an
algorithm that solves this problem. This section starts with
a description of the basic operations that lie at the core of
the method, then proceeds to provide a formal description
of the loop nests that are produced, and finally explicits an
algorithm that can efficiently produce loop nests from se-
quences of numbers. Some remarks on obvious extensions
to the structure of loop nests, on the overall computational
complexity of the process, and on relevant prior work known
to the authors conclude the section.

2.1 Detecting loops in traces
The basic idea of the algorithm consists, in its simplest

incarnation, in detecting linear progressions in a sequence
of numbers. For example, it is immediate to detect that the
sequence 3, 10, 17, 24, 31 is an arithmetic progression because
the stride between successive values is constant. Several
trace compression techniques have used this fact to compress
(slices of) traces into a triple consisting of the initial value,
the increment and the overall number of elements. Because
the present work focuses on actually producing loops, this
sequence will be explicitly written as:

for i = 0 to 4 val 3 + 7i

When run, this loop produces the initial sequence. Suppose
now that new values appears, e.g., 38 and 45. It is obvious
again that the loop can be “extended” to cover these values:
every subsequent value that “conforms” to the body of the
loop for the next values of the loop index can be integrated
by a simple increment of the loop’s upper bound. The first
subsequent value that breaks the progression can be used
as a potential start for a new loop, and the process con-
tinues, leading to a sequence of numbers and simple loops.
The algorithm presented below is based on the exact same
principle, except that it is able to turn several successive
loops into new, deeper loops, so as to construct loop nests
as complex as necessary to cover the input sequence.

The loop nest building procedure relies on two simple op-
erations. The first operation recognizes the start of a loop
and forms its initial syntactic structure. The second op-
eration recognizes that what follows a loop is just a new
iteration of the loop and can be incorporated by increment-
ing the loop’s upper bound. The very same process can be
applied to general symbolic terms, that may themselves be

loops, so as to form more and more complex loop nests, i.e.,
loop nests that become deeper and/or broader. The depth
and breadth of loop nests are formalized below, but let us
start with an example. Suppose the following three simple
loops have been successively formed:

for i = 0 to 5 val 3 + 7i

for i = 0 to 8 val 5 + 7i

for i = 0 to 11 val 7 + 7i

One may again notice that these three terms are the first
three iterations of a single, depth 2 loop. The loops’ upper
bounds form an arithmetic progression, and so do the two
constants in the body of the loops. In fact, these three loops
can be “reduced” into a new loop:

for j = 0 to 2

for i = 0 to 5 + 3j

val 3 + 2j + 7i

If at some later point this new loop is followed by:

for i = 0 to 14 val 9 + 7i

it is a simple matter to modify the loop over j to account
for this new term, and set its upper bound to 3.

2.2 The structure of loop nests
Let us now turn to a formal definition of the terms that

can be reduced into loops. In its most basic form, a term
is just a single number. In other cases, a term is a loop,
defined by a positive integer (the upper bound) and one or
more inner terms. All loops are supposed to start at zero,
and a loop body may contain several inner terms, i.e., non-
perfect loop nests are allowed, as in:

for j = 0 to 5

for i = 0 to 3 + 2j

val 1 + 5j + 3i

val 7 + 4j

Note that in this paper the loop structure is indicated by
indentation. Other elements of the syntax are trivial. As
illustrated in the previous example, we need to slightly ad-
just our definition to accommodate loop upper bounds and
values that are functions of all indices of their enclosing for-
loops. This requires to take the term’s depth into account.
Thus, a term at depth d (i.e., a term “inside” d loops) is
either a function of the d indices of its enclosing loops, or a
loop composed of a function of d indices (the upper bound)
and one or more depth d+ 1 terms (the body). Single num-
bers are depth 0 functions (i.e., constants). An outermost
loop is considered to be at depth 0, so its upper bound is
a constant. The description just given is that of a discrete
structure, namely a rooted tree of functions, where functions
on internal nodes are loop upper bounds and functions on
leaves of the tree compute values.

The description of functions has remained vague until
now. Any algorithm whose aim is to empirically infer func-
tions has to place restrictions on the kind of functions that
can be produced. In the case of inferring loop nests from
a sequence of numbers, it is obvious that standard interpo-
lation could be used, and since we require it to be exact,
polynomial interpolation would be a good candidate: the
resulting polynomial could be placed in a simple loop with
as many iterations as there are numbers in the original se-
quence. However, high degree polynomials are expensive



to compute, and it would be hard to apply further analysis
techniques to the resulting loops. Moreover, most studies on
loop nests consider only linear functions of the loop indices
and favor richer loop structures. To decide on a suitable
function model, one has to consider, first, functions that
can be built algorithmically and, second, models that have
the widest scope in terms of further usage.

