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Several scientific problems are represented as sets of linear (or affine) con-

straints over a set of variables and symbolic constants. When solutions of inter-

est are integers, the number of such integer solutions is generally a meaningful

information. Ehrhart polynomials are functions of the symbolic constants that

count these solutions. Unfortunately, they have a complex mathematical struc-

ture (resembling polynomials, hence the name), making it hard for other tools to

manipulate them. Furthermore, their use may imply exponential computational

complexity.

This paper presents two contributions towards the useability of Ehrhart

polynomials, by showing how to compute the following polynomial functions:

an approximation and an upper (and a lower) bound of an Ehrhart polynomial.

The computational complexity of this polynomial is less than or equal to that of
∗The original version of this report was submitted to the HiPEAC 2005 conference, under

the title Approximating Ehrhart Polynomials using Affine Transformations. This version
targets a broader audience and has some improvements on the 2005 version.
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the corresponding Ehrhart polynomial. Their polynomial structure opens the

possibility of using them with existing computer algebra systems.

1 Motivation

In this paper, we focus on rational parametric polyhedra, defined by a finite set

of affine equalities and inequalities with rational coefficients over a set of vari-

ables and symbolic constants (that we call parameters here). Several research

paradigms have shown to rely on counting the number of integer points in such

a parametric polyhedron. To our knowledge, so far it has been used in:

• compilation of computer programs, where parts of programs (a class of

nested for / do / while loops) are represented by polyhedra [2]. Their

computational load [27], power consumption, execution time [13, 20, 6,

31, 32], amount of parallelism [32, 10, 5, 23, 16, 15], and memory behav-

ior [30, 9, 18, 22, 14, 17, 1, 7, 36] are then derived from the number of

integer points in these polyhedra. These metrics are then used to drive

optimizations and parallelization of the compiled program. More exam-

ples of Ehrhart polynomials use in the context of embedded systems can

be found in [34]. Ehrhart polynomials, initially introduced in the field of

program compilation for compilers by Clauss, Loechner and Wilde [8, 11],

are now acknowledged as the most relevant way to do it.

• high-level embedded systems hardware synthesis [33].

• probability calculations in voting theory [19], where election paradigms as

well as cases of interest can be phrased as parametric linear constraints.

Unfortunately, the use of Ehrhart polynomials in production toolchains is

hindered by their complex and potentially big-sized data structure, which makes

2



them hard to manipulate. Also, their computational complexity is likely to limit

the scalability of these techniques.

In most applications (here, all the above examples except [22, 33]), the pre-

cision of Ehrhart polynomials could advantageously be traded for a better ease

of manipulation and less computational complexity. Indeed, most of the ap-

plications mentionned here would just need an approximate number of integer

points in a polyhedron to work. In many cases, the needed result is an upper

(or lower) bound on the considered number of points.

In section 3, we propose to approximate Ehrhart polynomials by a rational-

valued polynomial. This approximation technique is then extended in section

5 to computing a polynomial which is an upper (or a lower) bound on the

Ehrhart polynomial of a polyhedron. Finally, we discuss performance issues and

implementation of our algorithms in section 7 and give possible future directions

in 8. But first, some prerequisites and notations used across the paper are given

in section 2.

2 Prerequisites

This section gives an introduction to Ehrhart polynomials and some notations

that we are going to use. Readers who are familiar with Ehrhart polynomials

may skip subsection 2.1.

2.1 Ehrhart polynomials and their complexity

A polyhedron is defined by a set of affine constraints (equalities and inequalities)

over a set of n variables and parameters (symbolic constants). We are interested

in the class of problems defined by such constraints, but whose variables take

only integer values.
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Figure 1: P1

Example 1. Consider a problem with two variables i, j and one parameter n,

with the following set of constraints on (i, j):

P1 =





i ≥ 0

j ≥ 0

2i ≤ n

2j + 1 ≤ n

These constraints are represented geometrically, in the 2-dimensional space of

the values of (i, j), in figure 1 (here with n = 13).

P1 is empty for any value of n < 1/2: its definition domain is {n ≥ 1/2}.

The number of distinct integer solutions is often a meaningful peace of in-

formation. For instance, in the polyhedral model for nested for/do loop nests,

this is the number of iterations, that directly relates to the computational load

of the loop nest. As the constraints depend on parameters, it is a function of

the parameters. Ehrhart showed that this function has a particular analytical

form.
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Example 2 (1 cont’d). Let us call EP1(n) the number of integer values of (i, j)

in P1:

n 1 2 3 4 5 6 7 8 9

EP1(n) 1 2 4 6 9 12 16 20 25

Ehrhart noticed that the behavior of such a function is not far from that of a

polynomial of n. Indeeed, considering odd and even values of n separately, we

can define EP1(n) using two polynomials:

EP1(n) =





( (n+1)
2 )2 = 1

4n2 + 1
2n + 1

4 ifn is odd (i.e., n mod 2 = 1)

n
2 ((n

2 ) + 1) = 1
4n2 + 1

2n if n is even (i.e., n mod 2 = 0)

As n is periodically odd and even, EP1(n) is periodically defined by one of both

polynomials: it is a periodic polynomial. As only two values of n mod 2 are

needed, we can use a more condensed representation for EP1(n) using lookup

tables for the values of the coefficients:

EP (n) =
1
4
n2 +

1
2
n +

[
0 1

4

]

n mod 2

The number of dimensions of the lookup table equals the number of parameters

of the Ehrhart polynomial.

