
Fault management in P2P-MPI

Stéphane Genaud and Choopan Rattanapoka

ICPS-LSIIT - UMR 7005
Université Louis Pasteur, Strasbourg
{genaud,rattanapoka}@icps.u-strasbg.fr

Abstract. We present in this paper the recent developments done in
P2P-MPI, a grid middleware, concerning the fault management, which
covers fault-tolerance for applications and fault detection. P2P-MPI pro-
vides a transparent fault tolerance facility based on replication of com-
putations. Applications are monitored by a distributed set of external
modules called failure detectors. The contribution of this paper is the
analysis of the advantages and drawbacks of such detectors for a real
implementation, and its integration in P2P-MPI. We pay especially at-
tention to the reliability of the failure detection service and to the failure
detection speed. We propose a variant of the binary round-robin protocol,
which is more reliable than the application execution in any case. Exper-
iments on applications of up to 256 processes, carried out on Grid’5000
show that the real detection times closely match the predictions.

keywords: Grid computing, middleware, Parallelism, Fault-tolerance.

1 Introduction

Many research works have been carried out these last years on the concept of grid.
Though the definition of grid is not unique, there are some common key concepts
shared by the various projects aiming at building grids. A grid is a distributed
system potentially spreading over multiple administrative domains which provide
its users with a transparent access to resources. The big picture may represent a
user requesting some complex computation involving remotely stored data from
its basic terminal. The grid middleware would then transparently query available
and appropriate computers (that the user is granted access to), fetch data and
eventually transfer results to the user.

Existing grids however, fall into different categories depending on needs and
resources managed. At one end of the spectrum are what is often called “in-
stitutional grids”, which gather well identified users and share resources that
are generally costly but not necessarily numerous. At the other end of the spec-
trum are grids with numerous, low-cost resources with few or no central system
administration. Users are often the administrators of their own resource that
they accept to share. Numerous projects have recently emerged in that category
[11, 5, 2] which have in common to target desktop computers or small clusters.

P2P-MPI is a grid middleware that falls into the last category. It has been de-
signed as a peer-to-peer system: each participant in the grid has an equal status
and may alternatively share its CPU or requests other CPU to take part to a
computation. The proposed programming model is close to MPI. We give a brief
overview of the system in Section 2 and a longer presentation can be found in [7].
P2P-MPI is particularly suited to federate networks of workstations or unused
PCs on local networks.

In this context, a crucial point is fault management, which covers both failure
detection and fault tolerance for applications. We describe in the paper several
pitfalls arising when targeting such environments and what solutions have been
put forward in P2P-MPI. The main issues to be addressed are (i) scalability
since the fault detection system should work up to hundreds of processors, which
implies to keep the number of messages exchanged small while having the time
needed to detect a fault acceptable, and (ii) accuracy means the failure detection
should detect all failures and failures detected should be real failures (no false
positive).

This paper is organized as follows. Section 2 is a short overview of P2P-MPI
which outline the principle of robustness of an application execution, through
replication of its processes. Section 3 gives an expression of fault-tolerance as
the failure probability of the application depending on the replication degree
and on the failure events rate. To be effective, the failure detection must be far
more reliable than the application execution. We first review in Section 4 the
existing techniques to design a reliable fault detection service (FD hereafter).
Then, Section 5 examines strengths and weaknesses of candidate solutions con-
sidering P2P-MPI requirements. We underline the trade off between reliability
and detection speed and we propose a variant of an existing protocol to improve
reliability. P2P-MPI implementation integrates the two best protocols, and we
report in we report in Section 6 experimental results concerning detection speed
for 256 processes.

2 P2P-MPI overview

P2P-MPI overall objective is to provide a grid programming environment for
parallel applications. P2P-MPI has two facets: it is a middleware and as such,
it has the duty of offering appropriate system-level services to the user, such as
finding requested resources, transferring files, launching remote jobs, etc. The
other facet is the parallel programming API it provides to programmers.