We focus here on linear models, because the algorithm
builds linear functions from linear progressions in number
sequences. In the example above, this consisted in turning
every place where a number was found into a linear function
of a new variable, namely the index of the new enclosing
loop. This is the case when a sequence of numbers is turned
into a loop, but also when several loops are reduced into
a deeper loop. In the previous example where three depth
1 loops were reduced into a new depth 2 loop, there were
three places where numbers appeared: 1) the loop’s upper
bound, 2) the constant in the value, and 3) i’s coefficient
in the value. A new loop is built according to the common
structure of the three terms, in which each and every num-
ber is turned into a linear function of a newly introduced
variable, which is the index of a new loop wrapped around
the new term. The algorithm can be sketched1 as follows:

triplet(u,v,w)
– Inputs: u, v and w are any blocks of terms
– Returns: a new term, or NULL on failure

if u, v and w are isomorphic then
let r be a new term, identical to, e.g., u
let i0 be a new loop index
for each number ri appearing in r do

let ui (resp. vi, wi) be the numbers appearing
at ri’s place in u (resp. v, w)

if vi − ui = wi − vi then
replace ri with (ui + (vi − ui) · i0)

else return NULL
return the new term “for i0 = 0 to 2 r”

else return NULL

This function works by first testing three blocks of terms for
isomorphism (i.e., identical syntactic structure), and then
by interpolating all places where numeric coefficients ap-
pear, replacing simple numbers by a linear function of a new
loop index whenever possible; a single non linear variation
invalidates the whole process. The actual implementation
works by recursively traversing loop nests to test for struc-
tural equality and at the same time builds the resulting loop
nest. This process is always applied to three blocks of terms,
because building loops on only two successive terms would
make the algorithm sensitive to an anecdotal regularity, and
considering more than three blocks of terms is never neces-
sary (see the main algorithm below).

In our previous example (with three simple depth 1 loops),
the new loop has the following structure:

for i0 = 0 to 2

for i = 0 to (α1 + β1i0)
val (α2 + β2i0) + (α3 + β3i0)i

It can be seen from this example that loops grow “upwards”
(as new loops are wrapped around existing terms) and that
functions grow“from the inside” (as numbers are turned into

1More details on the algorithms and full source code is avail-
able at http://icps.u-strasbg.fr/nlr/

linear functions). This remark provides an immediate in-
ductive definition of the set Fd of functions at depth d that
appears spontaneously when proceeding this way. It may be
written as:

F0 = N
Fd = {Fd−1 + id−1 ×Fd−1}

where ik is the index of the containing loop at depth k. This
definition simply means that at depth 0 all functions are con-
stants, and that at depth d all functions can be written as
a linear combination of functions at depth d− 1. It follows
that any function at depth d has 2d coefficients. An intuitive
description of this set of functions could be: all polynomi-
als in d variables where no variable has an exponent greater
than 1. It is easy to imagine other function models by plac-
ing restrictions on the numbers (places) that can be turned
into functions. Two immediate examples are:

1. requiring that all coefficient be equal and letting only
the constant vary: this is the linear model;

2. letting no coefficient vary, and require strict equality:
this is the constant model, where all functions reduce
to numbers.

We will keep the most general setting in the rest of this
paper, i.e., a polynomial model, where any number can be
turned into a linear function of a new loop index.

Given a term t using this function model, the second basic
operation consists in testing if another term (or another list
of terms) t1, . . . , tn is equal to the body of the outermost
loop of t for the next value of its index. To perform the
test, the body of t must be partially instantiated and tested
for equality (i.e., isomorphism and equality of the numbers)
with t1, . . . , tn. Let us take one of our previous examples,
and suppose it is followed by two smaller terms:

t: for j = 0 to 5

for i = 0 to 3 + 2j

val 1 + 5j + 3i

val 7 + 4j

t1:for i = 0 to 15

val 31 + 3i

t2:val 31

It appears that t1 and t2 are equal to the body of t when
j is equal to 6. This sequence of three terms can thus be
replaced by the single term t where the upper bound is set
to 6. The following pseudo-code shows how this works:

follows(u,〈v1, . . . , vn〉)
– Inputs: u is a loop, v1, ..., vn are any terms
– Let i0, k, u1, . . . , um be the elements of u,
– i.e., u is of the form: for i0 = 0 to k { u1 . . . um }

– Returns: true iff 〈v1, . . . , vn〉 represents a complete
– new iteration of u
– Note: w[i← x] is the term obtained by
– replacing all occurrences of i in w with the
– number x and performing all constant calculations

if n 6= m then
return false

for t = 1 to n do
if ut[i0 ← (k + 1)] 6= vt then

return false
return true



This simple procedure provides for the second basic op-
eration mentioned above. All that remains to be done is
to write an algorithm that embodies the loop forming and
loop extending operations, so as to be able to process an
incoming sequence of numbers efficiently.

2.3 An incremental algorithm
The discussion on function models, and the way functions

incorporate new loop indices, has highlighted simple criteria
to detect when a new loop can be formed. First, the terms
that are to be reduced have to be strictly isomorphic: either
simple numbers, or loops that have the same structure, or
any isomorphic blocks of terms. This is because numbers
inside consecutive terms have to be put in correspondence,
place by place, before being replaced by a function of the
new loop index. Second, for each place where numbers ap-
pear, these numbers must actually be in linear progression.
This is obviously true when considering two successive iso-
morphic terms. Thus the algorithm requires at least three
consecutive terms, to avoid a coincidental regularity.

