
Large-Scale Experiment of Co-allocation Strategies for Peer-to-Peer
SuperComputing in P2P-MPI

Stéphane Genaud1, Choopan Rattanapoka2

1 AlGorille Team - LORIA 2LSIIT-ICPS, UMR 7005 CNRS-ULP
Campus Scientifique - BP 239, Pôle API, Boulevard Sébastien Brant,

F-54506 Vandoeuvre-lès-Nancy, France 67412 Illkirch, France
stephane.genaud@loria.fr choopan@icps.u-strasbg.fr

Abstract

High Performance computing generally involves some
parallel applications to be deployed on the multiples re-
sources used for the computation. The problem of schedul-
ing the application across distributed resources is termed
as co-allocation. In a grid context, co-allocation is diffi-
cult since the grid middleware must face a dynamic environ-
ment. Middleware architecture on a Peer-to-Peer (P2P) ba-
sis have been proposed to tackle most limitations of central-
ized systems. Some of the issues addressed by P2P systems
are fault tolerance, ease of maintenance, and scalability in
resource discovery. However, the lack of global knowledge
makes scheduling difficult in P2P systems.

In this paper, we present the new developments concern-
ing locality awareness as well as co-allocation strategies
available in the latest release of P2P-MPI. i) The spread
strategy tries to map processes on hosts so as to maximize
the total amount of available memory while maintaining lo-
cality of processes as a secondary objective. ii) The concen-
trate strategy tries to maximize locality between processes
by using as many cores as hosts offer. The co-allocation
scheme has been devised to be simple for the user and meets
the main high performance computing requirement which
is locality. Extensive experiments have been conducted on
Grid5000 with up to 600 processes on 6 sites throughout
France. Results show that we achieved the targeted goals in
these real conditions.

1 Introduction

Grid computing aims at taking advantage of the many
disparate computers interconnected through networks such
as the Internet. The idea is to use these machines as a
virtual computer architecture to offer distributed resources

(processors, memory, disk storage, or even remote instru-
ments) able to solve large-scale applications. Grid comput-
ing is therefore becoming a very attractive alternative to par-
allel machines for many scientific applications. However,
the deployment of parallel programs in such heteregeneous,
geographically and administratively scattered sets of com-
puting resources is still a challenge. In particular, only a
few experiments have demonstrated the feasibility of run-
ning message-passing parallel program on hundred of pro-
cessors in this context. This paper describes the design of
the P2P-MPI middleware, so as to achieve this goal.

The paper is structured as follows. Section 2 discusses
how co-allocation is handled in related works. In Section 3,
we briefly introduce P2P-MPI and we describe its middle-
ware architecture. Section 4 then details how resources are
allocated. Experimental results are presented in Section 5.
Finally, concluding remarks and future works are presented
in Section 6.

2 Related Work

We review here some representative grid software frame-
works for task scheduling, and we focus on solutions im-
plemented in real grid middleware. Among these are Le-
gion [7] and Globus [10]. The resource management in
Legion is composed of three entities. The reservation ser-
vice queries and stores remote hosts availabilities. The lo-
cal scheduler collaborates with the reservation service to
compute possible schedules. Finally, the reservation ser-
vice makes the reservation of time slots at the remote hosts
through their resource managers. Legion also offers the pos-
sibility to implement specific scheduling strategies in addi-
tion to the default scheduler termed class mechanism which
selects resources based on their characteristics. However,
the framework has no information service related to the net-
work infrastructure hence making awkward the design of

schedulers co-allocating “close” resources. Note also that
applications are required to conform to the Legion object-
oriented programming model. The Globus toolkit has for a
long time only provided the basic blocks for resource man-
agement, mainly based on the GRAM module. In [8] is first
described the resource management infrastructure and the
possible strategies for co-allocation. The user had to ex-
plicitely specify the resource allocation through a RSL file.
Very recently the GridWay [13] metascheduler has been in-
cluded in the distribution, but it can schedule an MPI appli-
cation to a single site only.