API. Most of the other comparable projects cited in introduction (apart from
P3 [11]) enable the computation of jobs made of independent tasks only, and the
proposed programming model is a client-server (or RPC) model. The advantage
of this model lies in its suitability to distributed computing environments but
lacks expressivity for parallel constructs. P2P-MPI offers a more general pro-
gramming model based on message passing, of which the client-server can be
seen as a particular case.

Contained in the P2P-MPI distribution is a communication library which
exposes an MPI-like API. Actually, our implementation of the MPI specification
is in Java and we follow the MPJ recommendation [3]. Though Java is used for
the sake of portability of codes, the primitives are quite close to the original
C/C++/fortran specification [8].

Middleware. A user can simply make its computer join a P2P-MPI grid (it
becomes a peer of a peer group) by typing mpiboot which runs a local gatekeeper
process. The gatekeeper can play two roles: (i) it advertises the local computer
as available to the peer group, and decides to accept or decline job requests from
other peers as they arrive, and (ii) when the user issues a job request, it has the
charge of finding the requested number of peers and to organize the job launch.

Launching a MPI job requires to assign an identifier to each task (imple-
mented by a process) and then synchronize all processes at the MPI Init barrier.
By comparison, scheduling jobs made of independent tasks gives more flexibility
since no coordination is needed and a task can be assigned to a resource as soon
as the resource becomes available.

When a user (the submitter) issues a job request involving several processes,
its local gatekeeper initiates a discovery to find the requested number of re-
sources during a limited period of time. P2P-MPI uses the JXTA library [1]
to handle all usual peer-to-peer operations such as discovery. Resources can be
found because they advertised their presence together with their technical char-
acteristics when they joined the peer group. Once enough resources have been
selected, the gatekeeper first checks that advertised hosts are still available (by
pinging them) and builds a table listing the numbers assigned to each partici-
pant process (called the communicator in MPI). Then, the gatekeeper instructs
a specific service to send the program to execute along with the input data or
URL to fetch data from, to each selected host. Each selected host acknowledges
the transfer and starts running the received program. (If some hosts fail before
sending the acknowledgment, a timeout expires on the submitter side and the
job is canceled). The program starts by entering the MPI Init barrier, waiting
for the communicator. As soon as a process has received the communicator it
continues executing its application process.

Before dwelling into details of the application startup process and the way it is
monitored by the fault-detection service (described in section 5), let us motivate
the need for a failure detector by introducing the capability of P2P-MPI to
handle application execution robustly.

Robustness. Contrarily to parallel computers, MPI applications in our desktop
grid context must face frequent failures. A major feature of P2P-MPI is its ability
to manage replicated processes to increase the application robustness. In its run
request, the user can simply specify a replication degree r which means that each
MPI process will have r copies running simultaneously on different processors.
In case of failures, the application can continue as long as at least one copy
of each process survives. The communication library transparently handles all

extra-communications needed so that the source code of the application does
not need any modification.

3 Replication and Failure Probability

In this section, we quantify the failure probability of an application and how
much replication improves an application’s robustness.

Assume failures are independent events, occurring equiprobably at each host:
we note f the probability that a host fails during a chosen time unit. Thus, the
probability that a p process MPI application without replication crashes is

Papp(p) = probability that 1, or 2, . . . , or p processes crash
= 1− (probability that no process crashes)
= 1− (1− f)p

Now, when an application has its processes replicated with a replication degree
r, a crash of the application occurs if and only if at least one MPI process has
all its r copies failed. The probability that all of the r copies of an MPI process
fail is fr. Thus, like in the expression above, the probability that a p process
MPI application with replication degree r crashes is

Papp(p,r) = 1− (1− fr)p

Figure 1 shows the failure probability curve depending on the replication
degree chosen (r = 1 means no replication) where f has been arbitrary set to
5%. Remark that doubling the replication degree increases far more than twice

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200 250

F
ai

lu
re

 P
ro

ba
bi

lit
y

Number of processes

r=1
r=2
r=3

Fig. 1. Failure probability depending on replication degree r (f=0.05).

the robustness. For example, a 128 processes MPI application with a replication
degree of only 2 reduces the failure probability from 99% to 27%.