The proposed algorithm works by maintaining a stack of
terms (i.e., simple numbers and already built loops), whereto
incoming numbers are pushed. Whenever a term is pushed
onto the stack, the upper part of the stack is examined for
potential reductions or loop extensions. The main algorithm
can be written as:

Main
– Local: s a stack of terms, initially empty

while there’s more data do
push the next data onto s
reduce(s)
if size(s) ≥ SMAX then

remove (e.g., output) NFLUSH terms
at the bottom of s

The call to reduce inspects the top of the stack, and
checks if a sequence of terms can be either reduced to a new
loop or incorporated into an existing loop (see below for de-
tails). If one such operation is found it is performed, and the
process is repeated on the modified stack, until no further
operation can be performed. At that point the algorithm
is ready to receive a new value. (The SMAX and NFLUSH
parameters are explained below.) At the end of input, the
contents of the stack is the sought sequence of terms, from
bottom to top. Running these terms sequentially would pro-
duce the original sequence again.

When inspecting the top of the stack of terms, there are
two situations that lead to a modification of the stack con-
tents:

1. three blocks of k terms each are in linear progression:
in this case a reduction is performed, and the 3k terms
are removed and replaced by a new loop;

2. the k top terms are found to be the next iteration of
the loop that immediately precedes them: in this case,
an extension of the loop is performed, and the top k
terms are removed.

The algorithm tests all possible such situations, and does so
in the order of an increasing number of affected terms. For
example, incorporating the top five terms inside the loop
that appears sixth is tested before reducing the top nine
terms into a new loop with three terms as its body. The

idea is to reduce regularities as soon as possible, so as to
minimize further work, because the stack contains as few
terms as possible. (The authors do not pretend that this
strategy produces an absolute minimal sequence of terms.)
The pseudo-code is as follows:

reduce(s)
– Input: s is a stack of terms: . . . , s2, s1
– i.e., s1 is the top element

for i = 2 to 3K do
if i is a multiple of 3 then

let b = i/3
let t = triplet(〈s3b, . . . , s2b+1〉,

〈s2b, . . . , sb+1〉,
〈sb, . . . , s1〉)

if t is not NULL then
pop i elements from s
push t onto s
reduce(s)
return

if i ≤ K + 1 and si is a loop
and follows(si, 〈si−1, . . . , s1〉) then

increment si’s outermost upper bound by 1
pop (i− 1) elements from s
reduce(s)
return

Also, because the stack may grow too much, two simple
limiting mechanisms have been added:

1. a maximum value K is fixed (used in reduce), and no
operation leading to a loop with more than K terms
in its body is ever tried. This has been found to be
the most intuitive way to limit the size of the explored
part of the stack (i.e., the running time);

2. when the stack reaches a predefined maximum size
(the SMAX parameter in Main’s code), a fixed number
of its bottommost elements (NFLUSH) are removed.
This may prevent forming some loops if lots of loop re-
ductions would happen after some bottom part of the
stack has been expunged. But it also provides a way
to limit memory usage.

Both parameters have the unpleasant effect of limiting the
algorithm’s ability to discover very large periods in number
sequences; such large periods would lead to loops with large
bodies. The parameters are necessary, however, to keep run-
ning times within reasonable bounds on input sequences that
contain little regularity.

2.4 Additional remarks
As presented above, the algorithm works on sequences of

numbers. It should be clear however that nothing restricts
loop formation to be applied only to numbers. As far as loop
reduction and loop extension are concerned, the terms they
work on could well be any kind of structure, as long as they
can be compared for structural identity and the numbers
they contain can be extracted and compared. For example,
any piece of program can be used as a ground term (instead
of a single number, that is). Let us illustrate this with func-
tion calls: suppose that a certain part of a program is traced.
Such a trace could look like:

f(I, 2480, 0, 100)

f(I, 2481, 100, 100)



f(I, 2482, 200, 100)

...

where I is any symbol (i.e., anything that is not subject to
numerical interpolation). The result would be:

for i = 0 to ...

f(I, 2480 + i, 100*i, 100)

Underlined parts are where numbers appeared, i.e., where
the algorithm places linear functions of the new loop index.
Of course, even though such structured terms can be pro-
cessed, the algorithm will never build anything but loops.

To allow for a wide applicability, and because syntactic
structures are infinite in variety, we have implemented a sim-
ple tuple structure that serves as the most basic term. A tu-
ple is simply a list of numbers, and each trace element is a tu-
ple. One may find tuples of different sizes inside a trace, but
two tuples of different sizes are never considered isomorphic.
The numbers inside identically sized tuples may be interpo-
lated, leading to tuples of functions. This simple structure is
sufficient for all kinds of traces found in the literature: sim-
ple memory access addresses, combined PC+address traces,
addresses with type of access, address+size etc. Actually,
labeled tuples is all that is needed to be able to process any
kind of structured data. As an example, let us consider a
combined trace taken from Dinero IV’s distribution2 test
set. Each trace element has three fields: the first field en-
codes the access type (read, write or instruction fetch, coded
respectively as 0, 1 and 2), the second field contains the ac-
cessed address, and the third field contains the number of
bytes affected. A simple matrix-multiply program was in-
strumented to produce the trace (the file name is mm.32 in
D4’s distribution). When applied to this trace, loop nest
recognition produces a result containing the following ex-
tract:

for i0 = 0 to 31
< 0 , 0xff2eb8 , 8 >
for i1 = 0 to 7

< 2 , 0x700 + 4*i1 , 4 >
for i1 = 0 to 31

< 0 , 0xff2eb0 , 8 >
[...]
< 1 , 0x2da50 + 8192*i0 + 8*i1 , 8 >
[...]