More recently, many projects have designed their archi-
tecture on a Peer-to-Peer (P2P) basis. For instance, the
long-lived project ProActive [5] has added a P2P infrastruc-
ture to ease resource discovery. However, selection of re-
sources for a computation only depends on their CPU load,
as the infrastructure has no knowledge about network lo-
cality. Vishwa [15] is a framework offering a P2P overlay
network in which neighbors are close in terms of network
latency. The communication model it provides is based on
distributed pipes, and hence applications must be modified
to adapt to this model. Zorilla [9] and Vigne [14] are two
other middleware systems which also build a P2P overlay
network aware of peer locality. For that purpose, Vigne uses
algorithms from the Bamboo project [16]. In Vigne, close
resources are found using a simple (yet sometimes mislead-
ing) heuristic based on DNS name affinity: hosts sharing
a common domain name are considered as forming a local
group. Zorilla (which also uses Bamboo) proposes flood
scheduling: the co-allocation request originated at a peer is
broadcasted to all its neighbors, which in turn broadcast to
their neighbors until the depth of the request has reached
a given radius. If not enough peers accepted the job, new
flooding steps are successively performed with an increas-
ing radius until the number of peers is reached. The diffi-
culty in this strategy, lies in finding suitable values for the
flooding parameters, such as the radius and minimum de-
lays between floods.

3 P2P-MPI overview

P2P-MPI overall objective is to provide a grid program-
ming environment for parallel applications. The reader
is referred to [12] for a longer description of P2P-MPI.
P2P-MPI has two facets. First, it is a middleware which
offers appropriate system-level services to the user, such as
finding requested resources, transferring files, launching re-
mote jobs, etc. The other facet is the communication library
it provides to programmers.

3.1 Communication Library

P2P-MPI is an MPJ implementation. MPJ (Message

Passing for Java) [6] is a recommandation issued from the
Java Grande Forum which is an adaptation for Java of the
MPI specification [1] targeting C, C++ and Fortran. Al-
tough we have chosen Java for portability purpose, the
primitives are quite close to the orginal MPI specification.
This means a P2P-MPI user benefits from a communica-
tion library exposing an MPI-like API. Regarding that as-
pect, P2P-MPI competes with projects such as MPJ-Express
[2] and MPJ/Ibis [3].

3.2 Middleware

P2P infrastructure. We have been using in previous ver-
sions of P2P-MPI (until p2pmpi-0.27.0), the JXTA li-
brary to implement all P2P operations. This work on co-
allocation has lead us to replace the JXTA layer with a
new P2P infrastructure, designed more specifically for our
needs. The benefits over JXTA in our context are related to
completeness and speed of resource discovery, and on the
network latencies we capture to help build the P2P overlay.
From a user point of view, there is barely no change, except
that the RendezVous terminology of JXTA is replaced by
the supernode concept. A supernode is a necessary entry
point for boot-strapping a peer willing to join the overlay.
A user simply makes its computer join a P2P-MPI grid by
typing mpiboot which starts a local background process
called MPD. The MPD knows at least one supernode and
represents the local resource as a peer in the P2P network.
When connecting to a supernode, the MPD registers to the
supernode and retrieves a list of peers that it will maintain
in its internal cache. The MPD’s roles are mainly:

• to maintain the peer membership to the overlay by
joining on startup, and by subsequently sending peri-
odic alive signals to supernode,

• to manage the local peer’s neighborhood knowledge:
each neighbor in the cache is periodically ping’ed to
assess network latency to it,

• when an application requests a number of resources, it
has the charge of coordinating the discovery of peers,
the reservation of resource and to organize the job
launch,

• upon a run request from another peer, it acts as a gate-
keeper of the resource by controlling how many pro-
cesses and applications can be run simultaneously.

