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ABSTRACT

Software or hardware data cache prefetching is an efficient
way to hide cache miss latency. However effectiveness of the
issued prefetches have to be monitored in order to max-
imize their positive impact while minimizing their nega-
tive impact on performance. In previous proposed dynamic
frameworks, the monitoring scheme is either achieved us-
ing processor performance counters or using specific hard-
ware. In this work, we propose a prefetching strategy which
does not use any specific hardware component or proces-
sor performance counter. Our dynamic framework wants to
be portable on any modern processor architecture providing
at least a prefetch instruction. Opportunity and effective-
ness of prefetching loads is simply guided by the time spent
to effectively obtain the data. Every load of a program is
monitored periodically and can be either associated to a dy-
namically inserted prefetch instruction or not. It can be
associated to a prefetch instruction at some disjoint peri-
ods of the whole program run as soon as it is efficient. Our
framework has been implemented for Itanium-2 machines.
It involves several dynamic instrumentations of the binary
code whose overhead is limited to only 4% on average. On
a large set of benchmarks, our system is able to speed up
some programs by 2%-143%.
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Many works have shown that software or hardware data
cache prefetching is an efficient way to hide cache miss la-
tency [5, 10, 11, 12, 15, 22]. However prefetching can de-
grade performance if the predicted memory addresses are
not accurate or if the prefetch distance (the time between
when a prefetch is issued and the data is used) is not ap-
propriate. Although a prediction might be correct, a too
large prefetch distance can result in a prefetched line being
replaced before being referenced, while a too short prefetch
distance can leave an incomplete prefetch at the time the
processor requests the data.

Hence effectiveness of the issued prefetches have to be
monitored in order to maximize their positive impact while
minimizing their negative impact on performance. In pre-
vious proposed dynamic frameworks, a monitoring scheme
is either achieved using processor performance counters or
using specific hardware. In [11, 12], Adore uses a sampling
based phase analysis to detect performance bottlenecks by
collecting performance counter values on the Itanium pro-
cessor. In [15], a hardware mechanism incorporating dy-
namic feedback into the design of the prefetcher is proposed.

In this work, we propose a prefetching strategy which does
not make use of any specific hardware or processor perfor-
mance counter. Our dynamic framework is totally software
and wants to be portable on any modern processor architec-
ture providing at least a prefetch instruction. Opportunity
and effectiveness of prefetching loads is simply guided by
the time spent to effectively obtain a data. Every load of
a program is monitored periodically and can be either as-
sociated to a dynamically inserted prefetch instruction or
not. A prefetch instruction is associated to each load whose
average latency is over a fixed threshold. Effectiveness of
each prefetch instruction is monitored by comparing laten-
cies between both configurations of issuing prefetches or not.
Moreover, the prefetch distance is dynamically adjusted to
reach the best performance. In order to minimize the moni-
toring process overhead, periods of monitoring are not fixed
and can vary depending on the behavior of each load. Such
mechanism allows to catch the different phases in the whole
program behavior. Hence a load can be associated to a
prefetch instruction at some disjoint periods of the whole
program run as soon as it is efficient. Each monitored load
of a program is handled separately by our system. It does
not use any trace detection scheme or any distinction be-
tween loads that are all handled in a unified way.

Our framework has been implemented for Itanium-2 ma-
chines. It involves several dynamic instrumentations of the
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Figure 1: The finite state machine representing the
states and transitions of the load instructions

binary code whose overhead is limited to only 4% on av-
erage. On a large set of benchmarks compiled with either
gcc -03 or icc -03, our system is able to speed up some
programs by 2%-143%.