The < and > symbols delimit tuples. The basic program
structure has been recognized.

Regarding computational complexity, an accurate analysis
is hard to do because hypotheses would have to be placed on
the effective regularity of input sequences. Instead, the al-
gorithm is simple enough to analyze its worst case behavior.
Each input is placed on the stack, after which K reductions
(of lengths 1, . . . ,K) and K extensions are tried. If we con-
sider as the worst case an input sequence of N numbers with
absolutely no linear progression, then O(K2) term compar-
isons are performed (a little bit less than) N times. If the
input contains some regularity, some loop will be formed
and appear on the stack. But handling these loops costs
less than handling the individual numbers they cover: there
are fewer numbers in a loop than in its unrolled list of terms,
because a loop formed from three terms containing each n
coefficients contains exactly 2n + 1 coefficients. Therefore,

2http://www.cs.wisc.edu/~markhill/DineroIV/

our worst case provides an upper-bound of the overall com-
plexity. The algorithm thus requires Θ(K2N) where K is
fixed a priori and N is the size of the input. If we let K un-
bounded (i.e., with a value sufficiently large to exceed any
input size), the complexity becomes O(N3), which makes
the algorithm impractical for even moderately large traces.

2.5 Related Work
Finding linear progressions is a common idea in works on

trace compression. Most techniques use it in one form or
another, usually along other techniques to reduce trace size
(see next section). However, we found very few works on ex-
plicitly forming symbolic structures representing loops. One
notable paper on this topic is [3], where the authors have the
exact same objectives but use completely different means.
They use periodic numbers to model loops, and build loops
after having decomposed the input sequence into a hierar-
chy of periodic numbers. It is interesting to draw a parallel
between this method and ours, because both techniques are
almost exactly opposite. Their algorithm is working “top-
down”, breaking the whole sequence into phases which are
modeled by a base sequence and an increment sequence.
Each of these sequences is then broken again, and the pro-
cess is repeated until no more regularity can be found. In
contrast, our algorithm works “bottom-up”, forming small
loops that are later merged. The main advantage of the top-
down strategy is that they detect very large periods early,
and this leads to a dramatic reduction in problem size. The
main drawback is that detecting periods requires the whole
sequence to be kept in memory at once, and either a costly
combinatorial computation or heavy floating point heuristics
to locate phases.

Another related work is that of Kobayashi [6], that uses
a bottom-up strategy similar to ours to build loop nests
from a trace. The algorithm (which we call DCL, after the
paper’s title) takes as input a string of instructions execu-
tions, identified, as we understand it, by the opcode of the
executed instruction: there is no mention of data access ad-
dress or whatever other information, the input is strictly
restricted to a finite alphabet of instruction symbols. This
is probably the major difference with our algorithm: DCL
doesn’t perform any interpolation between successive runs
of instruction executions. The algorithm uses a so-called
“LRU-stack” to label each incoming symbol with the depth
at which it is found in the LRU-stack, which is then up-
dated. A sequence of N instruction executions labeled with
the same number D signals an (N/D+ 1)-long repetition of
D instructions (there are some specifics to the first iteration
that we ignore here). This (fairly efficient) loop detection
process requires a space proportional to D, where our algo-
rithm requires at least three times more: this is due to the
fact that DCL doesn’t interpolate between successive itera-
tions, but simply compares for equality. DCL has no way to
make the loop body depend on a loop index. After a loop
has been recognized, it is replaced with a new symbol, which
is remembered so that identical loops at different locations
can be identified. Whenever the whole trace has been an-
alyzed (and several portions of it have been replaced with
new symbols), the whole process is restarted to allow for the
construction of depth-2 loops, and this is repeated as long
as some replacement is performed. The algorithm doesn’t
appear to be fully incremental. To summarize, DCL aims at
reconstructing a model of the control flow of a running pro-



gram in terms of instruction types, whereas our work goes
further by interpolating instruction executions “parameters”
(data addresses, etc.) into linear functions of loop indices.
For example, a trace of the two successive loops:

for i=0 to 10 do LOAD Rx,1000+4*i

for i=0 to 15 do LOAD Ry,2000+8*i

would appear to DCL as a single loop (performing 25 times
the same LOAD instruction). If different symbols were used
for different addresses, DCL wouldn’t be able to recognize
any loop here.