We have recently introduced an extra helper service for
MPD, called reservation service (RS). It has the role of han-
dling the first negotiation regarding requests from and to re-
mote peers. The RS plays an important role in co-allocation
and the way job execution requests are handled is detailed
in the next section.

http://www.jxta.org

Job execution An application execution is typically in-
voked from the command line, e.g: p2pmpirun -n n
-r r -a alloc prog. In this example, the mandatory
arguments are the n processes requested to run the prog
program. The other arguments are optional: r is the replica-
tion degree used to request some fault tolerance (explained
hereunder), and alloc tells the MPD which strategy must
govern the allocation of the n processes on available re-
sources. From this example, we put forward the benefits of
a middleware layer supporting application execution, con-
cerning fault tolerance, and resource allocation.

Fault tolerance. Fault-tolerance of MPI applications is
difficult to handle because during an MPI application execu-
tion, a single failure of any of the processes makes the whole
application fail. This is particularly important in a grid con-
text, where failures are far more frequent than on supercom-
puters, the traditional environments for high-performance
applications. Solutions commonly proposed to this issue
(e.g. [4]) are checkpoint and restart mechanisms. However,
checkpoint and restart requires the presence of some reli-
able resources to store system states, which does not fit into
our P2P framework.

P2P-MPI proposes another approach for fault-tolerance.
We propose replicated processes to increase the application
robustness. The replication degree in the above run com-
mand means that each MPI process will have r copies run-
ning simultaneously on distinct hosts. Though replication is
not compulsory (and most runs will use r=1 i.e, no replica-
tion), it involves constraints on allocation rules in the gen-
eral case. The simple example p2pmpirun -n 3 -r
2 prog requires a minimum of two hosts, say H0,H1,
to make an allocation that guarantees the previous asser-
tion: processes P0, P1 and P2 of application prog could
be mapped on H0 and their replicas P ′

0, P
′
1 and P ′

2 on H1

(or vice-versa). In this case, a failure of H0 or H1 leaves a
fully functional set of processes and does not end in a fail-
ure of prog. Note that the communication library transpar-
ently handles all extra-communications needed to keep the
system in a coherent state. The advantage of this approach
is that the source code of the application does not need any
modification. Details can be found in [11].

Allocation. In a grid context, it is not realistic to main-
tain a static list of resources (such as the machinefile
of most MPI implementations) and hence we rely on the
discovery capabilities of the middleware. Subsequently to
the above run request, P2P-MPI dynamically tries (during
a limited time) to reserve a suitable set of resources able
to host all processes involved. The problem of choosing
among the discovered resources which are the most ade-
quate for a specific execution is a difficult problem as sev-
eral objectives may be followed. Let us list some consider-

ations:

• First, we need co-allocation and hence resource should
be available the same time. We have introduced the
Reservation Service (RS) for that purpose.

• Second, the grid is a multi-user platform and the allo-
cation must accommodate to the local policies of re-
sources, not known in advance, like e.g, the number of
processes that the owner of the resource accept to run
simultaneously,

• Third, an MPI application generally benefits from lo-
cality of allocated resources since it minimizes the
communication costs. For instance, there are today
many multicore CPUs and we should favor the al-
location of processes on all cores of a CPU if we
strictly follow the locality principle. However, it might
be more important for the application to access more
memory altogether, which is in contradiction with the
allocation strategy that chooses all cores on each re-
source as they share the same memory. We think the
user, most of the time, knows these requirements and
should advice the middleware of the application’s spe-
cific needs.

We describe now how the various services of P2P-MPI
cooperate to find and reserve a set of resources for one
job execution, and which allocation strategies are currently
available for co-allocation.

4 Co-allocation Process

4.1 Entities and Notations

Each service maintains a complete or partial knowledge
of the P2P network. The supernode maintains the registra-
tion of peers through a list called host list. Each list ele-
ment simply is the host IP and its services ports plus a “last
seen” time stamp. Each MPD maintains a local cache of
the supernode host list, called cached list. It periodically
contacts its supernode to update its cached list. To each
host in the cache list is associated a network latency value.
For that, each MPD periodically contacts each host in its
cached list and measures the round-trip time (RTT) of an
empty message sent to it. Notice that this “ping” test is a
standard P2P-MPI communication and does not rely on an
ICMP echo measurement, such as ping system command.
This approach would involve portability issues and further,
ICMP traffic is often blocked or limited by firewalls. Each
MPD, as a gatekeeper of the local resource, also manages
the resource owner preferences. The owner preferences, ex-
pressed in the configuration file, may for instance allow or
disallow such or such other peer. The preferences also con-
cern the way the CPU is shared, through two settings:

• the number J of different applications that a node can
accept to run simultaneously.