The paper is organized as follows. The next main section
is dedicated to describing the system. An overview of the
implemented algorithm is given in the first subsection, where
it is explained how the loads of a program are associated to
states of a finite automata. The next subsection presents
some technical aspects of the system, as well as the general
organization of the different software modules. Then the
initial tasks of the system are described, and particularly
how all the loads are instrumented by the monitoring code.
The dynamically inserted code needs a few registers for its
own operations, and dynamic register allocation has to take
care not to alter the main program execution. Hence it is
described in a dedicated subsection how we handle dynamic
register allocation. In this main section, it is finally ex-
plained how dynamic modification of the code is handled by
a cooperative processing of a monitoring thread and a signal
handler. Section 3 shows the impact of our system on sev-
eral benchmark programs. Overhead and performance are
evaluated for codes compiled with both compilers gcc and
icc. The impact of evaluating several prefetch distances is
also evaluated. Finally, a statistical study of the state evolu-
tion of the loads is made for one of the benchmarks. Section
4 highlights the related works and section 5 contains the
conclusion and future work.

2. THE RUNTIME ANALYSIS & OPTIMI-
ZATION SYSTEM

2.1 Overview of the System

While the system is running concurrently with the target
program, each load instruction is considered separately and
associated to a state according to the finite state machine
represented on figure 1.

After initialization, all the loads are monitored: each load
latency is collected by some specifically inserted instructions
surrounding each load. This monitoring lasts for each load
until the load has been executed a significant number of
times which is predefined in the system.

Then it enters one of two possible states. If its average la-
tency is greater than the cache latency, the load is selected to
be associated with a prefetch instruction. First it enters the
state where the memory stride is learnt in order to adjust

Benchmark | Latency Loads Executed
changes | changing latencies loads
art 90.33 54.67 424
equake 71.33 43.33 728
mcf 307.67 101.33 336
ammp 550.33 172 1113
bzip2 88.33 32.33 808
parser 2674.67 930.67 3571
gzip 43 26 649
vpr 254.67 96.33 3399
swim 52 34.33 272
mesa 180 53 1403
ft 28.3 22.3 108
be 43.3 26 836
treeadd 0 0 21

Table 1: Load latency variations

the prefetch distance that will be used in the next state.
Otherwise, the load has already an acceptable average la-
tency and enters the “dormant” state: the previously added
instructions are removed and the original code is restored.

Variable d1 is a counter used to adjust the time period
while a given load stays in the dormant state. At first, it
does not stay a long time in this state and reenters quickly
into the monitored state, in order to check whether it can
now become a candidate for prefetching. If it is still not
the case, variable dl is incremented so that the load stays
longer in the dormant state and so on. Hence a load which
is constantly uninteresting for the system will finally stay
for a long time in the dormant state. This has the positive
effect of reducing significantly the monitoring overhead since
those loads are considered less often.

A load stays in the “stride learning” state until it has been
executed a significant number of times. In that state, the
last occuring stride is collected. Then it enters the “distance
learning” state where a prefetch instruction is inserted be-
fore the load instruction. The best prefetch distance is eval-
uated. Its value is curlev x stride, where curlev varies from
2! to 2. Each distance is tested during the next executions
of the corresponding load. When all the distances have been
evaluated, either none of them results in an effective prefetch
and the load enters the dormant state, or the best distance
is used to prefetch the load that enters now the “prefetched”
state, where the prefetch is no longer monitored.

Variable ol is a counter used to adjust the time period
while a load stays in the prefetched state. At first, it quicly
enters the “monitored & prefetched” state where effective-
ness of the prefetch is evaluated. Some additional code col-
lects the load latency while it is executed a significant num-
ber of times. The average latency is compared to the original
latency where no prefetch was issued. If the prefetch is effec-
tive, variable ol is incremented so that the load reenters the
“prefetched” state for a longer period of time. Otherwise,
the prefetch is not effective and the load enters the “dor-
mant” state. During this time, the original latency without
prefetching could have changed since the last time it was
measured and thus could have been better than the latency
with prefetching. This can happen at a change of phase in
the program execution. For example, a single load instruc-
tion used to access several times a data array would at first
be considered as delinquent, since the data is not yet stored
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Figure 2: The framework

in the cache. Then if the data remains in the cache, the load
would no longer be considered as delinquent. Hence vari-
able ol is also used as a confidence level. When it reaches
a fixed threshold, the load reenters the “monitored” state,
thus gathering the current latency of that load.