But, for the replication to work properly, each process must reach in a definite
period, a global knowledge of other processes states to prevent incoherence. For
instance, running processes should stop sending messages to a failed process. This
problem becomes challenging when large scale systems are in the scope. When
an application starts, it registers with a local service called the fault-detection
service. In each host, this service is responsible to notify the local application
process of failures happening on co-allocated processes. Thus, the design of the
failure detectors is of primary importance for fault-tolerance. For this discussion
we first need to review state of the art proposals concerning fault detection since
some of these concepts are the basis for our work.

4 Fault Detection: Background

Failure detection services have received much attention in the literature and
since they are considered as first class services of distributed systems [4], many
protocols for failure detection have been proposed and implemented. Two classic
approaches are the push and pull models discussed in [6], which rely on a cen-
tralized node which regularly triggers push or pull actions. Though they have
proved to be efficient on local area networks, they do not scale well and hence are
not adapted to large distributed systems such as those targeted for P2P-MPI.

A much more scalable protocol is called gossiping after the gossip-style fault
detection service presented in [10]. It is a distributed algorithm whose informative
messages are evenly dispatched amongst the links of the system. In the following,
we present this algorithm approach and its main variants.

A gossip failure detector is a set of distributed modules, with one module
residing at each host to monitor. Each module maintains a local table with one
entry per detector known to it. This entry includes a counter called heartbeat. In
a running state, each module repeatedly chooses some other modules and sends
them a gossip message consisting in its table with its heartbeat incremented.
When a module receives one or more gossip messages from other modules, it
merges its local table with all received tables and adopts for each host the max-
imum heartbeat found. If a heartbeat for a host A which is maintained by a
failure detector at host B has not increased after a certain timeout, host B sus-
pects that host A has crashed. In general, it follows a consensus phase about
host A failure in order to keep the system’s coherence.

Gossiping protocols are usually governed by three key parameters: the gos-
sip time, cleanup time, and the consensus time. Gossip time, noted Tgossip, is
the time interval between two consecutive gossip messages. Cleanup time, or
Tcleanup, is the time interval after which a host is suspected to have failed. Fi-
nally, consensus time noted Tconsensus, is the time interval after which consensus
is reached about a failed node.

Notice that a major difficulty in gossiping implementations lies in the setting
of Tcleanup: it is easy to compute a lower bound, referred to as Tmin

cleanup, which
is the time required for information to reach all other hosts, but this can serve
as Tcleanup only in synchronous systems. In asynchronous systems, the cleanup

time is usually set to some multiple of the gossip time, and must neither be too
long to avoid long detection times, nor too short to avoid frequent false failure
detections.

Starting from this basis, several proposals have been made to improve or
adapt this gossip-style failure detector to other contexts [9]. We briefly review
advantages and disadvantages of the original and modified gossip based protocols
and what is to be adapted to meet P2P-MPI requirements. Notably, we pay
attention to the detection time (Tmin

cleanup) and reliability of each protocol.

Random. In the gossip protocol originally proposed [10], each module randomly
chooses at each step, the hosts it sends its table to. In practice, random gossip
evens the communication load amongst the network links but has the disad-
vantage of being non-deterministic. It is possible that a node receives no gossip
message for a period long enough to cause a false failure detection, i.e. a node
is considered failed whereas it is still alive. To minimize this risk, the system
implementor can increase Tcleanup at the cost of a longer detection time.