• the number P of processes per MPI application that a
node can accept to run.

For instance, J=2 and P=1 would allow two distinct users
to run simultaneously one process each for their applica-
tions. J=1 and P=2 would allow to simultaneously run
two processes of a single application (this setting is often
used for dual-core CPUs).

5

4

3

6
MPD

MPI

RS

2

1

MPD

RS

7

8

MPI

reserved
or dead

SuperNode

submitter

capacity

remote host

start app.

hash key

MPI rank + key

check key

peer list

req. nodes

req. reservation

Figure 1. The job submission procedure.

4.2 Reservation Schema

We now describe step by step the reservation procedure,
as depicted in Figure 1.

1. Submission: Recall a user submits a job with
p2pmpirun -n n -r r -a alloc prog. This
starts the MPI application, which in the initialization
phase (MPI Init) assigns the local MPD the task of
finding the set of hosts able to executes n×r processes.

2. Booking: First, the local MPD verifies if it knows
enough (i.e, at least n × r) nodes in its cached list. If
not, it triggers a cached list update request to supern-
ode to try to acquire recently registered peers. The list
is then sorted by ascending latency values. The MPD
asks the local RS to book a number of hosts, starting
from the beginning of its cached list (hence starting
with hosts having the lowest network latencies). Ac-
tually, when possible, the request is an overbooking to
anticipate unavailable hosts.

3. RS-RS Brokering: Local RS sends reservation re-
quest messages to others RS with a unique hash key.

4. The RS that receives the reservation request messages
verifies whether it can accept this request by checking
if the current number of applications being run does
not exceed J . It also checks at this stage if the re-
quester belongs to the denied IP list. If the request is
acceptable, it replies back to the requester by sending
an OK message with the value P . If not, it replies back
to the requester with a NOK message.

5. RS-MPD Response: The local RS gathers answers
from remote RS to form the list rlist of reserved hosts.
This list is then passed back to MPD. Nodes that have
not responded before a given timeout are also marked
as dead at this step. The MPD receives the rlist, and
updates its cached list regarding peers marked dead.

6. Allocation: Then, the MPD allocates the processes
to all or a subset of the hosts in rlist. Because of
overbooking, the number of reserved hosts is often
larger than necessary: we call slist the selected sub-
set chosen to map the application processes. It is
the same as rlist except that it is limited to n × r
hosts (what we need at most). Formally slist =
rlist[1, . . . ,min(|rlist|, n × r)]. The implication is
that all reservations for hosts in rlist but not in slist
are cancelled since they will not be used. Once slist
has been extracted, and before the MPI ranks distribu-
tion can take place, the MPD must decide whether the
allocation is feasible. It is feasible if the two following
conditions are met:

(a) |slist| ≥ r

(b)
∑|slist|

i=0 ci ≥ n × r, where ci = min(Pi, n).

First constraint says we have at least hosts r selected
hosts to insure that no two replicas would have to re-
side on a same host. Second constraint is about the
number of processes that can be hosted on the whole:
we call ci the capacity of host i, which is basically
P except for marginal cases (we must not allocate
more than n processes to a single host even if P > n
since two copies would be on that host). We there-
fore check that the sum of individual host capacities is
large enough to execute all processes. Finally, MPD
sends a request to start the MPI application. The re-
quest includes the rank and a unique hash key. The
other MPDs are chosen accordingly to one of the allo-
cation strategy selected (see section 4.3).