Table 1 shows the number of latency changes for each
benchmark compiled with the gcc compiler at the 03 level.
The results are the average of 3 runs and we defined 4
groups. The different groups are defined by using the num-
ber of cycles needed to complete the load: under 8 cycles,
between 8 and 15 cycles, between 15 and 40 cycles and over
40 cycles. The second column of the table represents the
total number of times a load changed groups. For example,
52 means that, after the initial group assignation of each
load, the system noticed that, 52 times, a certain load was
no longer in the same latency group. As we can see, the
load instructions in the parser, ammp and mcf programs of-
ten change groups. The third column shows the number of
loads that actually changed from one group to another. For
example, mcf has in average 101 loads that changed groups
for a total of 307 group changes. This means that in aver-
age, each of the 101 loads changed 3 times of average latency
during the execution of the program. The last column shows
the total number of loads that were at least executed once
before the last poll of the execution. The average percent-
age throughout the benchmarks of loads that change at least
once of latency groups is 12.67% of the executed loads.

2.2 Technical Issues

Figure 2 illustrates the framework. In the same way as
in Adore [11, 12], our system is implemented as a shared
library on Linux for IA64 that can be automatically linked
to the application at startup. There are also two threads
existing at runtime but whose aims are different than in
Adore. The main thread runs the target program whose
binary code can be modified by the other thread or by a
signal handler. This latter thread is in charge of managing
the loads by taking decision on their current state, and also
is in charge of modifying the binary code of the main thread
in order to trigger the signal handler. We also modified the
libc entry-point routine __libc_start_main by including our
startup codes.

While a program is running, its binary code, which is
mapped into memory, can be modified if the read-only flag
has been removed. Thus the code can be parsed and mod-
ified. However, since functions are generally mapped se-
quentially, code insertion is complex. A common way to
overcome this issue is to insert an unconditional jump to
another section of the memory, the instrumentation pool,
where new code can be created and modified with another
unconditional jump to return to the original code.

All the implementation choices have been motivated by
the minimization of the system overhead.

2.3 Initialization and first tasks

First, our system creates a large shared-memory block for
the original process. This is the instrumentation pool which
stores the replacement code for monitoring or optimization.
Second, it modifies the first instruction bundle of each func-
tion. The template of this first bundle is set to an illegal
value such that its execution will result in an illegal instruc-
tion signal. To each function is associated a global array
element storing its starting address, its length and the orig-
inal value of the transformed bundle. This element index
is stored in the transformed bundle such that the element
can be directly accessed by reading the bundle. This is done
by reading the binary file’s header and parsing the symbol
table. However, in the cases of binaries being stripped of
the table, or of file formats not containing this information,
a full parsing mechanism is used to directly instrument each
load. The overhead of both methods is negligible but the
first solution reduces the maximum memory usage for pro-
grams that do not call every function at each execution.
Third, our system installs the signal handler that will be
launched at an illegal instruction signal. Finally, it creates
a new thread for dynamic monitoring which has the same
lifetime as the main thread and which is set at first in sleep
mode.

Once every function has been instrumented, the main pro-
gram starts its execution. As soon as it encounters an illegal
template in the first bundle of a function, an illegal instruc-
tion signal triggers the handler that parses all the load in-
structions occurring in the function code. Each bundle con-
taining at least one load is replaced by a new bundle that
has only a jump instruction to a different location in the in-
strumentation pool. For each load, an element is appended
to a chained list new_instr storing some information as the
replaced bundle, the original bundle address, the starting
and ending addresses in the instrumentation pool, and both
counters d1 and ol. A new code segment is created in the
instrumentation pool for each load. It consists in the orig-
inal load instruction surrounded by a prologue and an epi-
logue monitoring code, and also by the original instructions
that occurred in the replaced bundle. It is ended by a jump
instruction to the bundle following the replaced one. An Ita-
nium bundle contains three instructions. Depending on the
content of the replaced bundle, some specific dissociation
operations for the enclosed instructions have to be achieved
to create the new code in the instrumentation pool.