3. TRACE COMPRESSION
Program traces have two main characteristics. First they

are very useful for architecture simulation and/or evaluation,
where they are used as reference executions of known pro-
grams. Depending on the goals of the analysis, a trace may
include various program execution data, such as data mem-
ory access addresses, dependencies, branch behavior, etc.
Second, execution traces are becoming very large, mainly
because targeted programs become more complex and be-
cause processors become faster. Because traces are usually
too big to be kept on disk, they require fast and incremen-
tal compressors. This section explores the use of loop nest
recognition for compressing program execution traces, by
direct application of the algorithm described above.

3.1 Related work
Trace compression methods have been studied since in-

strumentation techniques have been employed to understand
and quantify program behavior. Because program execu-
tion traces contain low level information, their size is bound
to processor frequencies, which are known to increase fast.
Trace compression techniques are one example of special-
ized compression techniques, i.e., algorithms and methods
developed specifically in a domain where general purpose
compression techniques do not apply satisfactorily. Program
execution is one such domain, where the program structure
and compiler organization impose some regularity that can-
not be adequately captured by abstract, domain indepen-
dent techniques. Specialized techniques have thus been de-
veloped, and these techniques can be classified depending on
what kind of structure they target.

The first approach has been to try to leverage spatial lo-
cality in program execution. The basic principle is to take
advantage of the fact that two successive memory address
accesses are likely to access nearby memory locations. The
idea is thus to encode the stride instead of the full memory
address. Compression is achieved because strides take fewer
bits to encode that full addresses. MACHE is prototypical
of this approach: it compresses memory access traces by first
distinguishing between reads, writes and fetches (encoding
separately three sub-traces), and second by storing strides
instead of addresses [11]. When the stride is too large for the
allocated bit size, a special value is output, followed by the
full address, which also serves as a new base for future ad-
dresses coding. The PDATS and PDATS II algorithms [5]
further improve on the original strategy by incorporating
several optimizations, like various default strides, and by
using run-length encoding of stride values (which is a way
to represent elementary loops) to overcome the inherent lim-
itations on the compression rate.

The second approach is completely different and, from
our point of view, almost exactly symmetric to the first
approach. It consists in extracting higher level structure
from the program traces. The prototypical system here is
WPP (Whole Program Paths) [7], which is based on the SE-
QUITUR sequence analysis algorithm. SEQUITUR is an in-
cremental algorithm, of linear complexity [10], that builds a
context-free grammar from a sequence of incoming symbols.
The grammar is built with the help of two rules: no cou-
ple of consecutive symbols can appear twice, and no symbol
can be used only once. These rules ensure that the gram-
mar stays small, and because of its hierarchical nature, it
is expected that the grammar will have a size proportional
to the logarithm of the original trace size. This method
has been successfully applied to compression of control flow
information, but seems difficult to apply to numerical data.

The last, most recent approach uses value predictors, and
is based on the observation of all previous values. The VPC
algorithms [2], in particular VPC4, use this strategy and
achieve the best known compression rates currently. The
basic strategy consists in maintaining a set of value pre-
dictors that are updated with incoming values. VPC uses
two main kinds of predictors: simple value predictors pre-
dict the most likely value among the last values seen, and
finite context method predictors proceed in the same way,
except that they maintain several contexts and select the
most appropriate depending on recent history. VPC also
includes differential versions of these predictors (i.e., using
strides instead of values). Whenever a new value is read,
every predictor is exercised, and the index of the one that
predicted the correct value is output. Unpredictable values
are output to a separate stream. Because the number of pre-
dictors is small, the index of the correct predictor requires
fewer bits than a full value (e.g., address), and so the trace
is compressed. Moreover, VPC includes several heuristics to
choose one predictor when several of them predict correctly,
with the explicit goal that the predictor index sequence it-
self exhibits regularity. Each of the output streams is finally
piped into a second stage, general purpose compressor (usu-
ally bzip2) that performs further compression.

Other criteria could be used to categorize trace compres-
sion techniques. One important factor is the trace format,
and the kind of information it includes. Put shortly, the
MACHE and VPC algorithms are especially well suited for
traces containing addresses or other numerical quantities,
and SEQUITUR works better on control flow information.
Also, in most cases, combined traces (containing several at-
tributes per entry) are split into several streams that are
compressed separately. In some cases, a trace is broken
down into small sub-traces: SBC (Stream Based Compres-
sion) [8] compresses “instruction streams” (i.e., contiguous
trace entries with no intervening branching) with a tech-
nique similar to PDATS. The SIGMA system [4] uses ba-
sic blocks with various attributes as trace elements. A re-
cent development on VPC, called SCT (Seekable Compressed
Traces) [9], improves compression by providing specialized
predictors (e.g., a branch predictor dedicated to branches in
the trace). Both VPC and SCT require a description of the
trace format (number of fields, and type of fields for SCT).
SCT is interesting also in that it adds “reset markers” in the
compressed traces, so as to allow extracting some part of the
trace without first decompressing everything that precedes
the targeted extract.