7. The remote MPD verifies that the unique key matches
the one its RS holds for current reservation.

8. The remote MPD launches the MPI application.

4.3 Allocation Strategies

In our context, an allocation strategy must meet two cri-
teria. (a) First, it must assign the n×r processes to the
|slist| reserved hosts in a sensible and understandable way
regarding the user’s concerns. An example of “bad” dis-
tribution would be for example, one that allocates as many
processes as possible on the last host of slist that is the
host with higher network latency. (b) Second, in case some
processes are replicated, the rank assigned to mapped pro-
cesses must guarantee that no two copies of a process are on
the same processor. For the first criterion, we propose two
simple strategies called spread and concentrate. Below are
the algorithms for each strategy, in which we use the extra
notations: d is the number of distributed processes so far,
and ui the number of processes mapped onto host i.

Spread tends to map processes on hosts so as to max-
imize the total amount of available memory while main-
taining locality as a secondary objective. The strategy
is to assign the MPI processes to all selected hosts (the
|slist| closest hosts regarding latency) in a round-robin
fashion.

1: d := 0
2: ∀i, ui := 0
3: cont := true
4: while cont do
5: i := 0
6: while (i < |slist|) and cont do
7: if (ui < ci) then
8: ui := ui + 1
9: d := d + 1

10: end if
11: if (d = n × r) then
12: cont := false{all processes are allocated}
13: end if
14: i := i + 1
15: end while
16: end while

Concentrate tends to maximize locality between pro-
cesses by using as many cores as hosts offer. The strategy
is to assign the maximum MPI processes to the capacity of
each host (ci).

1: d := 0
2: ∀i, ui := 0
3: cont := true
4: while cont do
5: i := 0
6: while (i < |slist|) and cont do
7: ui := min(ci, (n × r) − d)
8: d := d + ui

9: if (d = n × r) then
10: cont := false{all processes are allocated}
11: end if
12: i := i + 1
13: end while
14: end while

Once either strategy has reserved enough processes
place-holders, we must meet the criterion (b) when num-
bering the processes, i.e, assigning MPI ranks to processes.
The assignment algorithm host is straight-forward: we as-
sign the MPI rank from rank 0 to n − 1 according to the ui

and continue along with the host i in slist. If some ui = 0,
it means no process has been mapped to host i and we sim-
ply cancel the reservation. The algorithm is as follows:

1: rank := 0
2: for host i in slist do
3: if ui = 0 then
4: cancel reservation on host i.
5: end if
6: l := 0 {temporary variable}
7: while l < ui do
8: assign rank rank to host i.
9: rank := rank + 1

10: l := l + 1
11: if rank ≥ n then
12: rank := 0
13: end if
14: end while
15: end for

5 Experiments on Grid’5000

The experimental grid testbed we use, Grid’5000, is a
federation of clusters at distant geographical sites at the
scale of France. There are nine sites, and each site hosts
a couple of heterogeneous clusters. The resources in our
experiment are taken from five different sites in addition
to the local site nancy, where job requests are originated.
Available resources are summarized in Table 1. The distant
sites are, sorted by RTT to the local site (ICMP echo
between frontal hosts at each site): lyon (10.5ms), rennes
(11.6ms), bordeaux (12.6ms), grenoble (13.2ms), sophia
(17.1ms). We can see that latencies between nancy and
distant sites are very close for most of them. The bandwidth
between sites is 10Gbps everywhere except the link to
bordeaux which is at 1Gbps.

The main objective is to assess the allocation mechanism
effects at the scale of applications composed of hundreds of
processes. A secondary objective is to observe the impact
of the two strategies on parallel program executions. (This
last point would obviously deserve a larger study, but these
preliminary tests sketch important tendencies).

Site Cluster name CPU #Nodes #CPUs #Cores
nancy grelon Intel Xeon 5110 60 120 240
lyon capricorn AMD Opteron 246 50 100 100
rennes paravent AMD Opteron 246 90 180 180
bordeaux bordereau AMD Opteron 2218 60 120 240
grenoble idpot Intel Xeon IA32 8 16 16
grenoble idcalc Intel Itanium 2 12 24 48
sophia azur AMD Opteron 246 32 64 64
sophia sol AMD Opteron 2218 38 76 152