Round-Robin (RR). This method aims to make gossip messages traffic more
uniform by employing a deterministic approach. In this protocol, gossiping takes
place in definite round every Tgossip seconds. In any one round, each node will
receive and send a single gossip message. The destination node d of a message
is determined from the source node s and the current round number r.

d = (s + r) mod n, 0 ≤ s < n, 1 ≤ r < n (1)

where n is the number of nodes. After r = n− 1 rounds, all nodes have commu-
nicated with each other, which ends a cycle and r (generally implemented as a
circular counter) is reset to 1. For a 6 nodes system, the set of communications
taking place is represented in the table in Figure 2.

r s → d

1 0 → 1 , 1 → 2 , 2 → 3 , 3 → 4 , 4 → 5 , 5 → 0
2 0 → 2 , 1 → 3 , 2 → 4 , 3 → 5 , 4 → 0 , 5 → 1
3 0 → 3 , 1 → 4 , 2 → 5 , 3 → 0 , 4 → 1 , 5 → 2
4 0 → 4 , 1 → 5 , 2 → 0 , 3 → 1 , 4 → 2 , 5 → 3
5 0 → 5 , 1 → 0 , 2 → 1 , 3 → 2 , 4 → 3 , 5 → 4

Fig. 2. Communication pattern in the round-robin protocol (n = 6).

This protocol guarantees that all nodes will receive a given node’s updated
heartbeat within a bounded time. The information about a state’s node is trans-
mitted to one other node in the first round, then to two other nodes in the second
round (one node gets the information directly from the initial node, the other

from the node previously informed), etc. At a given round r, there are 1+2+· · ·+r
nodes informed. Hence, knowing n we can deduce the minimum cleanup time,
depending on an integer number of rounds r such that:

Tmin
cleanup = r × Tgossip where r = dρe ,

ρ(ρ + 1)
2

= n

For instance in Figure 2, three rounds are required to inform the six nodes of the
initial state of node 0 (boxed). We have underlined the nodes when they receive
the information.

Binary Round-Robin (BRR). The binary round-robin protocol attempts to
minimize bandwidth used for gossiping by eliminating all redundant gossiping
messages. The inherent redundancy of the round-robin protocol is avoided by
skipping the unnecessary steps. The algorithm determines sources and destina-
tion nodes from the following relation:

d = (s + 2r−1) mod n, 1 ≤ r ≤ dlog2(n)e (2)

The cycle length is dlog2(n)e rounds, and we have Tmin
cleanup = dlog2(n)e×Tgossip.

2

0

3 1

1st Round

2nd Round

Fig. 3. Communication pattern in the binary round-robin protocol (n = 4).

From our experience (also observed in experiments of Section 6), in a asyn-
chronous system, provided that we are able to make the distributed FD start
nearly a the same time, i.e. within a time slot shorter (logical time) than a cycle,
and that the time needed to send a heartbeat is less than Tgossip, a good choice
for Tcleanup is the smallest multiple of Tmin

cleanup, i.e. 2× dlog2(n)e × Tgossip. This
allows not to consider a fault, the frequent situation where the last messages
sent within a cycle c on source nodes arrive at cycle c+1 on their corresponding
receiver nodes.

Note however that the elimination of redundant gossip alleviates network
load and accelerate heartbeat status dissemination at the cost of an increased
risk of false detections. Figure 3 shows a 4 nodes system. From equation 2, we
have that node 2 gets incoming messages from node 1 (in the 1st round) and from

node 0 (2nd round) only. Therefore, if node 0 and 1 fail, node 2 will not receive
any more gossip messages. After Tcleanup units of time, node 2 will suspect node
3 to have failed even if it is not true. This point is thus to be considered in the
protocol choice.

5 Fault detection in P2P-MPI

From the previous description of state of the art proposals for failure detection,
we retain BRR for its low bandwidth usage and quick detection time despite
it relative fragility. With this protocol often comes a consensus phase, which
follows a failure detection, to keep the coherence of the system (all nodes make
the same decision about other nodes states). Consensus if often based on a voting
procedure [9]: in that case all nodes transmit, in addition to their heartbeat table,
an extra (n × n) matrix M . The value Mi,j indicates what is the state of node
i according to node j. Thus, a FD suspecting a node to have failed can decide
the node is really failed if a majority of other nodes agree. However, the cost of
transmitting such matrices would induce an unacceptable overhead in our case.
For a 256 nodes system, each matrix represents at least a 64 Kib message (and
256 Kib for 512 nodes), transmitted every Tgossip. We replace the consensus by
a lighter procedure, called ping procedure in which a node suspecting another
node to have failed, directly ping this node to confirm the failure. If the node is
alive, it answers to the ping by returning its current heartbeat.