The number of distinct polynomials needed to define an Ehrhart polynomial

grows exponentially with the number of bits used to represent the polyhedron.

So does then its computational complexity. A more compact way to represent

Ehrhart polynomials uses integer parts of rational affine functions.1

1or equivalently, remainders (mod) or fractional parts of affne functions
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Example 3. EP1(n) can be written:

EP1(n) = dn
2
ebn + 2

2
c,

or equivalently:

EP1(n) =
n + (−n mod 2)

2
n + 2− ((n + 2) mod 2)

2
=

n2 + 2n + (n mod 2)
4

We will call such a form form the symbolic form, by opposition to the form

that uses lookup tables, called explicit form. Its data structure has only a

polynomial complexity in function of the number of bits used to code the prob-

lem. Morevover, the algorithm proposed by Barvinok to compute such a form

[3], extended and implemented by Verdoolaege et al [34], has also polynomial

computational complexity for a fixed number of dimensions. Note that the

computational complecity of all the existing algorithms for computing Ehrhart

polynomials grows exponentially with the polyhedron’s dimension.

Another important applicability issue of Ehrhart polynomials is their use in a

toolchain: tools that can manipulate polynomials are available, but none of them

can directly deal with periodic polynomials. Very often, the only known way is

to use the explicit form2 and consider each different polynomial in the periodic

polynomial separately. This tends to give a de facto exponential complexity

to methods that would use Ehrhart polynomials. Moreover, manipulating such

structures may turn out to be complex as they involve lookup tables or integer

parts functions embedded within a structure encoding multivariate polynomials.
2The explicit form can be straightforwardly derived from the symbolic form
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2.2 Validity domains

Loechner and Wilde have given an algorithm for partitioning the parameter

space of a parametric polyhedron into polyhedral domains within which the

polyhedron has a given shape. In each of these domains (called validity do-

mains), the number of integer points in the polyhedron is given by a fixed

Ehrhart polynomial. The existing algorithms that compute Ehrhart polynomi-

als first compute these validity domains (which are particular cases of chambers

in polyhedral theory) and provide a different analytical function for each validity

domain.

2.3 Lattice notations

Across this paper, some terms related to lattices of integer or rational points

will be frequently used. Let X be a rational matrix. Lat(X) denotes the lattice

spanned by integer combinations of the column-vectors of X. The dimension

of a lattice Lat(X) is the dimension of the smallest affine space Y such that

Lat(X) ⊂ Y .

2.4 Validity lattices

When some of the constraints of a polyhedron are equalities, it is contained in

a linear subspace whose number of spanning vectors is less than the number of

variables and parameters, hence it is called non-full-dimensional. In this case,

the integer points of the polyhedron are included in a lattice, say Lat(G). The

variables, I ∈ Zn and the parameters, N ∈ Zp, can then be written as:




I

N

1




= G.




I ′

N ′

1




, I ′ ∈ Zn, N ′ ∈ Zp
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Lat(G) is called the validity lattice [28] of the polyhedron. A upper-triangular

G can always be found, and its (p× p) right bottom sub-matrix of G defines a

lattice on the parameters:




N

1


 = G′.




N ′

1




The polyhedron contains integer points if and only if the parameters belong to

Lat(G′).

The polyhedron’s validity lattice can be used to transform the polyhedron

into a new polyhedron whose Ehrhart polynomial equals the Ehrhart polynomial

of the original polyhedron[28]. This is done by a compression of a subset of the

variables and parameters and a projection of the resulting polyhedron.

Hence we can assume that this pre-processing is done and focus on full-

dimensional polyhedra (without equalities) without loss of generality.

3 Using Non-periodicity to approximate Ehrhart

polynomials

In this section, we first see in which case a polytope has an Ehrhart polynomial

that is just bare, non-periodic, polynomial. We then show that any rational

polytope P can be expanded to a polytope P ′ whose Ehrhart polynomial is

not periodic. The used expansion is linear and defines an approximate ratio

α between the number of integer points in the expanded polytope and in the

original polytope. An approximation of the Ehrhart polynomial of P as a non-

periodic polynomial is then straightforwardly given by the Ehrhart polynomial

of P ′ divided by α.
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Example 4. Polytope P1 presented in section 2 can be expanded by




i′

j′


 =




2 0

0 2







i

j


 ,

into polytope

P ′1 =





i′ ≥ 0

j′ ≥ 0

i′ ≤ n

j′ + 1 ≤ n

The Ehrhart polynomial of P ′1 is

EP ′1(n) = n.(n− 1) = n2 − 2n + 1

The approximate ratio between P and P ′ is 4 (it is the determinant of the

expansion matrix), hence:

EP ′1(n)/4 =
n2 − 2n + 1

4

is an approximation of EP1 .