Table 1. Characteristics of available computing resources at the different sites

To tackle the first objective, we run a program whose
each process simply echoes the name of the host it runs on.
Through this experiment, we observe where processes are
mapped depending on the chosen strategy and processes
requested by counting hosts and cores allocated at each site.
For all peers, their P parameter in the configuration is set
to the number of cores in the host’s CPU. For concentrate
we consider the closer the processes are from nancy, the
better are the results. For spread, a good allocation should
map only one process per host as much as possible, and
hosts selected should be the closest from nancy. The
effectiveness of the strategies essentially depends on the
accuracy of the latency measurement, which may differ
from the RTT given by an ICMP echo command (ping)
as explained in Section 4.1. The latency we measure
with P2P-MPI must not necessarily be very close to the
ICMP RTT, but should preserve the ranking between hosts
relatively to RTT.

For the second objective, we have chosen to test two
programs from the NAS benchmarks (NPB3.2) with op-
posite characteristics, namely IS (Integer Sorting) and EP
(Embarrassingly Parallel). IS involves a lot of com-
munications since a sequence of one MPI Allreduce,
MPI Alltoall and MPI Alltoallv occurs at each it-
eration. EP (Embarrassingly Parallel) does independent
computations with a final collective communication.

5.1 Results for Co-allocation

Figures 2 and 3 plot the repartition of processes through-
out the sites for the two strategies. The legends in top-left
corners give the RTT to site nancy and the overall number
of hosts and cores available at each site. The experiment
consists in running the hostname program, requesting from
100 to 600 processes by steps of 50.

For concentrate, the processes are allocated on the 60
hosts available at nancy only, up to 200 processes. Next,
when the capacity of 240 cores at nancy is exceeded by
the request, further hosts are first allocated at lyon (5 for

IS and EP have been translated in Java for P2P-MPI from C and For-
tran respectively.

-n 250), as expected with respect to the RTT ranking. Sub-
sequent requests (from -n 300) reveal that hosts from lyon,
rennes and bordeaux fiercely compete for the latency rank-
ing. We observe that the latency ranking for these hosts is
interleaved with respect to sites. This is easily explained
by the fact that the latencies to nancy for the three sites are
within 0.6ms (RTT 1.1ms), while the latency measurements
made by peers is subject to CPU and TCP load variations.
This mapping thus seems adapted to applications involv-
ing many communications because of the nearness of pro-
cesses.
With spread, hosts are chosen from the four closest sites up
to 250 processes, but contrarily to concentrate more hosts
are allocated in each site. From 300 processes, the strategy
leads to take hosts from all sites to keep the load on each
peer to only one process. We can clearly see on the right
figure, the round-robin allocation of processes once the host
list is exhausted: the number of cores allocated at nancy
makes a stair at 400 processes since there are not enough
hosts (350) to map one process per hosts and the closest
peers are first chosen to host a second process as they have
extra available cores. On the whole, we observe that all
peers have been discovered and the strategy tends to use
them all. So, this is a good strategy to use for application
demanding much memory, as only one application process
will be mapped per host provided there are enough hosts.

5.2 Results for Applications

As a concrete example of allocation strategy impact, we
run the benchmark EP from 32 to 512 processes. As men-
tioned above EP only makes four final collective communi-
cation (MPI Allreduce of one double) so that the com-
puting to communication ratio is very high. The graph on
the left of Figure 5.2 shows that EP using 32 to 256 pro-
cesses is slightly faster when allocation strategy spread than
with concentrate. This is probably due to the intensive
memory accesses that may represent a bottleneck with con-
centrate, not compensated by locality in the collective com-
munication. With 512 processes, the problem size per pro-
cess becomes smaller and the overheads related to memory
and communications seem to reach an equilibrium at this
point.