The prologue consists in incrementing the variable count-
ing the execution occurrences of the load instruction, and
also in storing the time counter register value. The epi-
logue consists in executing one instruction, a stop instruc-
tion, guaranteeing that no other instruction is executed be-
fore the load has completed, and in accumulating in another
variable the cycle count of the load latency. This stop in-
struction is either a move in a integer register of the load
result, if it is an integer load, or a store to memory of the load
result, if it is a floating-point load. A store is the best solu-
tion since floating-point arithmetic induces precision errors
and since there are no temporary floating registers. Both
variables, the execution counter and the time counter, are
stored in a global table whose index is also stored in the list
new_instr for the corresponding load entry.



1d4 r14=[r32] 1d4 r17 = [r23] addl r32=608,r1;;
@)  addri5=8,135 add r15 = 8, 135 1d4 r2=[r32]
addr34=1,r34 br.ret.sptk.many b0;; nop.i 0x0;;

addl r32=608,r1;;

nop.m 0x0
nop.i 0x0;;
[ Prologue [ Prologueé [ Prologue
b) 1d4 r14=[r32] 1d4 r17 = [r23] nop.m 0;;
add r15 = 8,35 nop.m 0x0 1d4 r2=[r32]
addr34 =1, r34 nop.b 0x0 nop.i 0x0;;
[ Epilogug [ Epilogue [ Epilogue
nop.m 0x0
add r15=8,r35

br.ret.sptk.many b0;;

1) First instruction 2) Bundle has a branch 3) Second instruci
is a load is a load

Figure 3: Transformations of certain bundles

2.4 Register usage

As it is shown in [7], dynamic register allocation is a prob-
lem that needs to be addressed when implementing a dy-
namic optimizer. Register allocation on the Itanium proces-
sor is achieved using the alloc instruction. This instruction
defines the number of input, local and output registers that
can be used within a function.

When dynamically instrumenting a function, it is often
necessary for the optimizer to have access to a few registers
for its own calculations. The simplest way to get enough
register accesses is to extend the number of output regis-
ters. Output registers are used for passing parameters to
a function call. Those added registers act as scratch regis-
ters since their value is not always preserved across function
calls.

Our optimizer code transformations ensure that no value
has to be preserved by the system while running the code in
the instrumentation pool. Any instruction inducing a jump
is moved to after the epilogue so that no branch deviates the
execution from the prologue to the epilogue. Figure 3 shows
how a bundle with a branch is separated to ensure that no
call can modify the dynamic allocated registers.

The main advantage of this solution is that it is fairly
easy to implement. While parsing a function, if the opti-
mizer finds an alloc instruction, then it modifies it to add
the necessary registers. The second advantage is its low over-
head cost. However there are two main drawbacks. First if
a function is already using all the registers, the optimizer
cannot do anything for this function. But this is a very rare
case scenario. We observed on the benchmarks considered
in the next section that this case occurs only for two pro-
grams (ammp and mesa) and concerns about 13% of the loads
in these programs. Second if there are more than one alloc
instruction in the function, our optimizer does not do any-
thing either. Though with a more elaborate instruction flow
analysis, we would probably be able to find which registers
to use, we have chosen to simply ignore functions in both
cases. This case concerns about 10% of the loads in our
benchmarks. However, it can happen that some functions
contain no alloc instruction. In these cases, our system in-
serts the necessary alloc instructions. That case also occurs
for about 10% of the loads in our benchmarks.