This is an illustration of problems we came across when studying the behavior
of P2P-MPI FD. We now describe the requirements we have set for the middle-
ware, and which algorithms have been implemented to fulfill these requirements.

5.1 Assumptions and Requirements

In our context, we call a (non-byzantine) fault the lack of response during a given
delay from a process enrolled for an application execution. A fault can have three
origins: (i) the process itself crashes (e.g. the program aborts on a DivideByZero
error), (ii) the host executing the process crashes (e.g. the computer is shut off),
or (iii) the fault-detection monitoring the process crashes and hence no more
notifications of aliveness are reported to other processes.

P2P-MPI is intended for grids and should be able to scale up to hundreds
of nodes. Hence, we demand its fault detection service to be: a) scalable, i.e.
the network traffic that it generates does not induce bottlenecks, b) efficient, i.e.
the detection time is acceptable relatively to the application execution time, c)
deterministic in the fault detection time, i.e. a fault is detected in a guaranteed
delay, d) reliable, i.e. its failure probability is several orders of magnitudes less
than the failure probability of the monitored application, since its failure would
results in false failure detections.

We make several assumptions that we consider realistic accordingly to the
above requirements and given current real systems. First, we assume an asyn-
chronous system, with no global clock but we assume the local clock drifts remain

constant. We also assume non-lossy channels: our implementation uses TCP to
transport fault detection service traffic because TCP insures message delivery.
TCP also has the advantage of being less often blocked than UDP between ad-
ministrative domains. We also require a few available ports (3 for services plus
1 for each application) for TCP communications, i.e. not blocked by firewalls
for any participating peer. Indeed, for sake of performances, we do not have
relay mechanisms. During the startup phase, if we detect that the communica-
tion could not be establish back and forth between the submitter and all other
peers, the application’s launch stops. Last, we assume that the time required to
transmit a message between any two hosts is generally less than Tgossip. Yet, we
tolerate unusually long transmission times (due to network hangup for instance)
thanks to a parameter Tmax hangup set by the user (actually Tcleanup is increased
by Tmax hangup in the implementation).

5.2 Design issues

Until the present work, P2P-MPI’s fault detection service was based on the
random gossip algorithm. In practice however, we were not fully satisfied with
it because of its non-deterministic detection time.

As stated above, the BRR protocol is optimal with respect to bandwidth
usage and fault detection delay. The low bandwidth usage is due to the small
number of nodes (we call them sources) in charge of informing a given node
by sending to it gossiping messages: in a system of n nodes, each node has at
most log2(n) sources. Hence, BRR is the most fragile system with respect to
the simultaneous failures of all sources for a node, and the probability that this
situation happens is not always negligible: In the example of the 4 nodes system
with BRR, the probability of failure can be counted as follows. Let f be the
failure probability of each individual node in a time unit T (T < Tcleanup), and
let P (i) the probability that i nodes simultaneously fail during T . In the case
2 nodes fail, if both of them are source nodes then there will be a node that
can not get any gossip messages. Here, there are 4 such cases, which are the
failures of {2,3},{0,3},{0,1} or {1,2}. In the case 3 nodes fail, there is no chance
FD can resist. There are

(
4
3

)
ways of choosing 3 failed nodes among 4, namely

{1,2,3},{0,2,3},{0,1,3},{0,1,2}. And there is only 1 case 4 nodes fail. Finally, the
FD failure has probability Pbrr(4) = P (4) + P (3) + P (2) = f4 +

(
4
3

)
f3(1 − f) +

4f2(1− f)2.
In this case, using the numerical values of section 3 (i.e. f=0.05), the compar-

ison between the failure probability of the application (p=2, r=2) and the failure
probability of the BRR for n=4, leads to Papp(2,2) = 0.005 and Pbrr(4) = 0.0095
which means the application is more resistant than the fault detection system
itself. Even if the FD failure probability decreases quickly with the number of
nodes, the user may wish to increase FD robustness by not eliminating all re-
dundancy in the gossip protocol.