 0

 50

 100

 150

 200

 100 200 300 400 500 600

N
um

be
r

of
 a

llo
ca

te
d

ho
st

s

Number of demanded processes

Sophia (17.167 ms, 70 hosts, 216 core)
Grenoble (13.204 ms, 20 hosts, 64 core)
Bordeaux (12.674 ms, 60 hosts, 240 core)
Rennes (11.612 ms, 90 hosts, 180 core)
Lyon (10.576 ms, 50 hosts, 100 core)
Nancy (0.087 ms, 60 hosts, 240 core)

 0

 100

 200

 300

 400

 500

 600

 100 200 300 400 500 600

N
um

be
r

of
 a

llo
ca

te
d

co
re

s

Number of demanded processes

Sophia (17.167 ms, 70 hosts, 216 core)
Grenoble (13.204 ms, 20 hosts, 64 core)
Bordeaux (12.674 ms, 60 hosts, 240 core)
Rennes (11.612 ms, 90 hosts, 180 core)
Lyon (10.576 ms, 50 hosts, 100 core)
Nancy (0.087 ms, 60 hosts, 240 core)

Figure 2. concentrate results: locations of allocated hosts (left) and allocated cores (right)

 0

 100

 200

 300

 400

 500

 100 200 300 400 500 600

N
um

be
r

of
 a

llo
ca

te
d

ho
st

s

Number of demanded processes

Sophia (17.167 ms, 70 hosts, 216 core)
Grenoble (13.204 ms, 20 hosts, 64 core)
Bordeaux (12.674 ms, 60 hosts, 240 core)
Rennes (11.612 ms, 90 hosts, 180 core)
Lyon (10.576 ms, 50 hosts, 100 core)
Nancy (0.087 ms, 60 hosts, 240 core)

 0

 100

 200

 300

 400

 500

 600

 100 200 300 400 500 600

N
um

be
r

of
 a

llo
ca

te
d

co
re

s

Number of demanded processes

Sophia (17.167 ms, 70 hosts, 216 core)
Grenoble (13.204 ms, 20 hosts, 64 core)
Bordeaux (12.674 ms, 60 hosts, 240 core)
Rennes (11.612 ms, 90 hosts, 180 core)
Lyon (10.576 ms, 50 hosts, 100 core)
Nancy (0.087 ms, 60 hosts, 240 core)

Figure 3. spread results: locations of allocated hosts (left) and allocated cores (right)

The performance curves for IS are due to the low compu-
tations to communications ratio. With 32 processes, spread
leads to better performances than concentrate: with spread
all processes are in the same cluster so that communications
pay a low latency while there is no overhead due to concur-
rent memory accesses. This appears to be the case with
concentrate. Using 64 processes with spread means that
four processes are allocated outside the local cluster and
the communication overhead leads to a slowdown. Keep-
ing the processes inside the cluster with concentrate gives a
roughly constant execution time. Figures for 128 processes
and above show the same phenomena.

6 Conclusion

In this article, we describe the deep changes brought to
the P2P-MPI infrastructure, and we discuss how well these
developments tackle the problems targeted by P2P-MPI.
Recall that our goal is to address the deployment of large-

scale parallel message-passing programs. In the present
case, we have to deal with applications involving hundreds
of processes scattered over a nationwide set of comput-
ers. The new infrastructure which now accounts for net-
work locality of peers, has allowed us to devise two allo-
cation strategies. We propose the simple and understand-
able paradigms spread, which maps only one process on
the closest peers, and concentrate, which use computing re-
sources of closest peers as much as possible. Users can eas-
ily decide, depending on the execution environment and on
their application which strategy is best suited. On one hand,
spread involves more network communications but let each
computer memory accessed by only one process. On the
other hand, concentrate increases locality of processes but
may lead to memory contention or exhaustion. This pa-
per contributes to show, through real experiments, that such
strategies can be implemented effectively to tackle the goal
of allocating up to 600 processes. Further, the allocation
strategy effects on program executions have also been veri-

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 512 256 128 64 32

T
ot

al
 ti

m
e

(s
)

Number of processes

concentrate (CLASS B)
spread (CLASS B)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 128 64 32

T
ot

al
 ti

m
e

(s
)

Number of processes

concentrate (CLASS B)
spread (CLASS B)

Figure 4. Execution times for EP (left) and IS (right) depending on allocation strategies

fied on two NAS benchmarks. As a future work, we should
work at improving the accuracy of our latency measurement
so that it becomes closer to ICMP values and less sensitive
to external load. Also, we should work at the design of
mixed strategies, or more complex strategies which still do
not require the user to be knowledgeable about the platform
characteristics. Last, a broad study may be carried out to
better understand the impacts of such allocation strategies
on a wider range of applications.