Lists Usage

new_instr monitored loads that have not yet
entered another state

used_instr monitored loads

dormant unpatched loads that are in the

original program state

loads for which the memory access
stride is being learnt

learn_stride

pref_dist_learn | loads for which prefetch distances are
being evaluated

optimized prefetched loads

opt_instr monitored prefetched loads

Table 2: lists associated to load states

Lists Usage

todo_instr | loads that have to be patched to enter
either the “stride learning” or “dormant”
states

todo_dorm | loads that have to be patched to enter
the “monitored” state

todo_1s loads that have to be patched to enter the
“distance learning” state

todo_dl loads that have to be patched to enter the
“prefetched” or “dormant” states,
or reenter the “distance learning” state

todo_opt prefetched loads that have to be patched

to be monitored

todo_optim | prefetched and monitored loads that have
to be patched to enter

either the “dormant” or “prefetched”
states

Table 3: intermediate lists

2.5 The Monitoring Thread and the Signal
Handler

The monitoring thread and the signal handler access two
kinds of chained lists: lists of loads associated to the load
states described in table 2 and intermediate lists of loads
whose states are going to change described in table 3. Each
entry in the lists is a data structure containing the replaced
bundle, the original bundle address, the starting and ending
addresses in the instrumentation pool, both counters d1 and
ol, and the index of the counters in the global counter table.

After 10 milliseconds, which is the base sleeping period,
the second thread wakes up and polls all the lists associated
to states. It determines whether some loads have to change
their states following the described transition mechanism of
subsection 2.1. If no state has to change, its sleeping period
is doubled. This period can be doubled until it reaches 128
times the base period. Otherwise if some changes occur,
the concerned loads are transferred to the proper interme-
diate lists, the associated bundles in the main program are
transformed as illegal instructions, and the sleep period is
reset.

Notice that the monitoring thread transforms concurrently
some bundles of the main program. Hence it can be possi-
ble for the latter to encounter an illegal instruction, and
the signal handler to be triggered, although the monitoring
thread has not yet finished to poll all the lists. To avoid
such a situation, a simplified mutex is used to prevent con-



current modification of the code by the signal handler and
the monitoring thread.

As the main thread encounters an illegal instruction, the
signal handler polls all the intermediate lists. For each load
appearing in those lists, it transforms properly the main
program code and the instrumentation pool, and transfers
the load in the adequate state list.

3. EXPERIMENTS AND PERFORMANCE
EVALUATION

In the current implementation, the minimum number of
times a load has to be executed before changing its state
is fixed to one thousand. The average latency over which
a load becomes a candidate for prefetching is fixed to 15
processor cycles. Every parameter of the system was found
empirically and better combinations can be possible. How-
ever we feel our results are satisfying. Though each running
platform may have a set of best parameters, finding satisfy-
ing ones was not a problem. We do not think it will be on
other platforms.

Our system was run with 5 SPECFP2000 benchmarks, 5
SPECINT2000 benchmarks [14] with reference inputs, two
Pointer Intensive benchmarks (£t and bc) [2] and one Olden
benchmark (treeadd) [1]. Our test machine is a 2-CPU
1.3Ghz Itanium-2 rx2600 workstation. However, notice that
our system is entirely run onto one unique processor. The
operating system is Linux kernel version 2.6.9-42 with glibc
2.3.4. We used both compilers gcc 3.4.6 and intel icc
8.1 with 03 to compile the benchmark programs. Notice
that the icc compiler generates prefetch instructions with
03 while the gcc compiler does not.

3.1 System Overhead

We measured our system overhead by inhibiting the in-
sertion of prefetch instructions. However it is impossible to
measure exactly the induced overhead of the system whose
behavior is necessarily different when prefetch is allowed.
Thus our measures give a coarse approximation (see figure
4). This is also true for any statistical information that
would require some specific code instrumentation. The ma-
jor causes of overhead are continuous monitoring and code
modification. In particular, jumps to the instrumentation
pool yields some instruction cache misses. Anyway the mea-
sures show that the extra overhead of our system is negligi-
ble.