The expansion from P to P ′ is derived from a relation, the non-periodicity

condition, presented in next subsection.
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3.1 Non-periodicity Condition

Let P be a rational parametric polytope, i.e. a finite subset of Qn defined by a

set of m equalities and inequalities with integer coefficients:

DI + EN + K
=
≥

0, (1)

where I ∈ Qn are the variables, N ∈ Zp are the parameters, and D, E, and

K are respectively m × n, m × p and m × 1 matrices with integer coefficients.

To understand how to obtain a polyhedron whose Ehrhart polynomial is not

periodic, let us review two contributions about mathematical relations between

the faces of P and the period of EP (N).

The first one is a corollary of Ehrhart’s conjecture [12], proved later by

Stanley [29] and McMullen [24] and extended by Clauss [8] to the case of several

parameters:

Theorem 1. If all the vertices of P are integer for any integer values of its

parameters N , then EP (N) is a (non-periodic) polynomial.

This can be re-formulated by considering that any vertex V of P is defined

by turning n of its saturating constraints3 into equalities AI + BN + C = 0.

For each vertex, we must then have:

∀N ∈ Zp, AI + BN + C = 0 ⇒ I ∈ Zn.

The second contribution says that the number of integer points in P can

be defined by a linear recurrence relation on N over a validity domain, which

implies that the period of P is independent of the constant part K in (1). This

property is also retrieved in [25] (chapter 2): the period of the integer hull of P

3a point I0(N) is said to saturate a constraint aI + bN + c =≥ 0 iff aI0 + bN + c = 0
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is independent of K, and the Ehrhart polynomial of P equals that of its integer

hull.

Looking at the equalities that define a vertex of P , we can see that C is a

sub-vector of K. So, as the period of P is independent of K and then from C,

we can take C = 0, which gives from theorem 1 a less necessary condition for

the Ehrhart polynomial of P to be non-periodic:

Theorem 2 (non-periodicity condition). If, for each vertex of P defined by a

set of n equalities AI + BN + C = 0, we have:

∀N ∈ Zp, AI + BN = 0 ⇒ I ∈ Zn, (2)

then its Ehrhart polynomial is a (non-periodic) polynomial.

Linear transformations can be used in different ways to transform a polytope

so that it complies to the non-periodicity condition: one can transform the

parameters, the variables or both. Here we study a solution that uses a linear

transformation of the variables. This choice is discussed later on in section 6.

For each vertex, the solution to (2) is defined by a rational lattice over I:

LvI = I ′, I ′ ∈ Zn, (3)

where Lv is a square integer matrix. Equation (3) defines an integer linear

expansion. Combining the expansions given by all the vertices defines the ex-

pansion L by which P will be transformed into a polyhedron P ′ whose Ehrhart

polynomial is non-periodic. Next subsection shows how to compute Lv and

subsection 3.3 shows how to combine them to get L.
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3.2 Computing the expansion for one vertex

We must find a rational expansion of the variables I = Lv
−1I ′, I ′ ∈ Zn such

that ∀N ∈ Zp, ALv
−1I ′ + BN = 0 ⇒ I ′ ∈ Zn. Integer values of I ′ (respectively

N) define a regular lattice of points spanned by the column-vectors of matrix

A.Lv
−1 (resp.B). For an integer solution I ′ to exist for each value of N , the point

of Lat(B) corresponding to any value of N must be equal to (superimposed with)

a point of Lat(A.Lv
−1). In other words, the lattice spanned by the column-

vectors of B must be a sub-lattice of the one spanned by those of AL−1
v . We will

see in section 4 that the smaller det(Lv), the smaller the approximation error.

So we look for the full-dimensional lattice Lat(AL−1
v ) of greatest determinant of

which Lat(B) is a sub-lattice. Let Lat(E) the lattice of biggest determinant of

which Lat(A) and Lat(B) are both sub-lattices. Lat(E) is called the g.c.d. of

A and B. A n× n integer matrix H that spans such a lattice can be computed

by taking the left Hermite normal form of a matrix made by concatenating the

column-vectors of A and B:

(A B) = (H 0).U,

where U is unimodular. As the equalities defining A and B define a vertex in

Qn, A is square and so is H. The top left (n × n) sub-matrix UA of U defines

a one-to-one relation between A and H:

A = H.UA

As H is the common sub-lattice of B of greatest determinant, UA is the transfor-

mation of smallest determinant that turns Lat(A) into a lattice of which Lat(B)

s a sub-lattice.
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Hence, UA is the matrix we are looking for:

Lv = UA.

The cost of this expansion is then of a Hermite normal form for each vertex.

Next section shows a different method, faster in practice.

