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Abstract

Solving the Vlasov equation with a high accuracy and a minimum

computational cost represents a great challenge. Adaptive methods

based on a sparse mesh are a classical answer. In this paper, we propose

a new adaptive method with a minimum overhead due to sparse mesh

management.
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1 Introduction

The Vlasov equation models the evolution in time of charged particles under
the e�ect of an electric �eld. Its solving is of great importance for the
simulation of phenomena in plasma physics, such as nuclear fusion. Recent
and interesting methods for solving the Vlasov equation are based on the
semi-Lagrangian scheme [8, 1, 2]. This scheme uses a useful property of the
equation, saying that the solution f((x, v), t), which is called the distribution
function, is constant along characteristics. The characteristics of the Vlasov
equation model the particles movement within the physical domain (x, v)
(position and velocity space) called phase space. This property is used to
compute the value of f on a grid of the phase space. The total amount
of values to compute increase drastically along with the dimension and the
domain on such a grid. So it becomes interesting to use adaptive algorithm
based on a sparse grid that evolves during simulation.

We propose here a full evolution of the YODA solver [6] we have de-
velopped. The principle for computing values is the same as YODA, but
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mesh adaptation algorithm is totally new, allowing to reduce drastically the
number of elements to insert or remove in the data structure. In the �rst
part of this report, we present our numerical resolution shceme based on a
classical semi-Lagrangian principle and a new adaptation algorithm.

2 Numerical scheme

By discretizing time, the conservation property says that f((x, v), tn+1) =
f(An(x, v), tn) where An denotes the discretized characteristics called back-
ward advection operator which depends on the electric �eld. Thus, given
any phase space mesh, sayMn, denoting fn an approximate of the solution
at time tn and assuming fn(a) is known at every node a of Mn, the semi-
Lagrangian scheme to compute fn+1 at any node a ofMn+1 is the following :
compute the backward advected point ã = An(a), compute an approximate
of fn(ã) by interpolation using the values of fn at nodes of Mn and last
identify fn(ã) as fn+1(a) by the conservation property.

This scheme de�nes an uniform method by takingMn for a regular grid.
However, the computational cost which mainly depends on the amount of
interpolations can be drastically reduce by takingMn for an adaptive mesh.
This is particularly true when the phase space has a high dimensionality
and for real cases, i.e., when (x, v) ∈ R3 × R3. Notice that, for sake of
simplicity, the method proposed in this paper is given for (x, v) ∈ R×R but
can be generalised to higher dimensions. Moreover, we chose to use a local
interpolator in order to lower the computational cost by inherently exploiting
data locality.

In order to obtain an adaptive method, a mesh topology and a mesh
adaptation procedure have to be de�ned.

2.1 Mesh topology

Our method is based on a dyadic structured adaptive mesh. A dyadic mesh is
a partition of the unit square [0, 1]× [0, 1] where each cell identi�es a square
[i12−j , (i1+1)2−j ] × [i22−j , (i2+1)2−j ], where (i1, i2, j) ∈ N. The integer
j in the previous de�nition de�nes the cell size and identi�es its level in an
implicit hierarchy of cells. As example, let us consider a cell, say α, of level j,
then it covers the area of four cells of level j +1. The four cells are called the
daughters of cell α and cell α is called the mother of the four cells. Moreover,
we sometimes called sister cells some cells having the same mother. These
relationships identify a quad-tree hierarchy. The cells at higher levels in the
hierarchy have smaller size. In the rest, we consider only mesh with a �xed
highest level, denoted J , and a �xed lowest level, denoted j0. We have thus
j0 ≤ j ≤ J . Considering the levels of detail of the adaptive mesh, level j0

is the coarsest level and level J is the �nest level. Nodes of the mesh are
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located at the centre, at the edge of each cell, and at the middle of each side.
Therefore each cell has nine equally spaced nodes.