3.2 Performance Analysis

Figure 5 illustrates the performance impact of our system
for the benchmarks either compiled with gcc or icc. About
half of the benchmarks have a speedup from 2% to 132%.
For the programs showing no benefit, the performance dif-
ferences are about -1% to -9%. Time-consuming programs
get generally a quite larger benefit of our system. For ex-
ample, the execution time of program equake is about 300
seconds while the execution time of program bc is about 22
seconds. Hence the execution time of bc is not enough for
our system to counterbalance its basic overhead. Anyway,
the additional execution time for programs that are slowed
down is always very low.

Even though the source code of the different benchmark
programs is the same, the binary codes generated by both
compilers are different to the extent that our optimizer be-
haves differently and adapts itself to the target code. For
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Figure 4: System overhead with gcc and icc compil-
ers

example, notice that very different results were obtained for
art and ft between the codes compiled with gcc and icc.
For the art binary code generated by icc, a quite better
speed-up was obtained by our system. This fact is reversed
with the £t binary code. Hence even if icc generates some
prefetch instructions, either these are not effective or addi-
tional prefetches are still improving performance.

For ammp and mesa, the results can be explained by the fact
that some functions could not be transformed by our system
due to register allocation issues as explained in subsection
2.4.

For program swim, amazing different execution times were
obtained beetween codes compiled with £77 -03 and ifort
-03. With £77, the execution time was about 10 minutes
while with ifort, it was about 90 seconds. Significant speed-
up was obtained with the £77 compiled code as expected for
such an execution time.

3.3 Prefetch distance

Figure 6 illustrates the effectiveness of the prefetch dis-
tance learning process by comparing the performance due
to our system when the distance is fixed to 2, 12 and 64 and
when the prefetch learning distance process is switched on.
It can be observed that the performance is obviously very
sensitive to the distance. The performance reached with the
learning process is always very close to the best performance
with a fixed distance, and is even the best in some cases
where the best distance is not constant during the whole
program run. It is necessarily a bit lower due to the learn-
ing process overhead when the best distance is constant. For
program equake, the larger difference can be explained by
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Benchmark | Distance Loads Optimized
changes | changing distances loads
art 40.67 16.33 26.33
equake 105.67 27 46.67
mcf 11.6 6.67 27.3
ammp 20.67 8.67 15
bzip2 5 2.67 9.67
parser 76 39.33 156.67
gzip 0 0 0
vpr 29.33 9.33 32.67
swim 83.33 24.33 34
mesa 0 0 3.67
ft 1.67 1 4
be 0 0 1
treeadd 16.33 1 1

Table 4: Prefetch distance variations

the fact that value 12 is not handled by the learning process,
since it handles only values that are powers of two, from 2*
to 25. Anyway, this could be easily modified in the sys-
tem, and the obtained speed-up is already quite significant.
For program treeadd compiled with icc, the best speed-
up is obtained with the learning process. By tracking our
system transformations, we observed that different prefetch
distances are used for the same load at different phases.
Table 4 shows the average number of changes in the prefetch

distance during the executions of the different programs. A
change in the prefetch distance is defined when, after an ini-
tial distance is calculated, a better distance is found. For
example, treeadd only has one load that is optimized by
the system but the prefetch distance changes in average 16
times during the execution of the program. The prefetch
distance can change on two occasions. First, when the load
goes from the dormant state to the instrumented state. If it
is still delinquent, a stride and prefetch distance calculation
will occur. Second, if the load is continuously optimized,
the load will be reinstrumented to recalculate the current
latency. When that happens, if the load is still delinquent,
another stride and prefetch distance calculation will occur.
The percentage of loads that have a prefetch distance change
out of the loads that have been optimized is 40.1% across
the different benchmarks and the average number of changes
per load is 3.97 per benchmark for every load that changed
distance at least once.
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Figure 6: Effectiveness of the prefetch distance
learning process with gcc and icc compilers

3.4 Behavior Analysis

Since our system associates states to all loads of a pro-
gram, it can be interesting to observe the evolution of the
number of loads in each state along the whole execution
time. The system can be easily modified to output this infor-
mation each time the monitoring thread wakes up. Figure 7
shows such evolution for program equake. The “monitored”
state is split into two states, “new” and “used”, where loads
in the “new monitored” state are loads that have never been
executed more than 1000 times. Those loads are considered
ten times less frequently by the monitoring thread. At a
given time of the execution, the number of loads in each
state is given by the area separating successive curves. For
example, near the end of the execution time, the number
of loads in the “new monitored” state is about 65% while
the number of loads in the “used monitored” state is about
87 — 65 = 22%.