3.2.1 A faster expansion

The existing algorithms for computing Ehrhart polynomials have a preliminary

step for computing the validity domains computes the parametric coordinates

of the vertices. So at this stage, each vertex is defined by the set of n equalities:

MI + QN + R = 0,

where M is a n × n diagonal integer matrix. The integer expansion MI = I ′,

satisfies the non-periodicity condition. Its computational cost is low in practice:

in the definition of P , the coefficients for variable ik are just divided by the

kth diagonal element of M (it is an orthogonal expansion, along the canonical

basis vectors). Unfortunately, the determinant of M is not minimal in general.

Therefore, the corresponding approximation error is not minimal.

3.3 Non-periodicity for the polyhedron: combining the

vertices’ expansions

The non-periodicity condition must be satisfied for all the vertices. Note that

for any point I ′ ∈ Zn satisfying the non-periodicity condition, any point I ′′

resulting from a further integer expansion I ′′ = XI ′ also satisfies the non-

periodicity condition (as I ′ ∈ Zn ⇒ I ′′ ∈ Zn). Nevertheless, we will see in

section 4 that the smaller the expansion, the more accurate the approximation.
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Hence, we are looking for an expansion L of minimal determinant that can be

written as an expansion of all the vertices’ expansions.

Let I ′ = LkI be the computed expansion for the kth vertex of P . L must be

such that:

I = LkI ′ = XkLkI ′′ = LI ′′ ⇔ L = XkLk,

where Xk is an integer matrix.

Consider the left Hermite normal form of the matrix made of all the column-

vectors of L1
−1, · · · , Lq

−1:4

(
L−1

1 L−1
2 · · · L−1

q

)
=

(
Λ 0

)
U,

where Λ is a full-dimensional n×n rational matrix and U is an integer unimod-

ular matrix.

We have:

Lk
−1 = ΛUk ⇔ Λ−1 = Uk

−1Lk, k ∈ [1..q],

where Uk is a n×n sub-matrix of U . As the Uk’s are minimal but integer (as U

is unimodular), the expansion matrix L with the smallest determinant resulting

from the expansions for the vertices Lq is L = Λ−1.

Example 5. The following polyhedron:

P3 =





4i− 6j + 4s− 8t− 1 ≥ 0 (a)

−i + 4j + 6t− 3 ≥ 0 (b)

−2i + 12s + 8t + 25 ≥ 0 (c)

,

whose variables are i and j and whose parameters are n and m, has three

vertices, given by: v1 = (a) ∩ (b), v2 = (a) ∩ (c), v3 = (b) ∩ (c). Each vertex is

4Hermite normal forms can be extended to rational matrices by putting them to a common
denominator
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defined by a system of 2 equalities AI + BN + C = 0, so we will note A1 the

matrix of coefficients for the variables defining vertex v1, and so on.

We have: L−1
v1

=




4
5

3
5

1
5

2
5


, as A1 =




4 −6

−1 4


 and B1 =




4 −8

0 6


. Ap-

plying L−1
v1

to the variables, one gets an expanded definition of v1 that respects

the non-periodicity condition:





2i + 4s− 8t− 1 = 0

j + 6t− 3 = 0

Similarly, we have:

A2 =




4 −6

−2 0


 , B2 =




4 −8

12 8


 ⇒ L−1

v2
=




0 −1

− 1
3 − 2

3


 ,

giving: 



2i + 4s− 8t− 1 = 0

2j + 12s + 8t + 25 = 0
.

Finally,

A3 =



−1 4

−2 0


 , B3 =




0 6

12 8


 ⇒ L−1

v3
=



−1 −2

0 − 1
2




giving: 



i + 6t− 3 = 0

2i + 4j + 12s + 8t + 25 = 0
.

The g.c.d. of the lattices L1,L2 and L3 spanned respectively by the column-
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vectors of L−1
1 , L−1

2 and L−1
3 is spanned by the column-vectors of L−1:

L−1 =




1
5 0

2
15

1
6




The expansion for which the non-periodicity condition is satisfied for all the

vertices of P3 is then given by




i

j


 = L−1




i′

j′


 ,

and the resulting polyhedron P ′3 with an expanded variable space is:

P ′3 =





−j′ + 4s− 8t− 1 ≥ 0

i′ + 2j′ + 18t− 9 ≥ 0

−2i′ + 60s + 40t + 125 ≥ 0

.