References

[1] MPI: A message passing interface standard, version 1.1.
Technical report, University of Tennessee, Knoxville, TN,
USA, June 1995.

[2] M. Baker, B. Carpenter, and A. Shafi. MPJ Express: To-
wards Thread Safe Java HPC. In CLUSTER. IEEE, 2006.

[3] M. Bornemann, R. V. van Nieuwpoort, and T. Kielmann.
MPJ/Ibis: a flexible and efficient message passing platform
for java. In Euro PVM/MPI 2005, volume 3666 of LNCS,
Sept. 2005.

[4] A. Bouteiller, F. Cappello, T. Hérault, G. Krawezik,
P. Lemarinier, and F. Magniette. MPIch-V2: a fault toler-
ant MPI for volatile nodes based on the pessimistic sender
based message logging. In SuperComputing 2003, Phoenix
USA, Nov. 2003.

[5] D. Caromel, A. di Costanzo, and C. Mathieu. Peer-to-peer
for computational grids: mixing clusters and desktop ma-
chines. Parallel Computing, 33(4-5):275–288, May 2007.

[6] B. Carpenter, V. Getov, G. Judd, T. Skjellum, and G. Fox.
MPJ: MPI-like message passing for java. Concurrency:
Practice and Experience, 12(11), Sept. 2000.

[7] S. J. Chapin, D. Katramatos, J. Karpovich, and A. S.
Grimshaw. The Legion resource management system. In
D. G. Feitelson and L. Rudolph, editors, Job Scheduling
Strategies for Parallel Processing, pages 162–178. Springer
Verlag, 1999.

[8] K. Czajkowski, I. Foster, and C. Kesselman. Resource
co-allocation in computational grids. In HPDC ’99: Pro-
ceedings of the 8th IEEE International Symposium on High
Performance Distributed Computing, page 37, Washington,
DC, USA, 1999. IEEE Computer Society.

[9] N. Drost, R. V. van Nieuwpoort, and H. Bal. Simple locality-
aware co-allocation in peer-to-peer supercomputing. In Sixth
IEEE International Symposium on Cluster Computing and
the Grid Workshops (CCGRID’06), page 14. IEEE, 2006.

[10] I. Foster and C. Kesselman. Globus: A metacomputing
infrastructure toolkit. The International Journal of Super-
computer Applications and High Performance Computing,
11(2):115–128, 1997.

[11] S. Genaud and C. Rattanapoka. Fault management in P2P-
MPI. In In proceedings of International Conference on Grid
and Pervasive Computing, GPC’07, LNCS. Springer, May
2007.

[12] S. Genaud and C. Rattanapoka. P2P-MPI: A peer-to-peer
framework for robust execution of message passing parallel
programs. Journal of Grid Computing, 5:27–42, 2007.

[13] E. Huedo, R. S. Montero, and I. M. Llorente. A modular
meta-scheduling architecture for interfacing with pre-ws and
ws grid resource management services. Future Generation
Comp. Syst., 23(2):252–261, 2007.

[14] E. Jeanvoine, C. Morin, and D. Leprince. Vigne: Executing
easily and efficiently a wide range of distributed applications
in grids. In Proceedings of Euro-Par 2007, pages 394–403,
Rennes, France, 2007.

[15] M. V. Reddy, A. V. Srinivas, T. Gopinath, and D. Janakiram.
Vishwa: A reconfigurable p2p middleware for grid compu-
tations. In ICPP, pages 381–390. IEEE Computer Society,
2006.

[16] S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz. Han-
dling churn in a DHT. In ATEC’04: Proceedings of the
USENIX Annual Technical Conference 2004 on USENIX
Annual Technical Conference, pages 10–10, Berkeley, CA,
USA, 2004. USENIX Association.