5.3 P2P-MPI implementation

Users have various needs, depending on the number of nodes they intend to use
and on the network characteristics. In a reliable environment, BRR is a good
choice for its optimal detection speed. For more reliability, we may wish some
redundancy and we allow users to choose a variant of BRR described below.
The chosen protocol appears in the configuration file and may change for each
application (at startup, all FDs are instructed with which protocol they should
monitor a given application).

The choice of an appropriate protocol is important but not sufficient to get
an effective implementation. We also have to correctly initialize the heartbeating
system so that the delayed starts of processes are not considered failures. Also,
the application must occasionally make a decision against the FD prediction
about a failure to detect firewalls.

Double Binary Round-Robin (DBRR) We introduce the double binary
round-robin protocol which detects failures in a delay asymptotically equal to
BRR (O(log2(n)) and acceptably fast in practice, while re-inforcing robustness
of BRR. The idea is simply to avoid to have one-way connections only between
nodes. Thus, in the first half of a cycle, we use the BRR routing in a clock-wise
direction while in the second half, we establish a connection back by apply-
ing BRR in a counterclock-wise direction. The destination node for each gossip
message is determined by the following relation:

d =
{

(s + 2r−1) mod n if 1 ≤ r ≤ dlog2(n)e
(s− 2r−dlog2(n)e−1) mod n if dlog2(n)e < r ≤ 2dlog2(n)e (3)

The cycle length is 2dlog2(n)e and hence we have Tmin
cleanup = 2dlog2(n)e×Tgossip.

With the same assumptions as for BRR, we set Tcleanup = 3dlog2(n)e × Tgossip

for DBRR.

To compare BRR and DBRR reliability, we can count following the principles
of Section 5.2 but this quickly becomes difficult for a large number of nodes.
Instead, we simulate a large number of scenarios, in which each node may fail
with a probability f . Then, we verify if the graph representing the BRR or
DBRR routing is connected: simultaneous nodes failures may cut all edges from
sources nodes to a destination node, which implies a FD failure. In Figure 4, we
repeat the simulation for 5.8× 109 trials with f=0.05. Notice that in the DBRR
protocol, we could not not find any FD failure when the number of nodes is more
than 16, which means the number of our trials is not sufficient to estimate the
DBRR failure probability for such n.

Automatic Adjustment of Initial Heartbeat In the startup phase of an
application execution (contained in MPI Init), the submitter process first queries
advertised resources for their availability and their will to accept the job. The

 1e-09

 1e-08

 1e-07

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 256 128 64 32 16 8 4

F
ai

lu
re

 p
ro

ba
bi

lit
y

of
 fa

ul
t d

et
ec

tio
n

sy
st

em

Number of processes

BRR protocol
DBRR protocol

Fig. 4. Failure probabilities of the FD system using BRR and DBRR (f = 0.05).

submitter construct a table numbering available resources called the communica-
tor1, which is sent in turn to participating peers. The remote peers acknowledge
this numbering by returning TCP sockets where the submitter can contact their
file transfer service. It follows the transfer of executable code and input data.
Once a remote node has completed the download, it starts the application which
registers with its local FD instance.