The number of integer points in P3, given by its Ehrhart polynomial, is:

EP3(s, t) =
361
30

s2 +
209
15

st +
121
30

t2 +
1007
30

s +
583
30

t+
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


23 353
15 23 117

5
356
15 23 116

5
70
3

117
5

117
5

70
3

116
5 23 356

15
117
5

117
5 23 353

15 23 117
5

356
15 23 116

5
70
3

117
5

117
5

70
3

116
5 23 356

15

356
15

117
5 23 353

15 23 117
5

356
15 23 116

5
70
3

117
5

117
5

70
3

116
5 23

23 356
15

117
5 23 353

15 23 117
5

356
15 23 116

5
70
3

117
5

117
5

70
3

116
5

116
5 23 356

15
117
5 23 353

15 23 117
5

356
15 23 116

5
70
3

117
5

117
5

70
3

70
3

116
5 23 356

15
117
5 23 353

15 23 117
5

356
15 23 116

5
70
3

117
5

117
5

117
5

70
3

116
5 23 356

15
117
5 23 353

15 23 117
5

356
15 23 116

5
70
3

117
5

117
5

117
5

70
3

116
5 23 356

15
117
5 23 353

15 23 117
5

356
15 23 116

5
70
3

70
3

117
5

117
5

70
3

116
5 23 356

15
117
5 23 353

15 23 117
5

356
15 23 116

5

116
5

70
3

117
5

117
5

70
3

116
5 23 356

15
117
5 23 353

15 23 117
5

356
15 23

23 116
5

70
3

117
5

117
5

70
3

116
5 23 356

15
117
5 23 353

15 23 117
5

356
15

356
15 23 116

5
70
3

117
5

117
5

70
3

116
5 23 356

15
117
5 23 353

15 23 117
5

117
5

356
15 23 116

5
70
3

117
5

117
5

70
3

116
5 23 356

15
117
5 23 353

15 23

23 117
5

356
15 23 116

5
70
3

117
5

117
5

70
3

116
5 23 356

15
117
5 23 353

15

353
15 23 117

5
356
15 23 116

5
70
3

117
5

117
5

70
3

116
5 23 356

15
117
5 23




s mod 15,t mod 15

Its approximation, given by the Ehrhart polynomial of the expanded polyhedron

P ′3 divided by det(L) = 30 is:

EP3(s, t) '
361
30

s2 +
209
15

st +
121
30

t2 +
1007
30

s +
583
30

t +
117
5

.

The absolute error δ with the original Ehrhart polynomial lies within a constant

interval: 0 ≤ δ ≤ 4
10 . In comparison, using the approach of section 3.2.1 we get:

L−1
v1

=




1 0

0 1
3


 , L−1

v2
=




1
5 0

0 1
5


 , L−1

v3
=




1 0

0 1
2


 ,
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and expansion matrix L−1 =




1
5 0

0 1
30


 with det(L) = 150, which gives a less

precise approximation of P3:

EP3(s, t) '
361
30

s2 +
209
15

st +
121
30

t2 +
4921
150

s +
2849
150

t +
559
25

.

whose absolute error δ is characterized by: 19
25s+ 11

25 t+ 16
25 ≤ δ ≤ 19

25 + 11
25 tδ+ 103

75 .

As its non-constant part is linear, we can obtain its extremal values by evaluating

it at P ’s extremal values for (s, t) and see that the absolute error is unbounded

over P ’s existence domain.

3.3.1 Another tradeoff: expanding per validity domain

Existing algorithms for computing Ehrhart polynomials first compute all the

vertices, deriving validity domains in which a fixed subset of the vertices is not

redundant in P . One can compute an expansion per validity domain and work

only on non-redundant vertices, or compute a global expansion that takes into

account all the vertices that are eventually non-redundant. As the polyhedra

share vertices across different validity domains, the former method may imply

redundant computations of vertex expansions. However, each individual expan-

sion would concern fewer vertices. As a consequence, each expansion matrix

(L) would have a smaller determinant within each validity domain, so the ap-

proximation would be more accurate. However, as there can easily be many

validity domains, it is likely that the latter method gives better performance

if the redundant computation of vertices is not avoided. Indeed these options

already appear when computing Ehrhart polynomials, so we may consider it as

independent of the approximation problem itself.
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4 Approximation error

In example 5, notice that all the terms of degree 2 (i.e., the terms for which the

sum of the degrees along each variables equals 2) of the approximation EP ′3(N)

equal the terms of degree 2 of the original Ehrhart polynomial. In this section,

we show that it is always the case for a full-dimensional polyhedron.

Theorem 3. Let E(N) be the Ehrhart polynomial of a n-dimensional polyhedron

P . The terms of degree n of the approximation E ′(N) by variable expansion equal

the terms of degree n of E(N).

A proof of this theorem is given in [25]. We just give a sketch of this proof

here, which will also be useful for understanding how to compute a polynomial

upper/lower bound of an Ehrhart polynomial.

The variable space S can be paved into unit cells defined by

C(I0) = {I | I0 ≤ I < I0 +




1
...

1



}, I0 ∈ Zn

where the ≤ and < operators are element-wise. Each unit cell contains exactly

one integer point. When S is expanded by the transformation I = L−1I ′, giving

the expanded space S ′, each unit cell is transformed into an expanded cell given

by:

C′(I0) = {I ′ | I0 ≤ L−1I ′ < I0 +




1
...

1



},

which contains exactly g = det(L) integer points.

If the polyhedron P could be partitioned exactly into whole unit cells (i.e.,

if it is a hyper-rectangle with integer vertices), then its image by expansion P ′
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would be the union of the image of the unit cells of P .