The arrows that are represented under the time axis high-
light some interesting phase transitions. The first arrow
shows the time when program initialization is over and when
the program enters the main computation phase. In this
new phase, many loads stay in the “used monitored” state
since they are no longer executed. The second arrow shows
a peak generated by the monitoring thread. Observe that
these peaks are increasingly spaced since the dormant level
(d1) is incremented each time a non-delinquent load is in-
strumented and, after a thousand executions, returns to the
dormant state. The third arrow shows a phase transition
where some loads that were in the “new monitored” state
were now executed a significant number of times with high
latencies and thus enter the “stride learning” state. From
this state, these loads enter either the “dormant” state or
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the “prefetched” state depending on the effectiveness of the
associated prefetches (fourth arrow).

4. RELATED WORK

Specific prefetching algorithms have been evaluated in nu-
merous works proposing either software or hardware imple-
mentations. We refer the reader to [9, 18] for a survey of
data prefetch algorithms.

Dynamic Optimization Systems are often seen in the Java
Virtual Machines (JVM) [17, 6]. Just-In-Time (JIT) compil-
ers apply recompilation at runtime to enable optimizations
that were not feasible statically. These systems, using code
instrumentation, modify the code depending of the current
behavior of the program.

Dynamic Optimization Frameworks such as Dynamo [3]
or, more recently, DynamoRIO [4] are transparent systems
since the base program does not need to be compiled with
specific options. They are dynamic native-to-native opti-
mization systems. Dynamo is provided as a user-mode dy-
namically linked library. It interprets the base code at run-
time searching for hot traces. Using a low threshold to de-
tect hot traces, Dynamo creates an optimized version of the
trace and patches the code accordingly. The system is di-
vided into an interpreted code that is not optimized and the
hot traces that run natively. To compensate the overhead of
the system, Dynamo moves as much code from interpreta-
tion to natively run as possible. In a more recent work [8],
a framework called Deli is used to build client applications
that manipulate or observe running programs. It is shown
how a user can define on the fly code modifications at low
cost.

UMI [21] is a lightweight dynamic system built on Dy-
namoRIO [4] that can be used to profile and optimize pro-
grams. DynamoRIO’s internal framework discovers hot-
traces and sends them to an internal instruction cache. When
DynamoRIO selects a trace, UMI creates a clone that can
profile the different loads contained in the trace. This in-
strumentation enables UMI to gather short memory refer-
ence profiles to simulate the cache behavior and select the
delinquent loads. Using a sampling period and turning the
profiling on and off, UMI keeps the overhead at an aver-
age of 14%, which is only 1% greater than the base of 13%
incurred by DynamoRIO. Finally, UMI integrates a simple
stride prefetching solution into the framework to achieve an
11% improvement on the tested benchmarks.

Lu et al. [11, 12] implemented a dynamic optimization
system called Adore that inserts prefetching instructions
into the instruction stream. Using Itanium performance
counters, the system handles hot traces and detects delin-

quent loads in loop nests. Loads are derived into three cat-
egories : direct array, indirect array and pointer chasing
loads. By studying the code of the hot trace, Adore decides
how to prefetch correctly the required data. In [11], the op-
timizer uses a compiler option to reserve the registers needed
for the inserted code. In [12], a modification of the bundles
containing the alloc instruction enables the inserted code
to use new scratch registers. Adore uses the profiling tool
pfmon. The prefetch distance is calculated using the average
miss latency of the load and the number of cycles spent by
one iteration.