This causes the FDs to start asynchronously and because the time of trans-
ferring files may well exceed Tcleanup, the FD should (i) not declared nodes that
have not yet started their FD as failed, and (ii) should start with a heartbeat
value similar to all others at the end of the MPI Init barrier. The idea is thus
to estimate on each node, how many heartbeats have been missed since the
beginning of the startup phase, to set the local initial heartbeat accordingly.
This is achieved by making the submitter send to each node, together with the
communicator, the time spent sending information to previous nodes. Figure 5
illustrates the situation. We note tsi, 1 ≤ i < n the date when the submitter
sends the communicator to peer i, and tri the date when peer i receives the
communicator. Each peer also stores the date Ti at which it registers with its
local FD. The submitter sends ∆ti = tsi − ts1 to any peer i (1 ≤ i < n) which
can then computes its initial heartbeat hi as:

hi = d(Ti − tri + ∆ti)/Tgossipe, 1 ≤ i < n (4)

while the submitter adjusts its initial heartbeat to h0 = d(T0 − ts1)/Tgossipe.
Note that we implement a flat tree broadcast to send the communicator

instead of any hierarchical broadcast scheme (e.g. binary tree, binomial tree)
because we could not guarantee in that case, that intermediate nodes always
stay alive and pass the communicator information to others. If any would fail
after receiving the communicator and before it passes that information to others,

1 The submitter always has number 0.

...

Send the MPI
communicator
and necessary
information

T0

tr1

T1

tr2

T2
trn−1

Tn−1

∆t1

∆t2

∆tn−1

Register with MPD

ts1

ts2

tsn−1

Rank 0 Rank 1 Rank 2 Rank n− 1

FD monitors process

Register with FD

Fig. 5. Application startup

then the rest of that tree will not get any information about the communicator
and the execution could not continue.

Application-Failure Detector Interaction At first sight, the application
could completely rely on its FD to decide whether a communication with a
given node is possible or not. For instance, in our first implementation of send
or related function calls (eg. Send, Bcast) the sender continuously tried to send
a message to the destination (ignoring socket timeouts) until it either succeeded
or received a notification that the destination node is down from its FD. This
allows to control the detection of network communication interruptions through
the FD configuration.

However, there exist firewall configurations that authorize connections from
some addresses only, which makes possible that a host receive gossip messages
(via other nodes) about the aliveness of a particular destination while the desti-
nation is blocked for direct communication. In that case, the send function will
loop forever and the application can not terminate. Our new send implementa-
tion simply installs a timeout to tackle this problem, which we set to 2×Tcleanup.
Reaching this timeout on a send stops the local application process, and soon
the rest of the nodes will detect the process death.

6 Experiments

The objective of the experiments is to evaluate the failure detection speed with
both BRR and DBRR monitoring a P2P-MPI application running on a real grid
testbed. We use the Grid’5000 platform, a federation of dedicated computers
hosted across nine campus sites in France, and organized in a virtual private
network over Renater, the national education and research network. Each site
has currently about 100 to 700 processors arranged in one to several clusters
at each site. In our experiment, we distribute the processes of our parallel test
application across three sites (Nancy, Rennes and Nice).

The experiment consists in running a parallel application without replication
and after 20 seconds, we kill all processes on a random node. We then log at

 2

 4

 6

 8

 10

 12

 14

 256 128 64 32 16 8 4

T
ot

al
 ti

m
e

(s
)

Number of processes

BRR - observed
DBRR - observed
BRR - theoretical

DBRR - theoretical

Fig. 6. Time to detect a fault for BRR and DBRR

what time each node is notified of the failure and compute the time interval
between failure and detection. Figure 6 plots the average of these intervals on
all nodes and for both protocols, with Tgossip set to 0.5 second. Also plotted
for comparison is Tcleanup as specified previously, termed “theoretical” detection
time on the graph.

The detection speed observed is very similar to the theoretical predictions
whatever the number of processes involved, up to 256. The difference with the
predictions (about 0.5 s) comes from the ping procedure which adds an overhead,
and from the rounding to an integer number of heartbeats in Equation 4. This
difference is about the same as the Tgossip value used and hence we see that the
ping procedure does not induce a bottleneck.