Then, its number of integer points would be exactly g times the number of

integer points in P . But in the general case, some unit cells are partly inside P

and partly outside. Two cases can be distinguished:

• a unit cell with I0 /∈ P but having a non-empty intersection with P : the

corresponding expanded cell may contain integer points that belong to P .

As these integer points do not correspond to an integer point of P , they

are extra points which tend to lead to an over-approximation of E(N).

• conversely, a unit cell with I0 ∈ P but not being completely included in

P : the corresponding expanded cell may contain integer points that do not

belong to P . As these integer points do correspond to an integer point of

P , they are missing points which tend to lead to an under-approximation

of E(N).

Example 6. The unit cell C(0, 0) = {0 ≤ i < 1; 0 ≤ j < 1} and the polyhedron

{3i + 4j − 2 ≥ 0} in Z2 are represented in figure 2. They have a non-empty

intersection. Expanding the variable space by




i

j


 = L−1




i′

j′


 with L =




1 1

1 −1


 gives the expanded unit cell C′(0, 0) = {0 ≤ i′+j′ < 2; 0 ≤ i′−j′ < 2}

and the expanded polyhedron P ′ = {7i′ − j′ − 4 ≥ 0} represented in figure 3.

We then have:

E(N) = E ′(N) + (nmp(N)− nep(N))/g,

where nmp and nep stand respectively for number of missing points and number
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Figure 2: A unit cell having a non-empty intersection with a polyhedron
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Figure 3: The expanded unit cell and polyhedron, with one extra integer point
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of extra points. The approximation error ξ is then given by:

ξ = |(nmp(N)− nep(N))/g| (4)

The proof in [25] shows that this difference is given by the number of integer

points contained in a finite number of n − 1-dimensional polyhedra, which is

an Ehrhart polynomial of degree n − 1. This number of n − 1-dimensional

polyhedra increases with the determinant of the expansion, along with their

number of integer points, and then the approximation error. As the difference

between E(N) and E ′(N) is of degree n− 1, the terms of E ′(N) of degree n are

the same as those of E(N).

The consequence is that the relative approximation error E(N)/E ′(N) asymp-

totically tends towards zero.

5 Upper/lower bounds as a polynomial

We have seen that expanding the variable space of P introduces extra points,

which are responsible for over-approximating EP (N), and missing points, which

induce an under-estimation of EP (N).

Here, we look for a polynomial that gives an upper bound on EP (N). Let

P ′ be the polyhedron whose Ehrhart polynomial is an approximation of EP (N)

by variable expansion. The idea is to compute a polyhedron Pupper whose

expansion P ′upper will contain all the missing points of P ′ (in addition to the

extra points): its approximate Ehrhart polynomial will then be greater than

EP (N).
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5.1 Tight inflation

Basically, any rational point I0 ∈ P must have its whole unit cell in Pupper:

∀q ∈ [0, 1)n, I0 ∈ P ⇒ I0 + q ∈ Pupper (5)

There is a simple way to compute Pupper from P : we can get Pupper from P

by inflating it, i.e., translating its borders outwards by a constant so that it

satisfies (5). We can take each inequality f : aI + bN + c ≥ 0 of P , and inflate

it into an inequality for fupper: aI + bN + c′ ≥ 0, with c′ ≥ c. Let us define

c′ = c+ca, ca ≥ 0. As we want the over-approximation to be as tight as possible,

we are looking for the minimal value of ca so that if an integer point I0 satisfies

f , any missing point in I0’s unit cell satisfies fupper:

∀q ∈ [0, 1)n, aI0 + bN + c ≥ 0 ⇒ a(I0 + q) + bN + c′ ≥ 0, (6)

where q takes values corresponding to rational points that will be expanded

into integer points. A sufficient condition for a(I0 + q) + bN + c′ ≥ 0, i.e.,

aI0 + bN + c+aq + ca ≥ 0 to be implied by aI0 + bN + c ≥ 0 is that aq + ca ≥ 0,

i.e.,

ca ≥ −aq (7)

The maximum value for−aq is obtained when the coordinates of q corresponding

to negative elements of a are set to the greatest rational value that is less than

one and the others coordinates set to zero. Hence, the minimal ca necessary for

(6) to be true is given by minus the sum of the negative elements of a:

ca = −
∑

{k|ak<0}
ak − ν,
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and ν > 0 is a rational that has to be small enough for fupper to include all the

rational points that will be expanded into integer missing points.

Hence, fupper is defined as

aI + bN + c−
∑

{k|ak<0}
ak − ν ≥ 0. (8)

We can distinguish two cases, depending on our knowledge of the expansion

to be applied at the time we inflate P .