3.2 Experimental settings
The experiments described here focus on load address

traces. Traces have been collected using a fully dynamic
instrumentation framework [1], running on Itanium-2 pro-
cessors. Nineteen SPEC2000 programs have been compiled
with gcc4, dynamically instrumented, and the one hundred
million first load instructions have been traced for each pro-
gram execution on its SPEC2000 ref data set.

Each trace entry includes a PC value and the accessed
address. Because of the PC field, the trace includes the con-
trol flow information. Since the goal here is to measure per-
formance on compression, we decided to compare against a
general purpose compression program (namely bzip2, which
outperforms gzip on all traces we tried it on) and also
against the VPC4 algorithm, which was reported to perform
best on load address traces. We used the trace compressor
generator TCGen, available from VPC4 author’s web page3.
The trace description was: no header, a 32-bit field used as
an entry id (this value is used by VPC4 predictors), and a
64-bit address value. The id is a unique number assigned to
a load instruction by our instrumentation framework, and is
equivalent to a PC value. VPC4 was set to use the default
predictor settings. The bzip2 program was used as VPC4’s
second stage general purpose compressor (this is the default
setting).

During the experiments, loop nest recognition is applied
separately for each load instruction, which means the result
has as many sequences of loop nests as the program has load
instructions. K was set to 100. To be able to reconstruct the
original trace, the sequence of load ids must be kept. It has
been decided to compress this sequence the same way load
addresses are compressed, by forming loop nests of load ids,
with K set to 1000. All loops are built according to the most
general loop model (i.e., polynomial values and bounds).
The result of loop nest compression is thus a set of loop nests
(one for the PC value, and another for each load), stored
separately. The resulting set of files is then archived (using
tar), and the archive compressed using bzip2. Even though
other settings are possible (e.g., compressing one stream of
PC values and one stream of load addresses) this one is
the most similar to VPC4’s internal mechanisms, and thus
provides the fairest comparison.

The processed program traces are combined traces: each
trace entry includes a unique id for the load instruction and
the load address. Since both VPC and loop nest recognition
apply independently to load ids and to load addresses, it is
possible to measure compression either on load ids only, or
on loads addresses only, or combine both. For both VPC
and loop nest recognition, the compressed combined trace is
a simple juxtaposition of compressed split traces.

3.3 Experimental Results
Table 1 gives compressed trace sizes for both compressors

on load id traces (labeled “flow”), on load address traces (la-
beled “addr”), and on combined traces. The size of bzip2-
compressed traces is given as reference. The table includes
four columns comparing performance of nested loop recogni-
tion against bzip2 and VPC (on load id traces, on load addr
traces, and on combined traces). Values in these columns are
simple ratio between compressed trace sizes.

3Available at http://www.csl.cornell.edu/~burtscher/
research/TCGen/

The overall geometric average shows that loop nest recog-
nition performs approximately twice as well as VPC4. Some-
what surprisingly, the results are better on load id traces
than on load address traces (whose size largely dominates)
on the average. However, this average hides large dispari-
ties in performance. It is possible to grossly summarize these
results by noting that loop nest recognition has a clear ad-
vantage on VPC for floating point benchmarks (except for
art, lucas and mesa), with a geometric average of 4.37, and
lags behind VPC on integer benchmarks (except for crafty),
with a geometric average of 0.82. This is probably due to
the fact that floating point benchmarks tend to have regular
program structures, while integer benchmarks favor discrete
structures.

Note also that a careful setting of parameters (and lots
of experimentation) showed that loop nest recognition com-
pression rates can be dramatically increased for the floating
point benchmarks that led to poor results. This was not
taken into account in the results reported here. It also cer-
tainly holds as well for VPC4’s selection of predictors, an
aspect that was almost impossible to optimize. This is why
all experiments have been conducted in the same, maybe
suboptimal conditions.

4. MEMORY ACCESS PREDICTION
Any system that is able to provide a model of past behav-

ior (e.g., for load addresses) should be able to predict future
behavior of the program, by assuming that the future will
be similar to the past and extrapolating the model. Loop
nest recognition is particularly well suited to prediction of
future values: loops are easy to extrapolate, and the hier-
archical structure of loop nests provides for straightforward
pattern matching. This section explains how prediction can
be integrated to the learning algorithm, so that predictions
can be made at (almost) any time.

4.1 Partial iterations
To make predictions of future values, the algorithm has to

use its knowledge of past values. The algorithm presented
above maintains a stack of terms on which it pushes in-
coming values and searches for possible loop reductions and
extensions. Therefore, the prediction mechanism is based
on the examination of the upper part of the stack. An im-
mediate first idea is to test whether there is a loop on the
top of the stack, and, if it is the case, to use as prediction
the value produced by the next iteration of the loop. For
example, if the term at the top of the stack is:

for i = 0 to 42 val 3 + 8*i

the simplest possible prediction is 3 + 8*43. This idea is
actually too simple to be useful (even if it were, much simpler
devices could achieve the same result). In fact, the structure
of loop nests is much richer and allows for more elaborate
prediction strategies. Suppose for example that the two top
elements of the stack are:

t1:for j = 0 to 5

for i = 0 to 42

val 3 + 8*i

for i = 0 to 5 + j

val 1 + 4*i + 128*j

t0:for i = 0 to 42

val 3 + 8*i



Program Bzip2 VPC
(flow)