It is also important to notice that no false detection has been observed
throughout our tests, hence the ping procedure has been triggered only for real
failures. There are two reasons for a false detection: either all sources of in-
formation for a node fail, or Tcleanup is too short with respect to the system
characteristics (communication delays, local clocks drifts, etc). Here, given the
briefness of execution, the former reason is out of the scope. Given the absence
of false failures we can conclude that we have chosen a correct detection time
Tcleanup, and our initial assumptions are correct, i.e. the initial hearbeat adjust-
ment is effective and message delays are less than Tgossip.

This experiment shows the scalability of the system on Grid’5000, despite
the presence of wide area network links between hosts. Further tests should
experiment smaller values of Tgossip for a quicker detection time. We also plan
to test the system at the scale of a thousand processes.

7 Conclusion

We have described in this paper the fault-detection service underlying P2P-MPI.
The first part is an overview of the principles of P2P-MPI among which is repli-

cation, used as a means to increase robustness of applications executions, and
external monitoring of application execution by a specific fault-detection mod-
ule. In the second part, we first describe the background of our work, based on
recent advances in the research field of fault detectors. We compare the main
protocols recently proposed regarding their robustness, their speed and their de-
terministic behavior, and we analyze which is best suited for our middleware.
We introduce an original protocol that increases the number of sources in the
gossip procedure, and thus improves the fault-tolerance of the failure detection
service, while the detection time remains low. Last, we present the experiments
conducted on Grid’5000. The results show that the fault detection speeds ob-
served in experiments for applications of up to 256 processes, are really close to
the theoretical figures, and demonstrate the system scalability.

Acknowledgments. Experiments presented in this paper were carried out us-
ing the Grid’5000 experimental testbed, an initiative from the French Ministry
of Research through the ACI GRID incentive action, INRIA, CNRS and RE-
NATER and other contributing partners (see https://www.grid5000.fr)

References

[1] JXTA. http://www.jxta.org.
[2] N. Andrade, W. Cirne, F. Brasileiro, and P. Roisenberg. Our-grid: An approach

to easily assemble grids with equitable resource sharing. In 9thWorkshop on Job
Scheduling Strategies for Parallel Processing, June 2003.

[3] B. Carpenter, V. Getov, G. Judd, T. Skjellum, and G. Fox. Mpj: Mpi-like message
passing for java. Concurrency: Practice and Experience, 12(11), Sept. 2000.

[4] T. D. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed
systems. J. ACM, 43(2):225–267, 1996.

[5] G. Fedak, C. Germain, V. Néri, and F. Cappello. XtremWeb: A generic global
computing system. In CCGRID, pages 582–587. IEEE Computer Society, 2001.

[6] P. Felber, X. Defago, R. Guerraoui, and P. Oser. Failure detectors as first class
objects. In Proceeding of the 9th IEEE Intl. Symposium on Distributed Objects
and Applications (DOA’99), pages 132–141, Sept. 1999.

[7] S. Genaud and C. Rattanapoka. A peer-to-peer framework for robust execution
of message passing parallel programs. In EuroPVM/MPI 2005, volume 3666 of
LNCS, pages 276–284. Springer-Verlag, September 2005.

[8] MPI Forum. MPI: A message passing interface standard. Technical report, Uni-
versity of Tennessee, Knoxville, TN, USA, June 1995.

[9] S. Ranganathan, A. D. George, R. W. Todd, and M. C. Chidester. Gossip-style
failure detection and distributed consensus for scalable heterogeneous clusters.
Cluster Computing, 4(3):197–209, 2001.

[10] R. V. Renesse, Y. Minsky, and M. Hayden. A gossip-style failure detection service.
In IFIP International Conference on Distributed Systems Platforms and Open
Distributed Middleware, pages 55–70, England, 1998.

[11] K. Shudo, Y. Tanaka, and S. Sekiguchi. P3: P2P-based middleware enabling
transfer and aggregation of computational resource. In 5th Intl. Workshop on
Global and Peer-to-Peer Computing. IEEE, May 2005.