5.2 When the expansion is not know yet

In this case, there is no way to know which rational points of P will become

missing points once expanded. Hence, we have to conservatively assume that the

determinant of the expansion matrix is infinite, which corresponds to ν → 0+:

fupper : aI + bN + c−
∑

{k|ak<0}
ak > 0

When the underlying computing system assumes that the variables are integer,

it may turns strict inequalities into non-strict ones by using the rule

x ∈ Z⇒ (x > 0 ⇔ x− 1 ≥ 0). (9)

Doing so would yield a wrong result, as we are implicitly considering rational

points that will become integer after expansion. In practice we just take ν = 0

and we have:

fupper : aI + bN + c− ca ≥ 0
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5.3 When the expansion is known

When the expansion to be applied is known at the time we want to inflate

the polyhedron (I = L−1I ′), we can compute the maximum value for −aq in

(7) with q ∈ [0, 1)n and q = L−1q′, q′ ∈ Zn, which defines an integer linear

programming problem. As a simpler heuristic, we may choose the smallest ν so

that Pupper contains a potential missing point. The heuristic is that the points

on Lat(L) that are closest to fupper but not on it has good chances of being a

missing point.

fupper is expanded into f ′upper :

aL−1I ′ + bN + c−
∑

{k|ak<0}
ak − ν ≥ 0.

Multiplied by the denominator d of its coefficients except ν, it gives the following

inequality with integer coefficients:

da′I ′ + dbN + dc−
∑

{k|ak<0}
dak − dν ≥ 0

It is well known that for da.L−1I ′ + dbN + dc − ∑
{k|ak<0} dak − dν = 0

to have an integer solution, dc−∑
{k|ak<0} dak − dν must be a multiple of the

g.c.d. g of the coefficients of da.L−1 and db. This gives:

(dc−
∑

{k|ak<0}
dak − dν) mod g = 0.

As, by definition, d divides g, it gives:

(c−
∑

{k|ak<0}
ak − ν) mod

g

d
= 0

Also, we do not want to make fupper tighter than f . As we want the smallest
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ν, we take 0 < dν ≤ g and get:

ν =





0 if
∑
{k|ak<0} ak = 0

g
d if (c−∑

{k|ak<0} ak) mod g
d = 0

(c−∑
{k|ak<0} ak) mod g

d else

Pupper is constructed by inflating all its inequalities this way. The polyno-

mial upper bound of EP (N) is then given by the approximation of the Ehrhart

polynomial of Pupper, EP ′upper
(N).

Similarly, a polynomial lower bound can be computed by taking the approx-

imation of the Ehrhart polynomial of a deflated polyhedron Plower, which does

not contain any extra points. This is derived by transforming the inequalities

of P : aI + bN − c ≥ 0 into aI + bN + c−∑
{k|ak>0} ak + ν ≥ 0.

5.4 Lower bound: degenerate cases

Deflating a polyhedron may result in an empty polyhedron. This can be a

problem in some degenerate cases, in which the deflated polyhedron is always

empty even though the original polyhedron has a variable and possibly big

number of points.

In this section, we try to characterize these cases, leaving the question of

how to deal with them for future work. The lower bound obtained in this case

is zero, which is still less than the actual Ehrhart polynomial of the polyhedron.

However, it is quite unsatisfying and one may wish to obtain a more accurate

approximation.

The class of pathological cases that we identified is made of prisms that are

too tight for any value of the parameters, intersected with other constraints. Let

us try to characterize the constraints that make such a prism. For simplicity,

let us consider the full-dimensional polyhedron P ′ made of m inequalities of P
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involving its n variables I, and involving or not its p parameters N :

P : AI + BN + C ≥ 0, A ∈ Zm×n, B ∈ Zm×p, C ∈ Zm

P ′ is too tight if it is characterized by two properties:

a deflating P ′’s constraints gives an empty polyhedron for some value of the

parameters;

b modifiying the parameter’s values only results in a translation of P ′.

c P ′ has q lines i.e., it can be written

P ′ = P ′′ +
q∑

k=1

αklk, lk ∈ Zn+p, ∀αk ∈ Q, (10)

Property (a) can be tested directly by deflating P ′. Property (b) boils down to

r(
(

A B

)
) = r(A), (11)

where r(A) denotes the row-rank of matrix A. (c) can be written:

r(A) < n. (12)

Example 7. In polytope P2(s, t):





i− 2j + s + 1 ≥ 0

−i + 2j − s ≥ 0

i− j ≥ 0

−i + t ≥ 0

the two first inequalities have arow-rank of 1, as well as their restriction to

the variables. As it is a 2-dimensional polyhedron, it is degenerate. Applying
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tdeflation ot this polyhedron gives a lower bound of zero for EP2(s, t).

6 Other approximation methods

6.1 Rounding bounds of nested intervals

Tawbi [31] expresses the number of integer points in a polyhedron as nested sums

which are then decomposed using Bernoulli formulae. The main drawback of

this method is that it has to split the polyhedron so that it can be expressed as

the union of polyhedra that can be written as nested intervals. This also implies

splitting the validity domains further on. Therefore, it is more complex than

the existing Ehrhart polynomials algorithms. When the vertices of the obtained

polyhedra are not integer, an approximation (a mean value, seemingly) of the

difference between the rational bounds and their corresponding integer bound

is added to (or substracted from) the nested intervals.