VPC
(addr)

VPC
(full)

NLR
(flow)

NLR
(addr)

NLR
(full)

Bzip2

NLR

VPC

NLR
(flow)

VPC

NLR
(addr)

VPC

NLR
(full)

ammp 51662004 70404 1817221 1887625 87765 852435 941160 54.89 0.80 2.13 2.01

applu 137324445 12175 2441460 2453635 1282 5610 6814 20153.28 9.50 435.20 360.09

apsi 28373288 21481 32397 53878 3681 7392 11558 2454.86 5.84 4.38 4.66

art 88881682 10758 1254 12012 20870 838 21667 4102.17 0.52 1.50 0.55

bzip2 79997063 3456802 32938443 36395245 2105307 50763586 52834714 1.51 1.64 0.65 0.69

crafty 38906680 6426393 17977995 24404388 4323116 11746331 16080975 2.42 1.49 1.53 1.52

equake 5988146 58909 36088 94997 37276 1988 39214 152.70 1.58 18.15 2.42

facerec 57411646 9759 122609 132368 411 2796 3096 18543.81 23.74 43.85 42.75

fma3d 2816521 42094 7003 49097 3600 4167 7975 353.17 11.69 1.68 6.16

gzip 113414094 4759006 54853260 59612266 2462374 71919501 74384885 1.52 1.93 0.76 0.80

lucas 48383955 3861 1755 5616 858 5300 6101 7930.50 4.50 0.33 0.92

mcf 173689608 429798 11577895 12007693 555778 16093243 16646225 10.43 0.77 0.72 0.72

mesa 34730551 404042 4038886 4442928 848757 4782425 5633016 6.17 0.48 0.84 0.79

mgrid 108042917 4693 12405 17098 1111 5417 6508 16601.55 4.22 2.29 2.63

parser 100654910 3308813 25285323 28594136 2516294 44161749 46672498 2.16 1.31 0.57 0.61

swim 101048394 4082 1402 5484 379 1367 1625 62183.63 10.77 1.03 3.37

twolf 163399333 2677187 32327661 35004848 2159141 44804270 46963682 3.48 1.24 0.72 0.75

vpr 40518459 305115 4545562 4850677 424693 4933152 5361398 7.56 0.72 0.92 0.90

wupwise 45842006 8456 908 9364 830 736 1457 31463.28 10.19 1.23 6.43

Arithmetic mean = 8633.11 4.89 27.29 23.09

Geometric mean = 201.12 2.52 2.1 2.36

Harmonic mean = 6.55 1.46 1.08 1.25

Table 1: Results on trace compression. Loop nest recognition (NLR) is compared to bzip2 and VPC4. Traces
are compressed 1) on load ids only (flow), 2) on load address only (addr), and 3) on both (full). See text
for details. The rightmost four columns give ratio of loop nest recognition to other programs for various
situations. Other numbers are raw byte sizes.

(with t0 at the top of the stack). In this configuration, one
can hypothesize that t0 is part of the next iteration of t1. In
other terms, one may predict that the next few values will
be the ones produced by:

for i = 0 to 5 + 6 val 1 + 4*i + 128*6

(i.e., t1’s second inner term for j = 6). Note that this pro-
vides a prediction for the next twelve values. We will see be-
low that, should a value contradict the hypothesis, the pre-
diction component would have to be “reset”, and the search
should restart.

The basic prediction mechanism is integrated into the
learning algorithm. After a new value has been pushed onto
the stack, and the top part of the stack has been scanned for
loop reductions, the algorithm searches down the stack for a
term that“covers”all terms that are on top of itself. Suppose
we note tp, tp−1, . . . , t0 the upper part of the stack (with t0
on top). If tp is a loop and is such that all of tp−1, . . . , t0
are terms that could be produced (in order) by the next it-
eration of tp, then being able to predict amounts to be able
to compute what remains of the next iteration of tp after
tp−1, . . . , t0 have been produced. From an algorithmic point
of view, this is a process of matching between a sequence of
small trees (i.e., loop nests) inside a bigger tree along the
leftmost branch of the bigger tree, and partially instantiat-
ing functions while descending inside the bigger tree. Space
does not permit a more detailed description of the algorithm,
but it should be clear that there is no inherent difficulty here.
The code is available at http://icps.u-strasbg.fr/nlr/.

Once a suitable term has been found somewhere on the
stack, and the terms following it have “consumed” some part

of its next iteration, it is enough to continue the iteration to
get the predicted value, or values, and the iteration can be
continued as long as desired, maybe even leading to several
increments of the outermost loop’s bound. This enables a
prediction of the next m values (or, equivalently, for pre-
diction of the mth next value) for any value of m. There
are two problems that remain. The first is that scanning
the whole stack for a suitable term may cost too much; this
problem has been solved by using a fixed parameter limiting
the depth to which the algorithm searches in the stack. The
second problem is that there could be no suitable term in
the stack. In such cases, the prediction mechanism falls back
on the naive solution if the top element is a loop: simply it-
erate this loop. If the top element is a simple term (i.e., a
number), no prediction is performed. The intuition behind
this decision is that it is better to make no prediction than
to force a prediction (for example, the last value seen) in
cases where little regularity appear in the data.