Post-link optimization such as Ispike [13] instruments and
optimizes codes after they have been compiled. It is also an
optimization tool on the Itanium Architecture. It uses a
polling mechanism and pfmon to collect data from the Ita-
nium performance counters, as it is done with Adore. Post-
link optimizations must handle similar issues while modify-
ing pre-compiled code. Special register allocation and spe-
cial care in conserving program semantics are needed.

Chilimbi and Hirzel’s framework [5] samples the program’s
execution to decide what portions of the code should be op-
timized. Using Vulcan [16], an executable-editing tool for
x86, the framework creates two versions of each function.
While both versions contain the original code, one of them
also contains the instrumentation code and the other only
contains some checks to decide whether to instrument again
the function or not. Using a global hibernation phase, the
overhead is lowered enough to achieve a speed-up on several
SPECint2000 programs. Once a trace is selected and pro-
filed, an analysis is done to find hot data streams. Finally,
when the data streams are detected, a finite state machine
is created to prefetch the data. The code handling this state
machine is then injected dynamically into the program.

Trident [19] is a event-driven multithreaded dynamic op-
timization framework. Using hardware support to identify
hot traces and helper threads to guide and perform opti-
mizations, it generates low overhead. The software side
of the framework consumes the hardware generated events
and then decides whether to optimize or not the base pro-
gram. In [20], Trident is extended to dynamically decide
what prefetch distance has to be used. Using a Delinquent
Load Table, the system monitors loads within a hot trace.
It counts the number of executions of each load, the num-
ber of misses and measures the miss latency. As with Adore
[11], stride and pointer loads are distinguished. By continu-
ously monitoring the load latencies, the prefetch distance is
adjusted until the loads are no longer delinquent.

Our system includes many aspects that are inspired by
all of the above works. It is totally transparent by using
the linux entry point __libc_start_main. Like Adore, it in-
serts prefetch instructions in the instruction flow and, like
Trident, it uses a variable prefetch distance. But it also dif-
fers by being totally software. The system does not use any
of the Itanium performance counters, hence it is portable
to any kind of processor. Moreover it does not handle only
loads in loops, but almost every load in the program. Hence
often executed loads as those occurring in recursive functions
are also handled. Moreover they are monitored individually,
instead of using a hot trace detection scheme. Lastly, the
system does not categorize loads into stride or pointer loads
but handles all loads in a unified way. Our system can be
compared to Chilimbi and Hirzel’s system: we add checks
to detect delinquent loads but our system lets the code run



natively compared to leaving lightweight checks in the code.
The hibernation system is also almost identical but our sys-
tem handles each load independently whereas Chilimbi and
Hirzel’s solution uses a global hibernation system.

5. CONCLUSION

In this paper, we propose a dynamic analysis and opti-
mization system which is totally software and that inserts
prefetch instructions where it has been evaluated as effective
by measuring the load latency. The software implementa-
tion has been achieved by constantly optimizing the code in
order to minimize the induced overhead. It has been shown
on the presented benchmarks that even if it is totally soft-
ware, significant speed-up is obtained for several programs.
Moreover, our performance results look similar to results ob-
tained in other works entirely or partially based on specific
hardware.

However we think that the overhead could still be low-
ered by avoiding jumps to the instrumentation pool and
by inserting monitoring and prefetching code in the place
of existing nop instructions surrounding loads. We will soon
experiment this strategy. We will also implement some more
advanced strategy for dynamic register allocation in order
to fix the cases presented in subsection 2.4.

Since it is totally software, in the near future our system
will be implemented on x86 platforms. We will also experi-
ment the system on smaller processors as the Freescale Cold-
fire microprocessor in order to evaluate the usability of the
system on small embedded systems. Although this processor
does not provide a prefetch instruction, we will experiment
other mechanisms as issuing some well-timed loads.

We also plan to allow our system to be used as a dynamic
memory access profiling tool that transparently tracks all
loads in a program and generates statistical outputs.
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