This leads to an approximation of the number of integer points in each of

the split domains. This method is likely to bring an approximation that evolves

similarly to the Ehrhart polynomial.

6.2 Interpolation by a polynomial

In the context of computing the worst case execution time of programs, Van

Engelen, Gallivan and Walsh [13] compute a polynomial for approximating the

number of integer points in a parametric polyhedron by interpolation (over

values of the parameters N).

This method might also handle polynomial loop bounds, in which case it

generally leads to an approximation of the number of iterations. Unfortunately,

it does so dimension by dimension and hence has to split the polyhedron into
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nested intervals, as in [31]. As each step works on a one-dimensional parametric

interval, the upper bound is computed by adding one to each interval. This is

because the number of integer points in an interval is greater than the rational

lenght of the interval minus one. A lower bound could be obtained similarly.

6.3 Another interpolation by a polynomial

It has been shown [25] that the Ehrhart polynomial of P is a polynomial if the

values of the parameters N are restricted to a certain lattice (in which the non-

periodicity condition is fulfilled for P ). Such a polynomial gives the exact value

of the Ehrhart polynomial of P when N is on the given lattice. This guarantees

that the obtained polynomial evolves like the Ehrhart polynomial of P . The

space of parameters can be compressed to restrict the integer values of the new

parameters correspond to values of the original parameters that respect the non-

periodicity condition. The Ehrhart polynomial of this compressed polyhedron

is then a polynomial of the new parameters. Changing the parameters back to

the original ones gives an approximation of the Ehrhart polynomial of P [25].

Unfortunately, we do not see any simple way to obtain bounds by using this

method.

6.4 Average value of the coefficients

Heine and Slovik [16] chose to take as approximation a polynomial whose coef-

ficients equal the average value of the coefficients of the initial Ehrhart polyno-

mial.

This method entails to compute all the elements of the periodic coefficients

of the Ehrhart polynomial first: it has an exponential computation complexity,

even for a fixed dimension. Moreover, it is hard to say if the obtained polynomial

will vary in the same manner as the initial Ehrhart polynomial. However, the
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coefficient of highest degree of the approximation is exact if the coefficient is

non-periodic.

6.5 Rational volume

The rational volume of P looks like a good approximation of its number of

points, as it equals the rational number of unit cells in P .

To our knowledge, existing algorithms for computing such a volume first

decompose P into simplices (either by triangulation or by decomposition into

signed simplices) whose volumes are then summed (with signs if the simplices

are signed).

The volume of a n-dimensional simplex ∆ is given by

V ol(∆) = |det(v1 − v0, v2 − v0, · · · , vn − v0)|/n,

where v0, v1, v2, · · · , vn are the n-dimensional coordinates of ∆’s vertices.

This technique has been extended to the parametric case and even further

to cases where inequalities involving products of parameters and variables [26].

Trying to evaluate its computation complexity leads to compare it with

Barvinok’s algorithm for computing Ehrhart polynomials, which also uses sim-

plicial decomposition [4, 35], but on each of P ’s cones (whose vertices are para-

metric). Decomposing a polytope into simplices has bigger computation com-

plexity than separately decomposing its cones. Due to the (at least) exponential

complexity of these decompositions, they are likely to have a significant impact

on the overall computation complexity, and therefore we speculate that it would

mostly be less efficient than Barvinok’s exact method.
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7 Implementation and performance

The roughest approximation method, i.e. the orthogonal expansion independent

of the validity domains, has been implemented in PolyLib5 [21]. The algorithm

for computing Ehrhart polynomials in PolyLib uses interpolation, counting the

integer points by scanning them, for some instances of the parameters. As we re-

duce the period to (1, ..., 1)T we strongly reduce the number of instances needed

for the interpolation. However, along with that we expand the variable space,

so the number of points to scan is bigger. As a result, performance in comput-

ing approximations or bounds of Ehrhart polynomials is not always better than

for computing their exact value. This is fine when approximations (or bounds)

are computed for not having to handle periodic polynomials. This problem dis-

appears when Barvinok’s alogrithm, whose computational complexity does not

depend on the volume of the polyhedron.

8 Perspectives

The presented approximation and bounds methods allow to give an approximate

number of integer points in a parametric polyhedron. Their computational and

size complexity are lower than Ehrhart polynomials, so they are relevant to

software that relies on Ehrhart polynomials for estimating the number of integer

points in a polyhedron. There already have many applications, and we believe

that their importance will grow, now that their computational complexity and

ease-of-use have improved. In the near future, we plan to experiment with the

existing algorithms and try to integrate the expansion techniques more tightly

into these.
5This section reflects the state of implementation at the time of the original paper (2005).

In the meantime, it was implemented in the Barvinok library by S. Verdoolaege, and the
expected speedup w.r.t. Polylib was confirmed.
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