4.2 Experimental Results
The mechanism just explained has been applied to the

same set of benchmark programs used in the preceding sec-
tion for the case of memory loads: the goal was thus to pre-
dict the next address that will be accessed by the current
load instruction. To test the ability to predict values at some
distance in the future, the programs have been instructed to
predict values at distances 1, 2, 4, 8, 16, 32, 64 and 128.
The algorithm was set up to search the top 20 terms on the
stack for an “anchor” loop. The results are shown on Fig-
ure 1. Each bar shows the ratio of correct predictions (in
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Figure 1: Results for value prediction, with distances from 1 to 128. Grey bars represent correct predictions,
black bars are incorrect predictions, white bars are predictions that were impossible to do. The number on
the right vertical axis indicates the rate of possible predictions (correct or not), which is independent of the
prediction distance.

gray), of incorrect predictions (in black), and of accesses for
which no prediction could be done (in white). Each graph
shows how these rates evolve when the prediction distance
increases.

It has to be noted that the correct prediction rate seems
to be correlated (at least qualitatively) to the compressibil-
ity of the trace: the traces that compress best have the best
prediction rates (except for art, whose low compression rate

doesn’t prevent prediction to reach very high success rates).
Also, for some programs, the incorrect or absent prediction
rate is negligible (it is never zero, since at least the first two
values in a trace cannot lead to any prediction). Note that
the number of predictions that cannot be made does not
depend on the prediction distance: instead it is a character-
istic of the loop nests. Also, as was expected, the rate of
mis-predictions increases with the prediction distance: the



twolf program sees its correct prediction rate almost van-
ish at a distance of 128, while other programs degrade more
gracefully. Note also that some heavy looping programs do
not seem to be significantly affected by prediction distance:
their mis-prediction rates actually increase with distance,
but remain negligible. Finally, for prediction as well as for
compression, results for floating point benchmarks are much
better than results for integer benchmarks.

Even though we did not formally compare these results
with other techniques, it is interesting to try to understand
why loop nest recognition seems to provide accurate results.
Here is an extract of a loop nest built from a trace of the
facerec benchmark, on which nested loop recognition com-
presses 42 times better than VPC, and predicts future values
almost perfectly.

for i1=0 to 255
for i2=0 to 63
val 0x2000000004290614+(2048*i1)+(8*i2)

for i2=0 to 3
for i3=0 to 15

val 0x6000000000032cf4+(512*i2)+(8*i3)
for i2=0 to 15
for i3=0 to 3

val 0x2000000004290074+(2048*i1)+(128*i2)+(8*i3)
[...]

Our interpretation is that loop nests are able to capture
complex access patterns in a compact manner, whereas other
techniques are usually limited by the amount of memory
they can use. The above fragment covers approximately
50000 values in a few tens of bytes, a very efficient ratio that
history-based prediction techniques probably cannot attain.

5. CONCLUSION
An algorithm for loop nest recognition has been presented.

The algorithm reads an input trace, and builds a sequence
of loop nests. The algorithm has several parameters, such
as the maximal breadth of a loop, and a model of the func-
tions it uses to represent upper bounds for inner loops and
functions that compute values. The resulting loop nests fur-
nish a model of the program’s behavior. Because loops nests
usually generate lots of values, the ratio between the size of
the input sequence and the size of the resulting loop nest is
expected to be very high. This indicates that recognizing
loop nests may be an effective trace compression strategy.
In fact, experiments on SPEC2000 benchmarks have shown
that loop nest recognition competes with some of the best
known trace compression algorithm, and have given some
insight on the kind of programs for which high compression
ratios may be attained. Also, because the algorithm builds
loop nests incrementally, various hypotheses on forthcoming
values may be emitted during construction. This provides
a value prediction mechanism that is able to predict val-
ues at any distance, but sometimes refrains from predicting
anything. Value prediction has been tested on the same
benchmarks, and showed that in some cases predictions are
almost perfect even for long distances. Another conclusion
of these experiments is that compression ratio and predic-
tion accuracy are strongly correlated.

There are two main directions to follow to extend this re-
search. First, because prediction seems so accurate, the al-
gorithm could be adapted to simply avoid most of the work
it performs. The idea is to use prediction to passively accept
new data as long as it doesn’t contradict what is expected.

This would dramatically accelerate the algorithm, leaving
time for using larger values of K, and maybe allowing its use
as an on-line analysis tool. The second direction is to extend
the loop formalism so as to cover more kinds of repetitive
behavior. Experiments on integer benchmarks have shown
that loop nests do not fully capture certain programs’ be-
haviors that either depend on input data, or cannot be writ-
ten as simple loops. Finding new control structures, or new
kinds of looping structures, may help produce simpler mod-
els of program behavior, and thus extend the scope of loop
nest recognition.
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