The solution f is represented locally by the values at nodes of each cell.
More precisely, the approximate value of f((x, v), tn) is the value obtained by
interpolation using the values at every nodes of the cell of mesh Mn where
point (x, v) is located.

2.2 Mesh adaptation

Our adaptation procedure falls into two parts: mesh prediction and com-
pression. Mesh prediction builds a fresh mesh from an old one by using the
backward advection operator and mesh compression deletes cells considered
useless as the values at their nodes could be deleted without loss of accuracy.
These two parts are detailed here below.

Mesh prediction buildsMn+1 fromMn putting the computational e�ort
into zones of interest (high gradient areas) and neglecting the other ones.
The procedure is the following: starting with a coarse uniform mesh (made
of cells of level j0), each cell verifying the re�nement criterium is replaced
with its four daughters repeatedly until no such cell exists. A cell, say α,
veri�es the re�nement criterium if and only if its level is lower or equal than
the level of β, where β is the unique cell ofMn which contains the backward
advected of c, i.e., An(c) and c is the centre of α.

Mesh compression is intended to obtain a coarser version of Mn+1 re-
ducing the amount of cells within low gradient areas. It proceeds as follows:
each group of four daughters verifying the coarsening criterium is replaced
with their mother, repeatedly until no such group exists. A group veri�es
the coarsening criterium if and only if the di�erence between the local repre-
sentation of f with the mother values and the representation with the values
of the cells in the group is under a given threshold. If both representations
are similar, only the mother needs to be conserved.

2.3 Related works

Previous works [3, 6] used the same semi-Lagrangian scheme and mesh topol-
ogy but another adaptation procedure. Instead of using the backward ad-
vection operator, prediction of Mn+1 from Mn used its converse, i.e., the
forward advection operator. A great drawback to using this, so called for-
ward, adaptive scheme, is that mesh consistency have to be maintained each
times a new cell is added toMn+1 which entails an important computational
overhead.

In other works [4, 5] adaptivity is performed by using a wavelet frame-
work. Prediction step aimed to build a list of points from the backward
adevction of the previously computed wavelet coe�cients. It is a straight
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forward method but the wavelet coe�cients needed to interpolate the values
are less local than with our method.

In the algorithm presented here, we have kept the interpolation operator
of the �rst works to preserve data locality. We have developped a predicted
mesh construction where mesh consistency is implicitly veri�ed at no cost.

3 The recursive algorithms

Here we give a �rst algorithm directly derived from the numerical scheme
previously presented. In this algorithm, the representation of the solution at
time tn is identi�ed by a pair (Mn, Fn), where Mn is a set of cells and Fn

is a set of pairs (node,value).
This algorithm falls into three successive phases for each time step: mesh

prediction, node evaluation, i.e., computation of the values at nodes and
mesh compression.

Our algorithm for predicting the cells of meshMn+1 (algorithm 1) starts
with an empty set and applies to every coarse cell (of level j0). It checks
whether the cell veri�es the re�nement criterium. In that case, the algorithm
repeats itself for every daughter. Else, the cell is added to the predicted mesh
and the algorithm terminates. The algorithm is thus naturally recursive and
performs a depth-�rst scan of the cell hierarchy. Its complexity is O(T ),
where T is the number of nodes of the cell hierarchy tree.

Algorithm 1: Mesh prediction

Input: Mn

Output: Mn+1

predict(α) ::1

begin2

c := centre(α)3

set β to the unique cell of Mn such as An(c) ∈ β4

if min (J−1, |β|) ≥ |α| then5

for each daughter αk∈0..3 of α do6

predict(αk)7

else8

add α to Mn+1
9

end10

Node evaluation applies to every node of Mn+1 (algorithm 2). Our
algorithm scans these nodes by using a nested loop. The outer loop scans
the cells and the inner one scans the nodes of a cell. Each node is treated
only once thanks to the test a 6∈ Fn+1. It is assumed that this test is
not costly. This is an important assumption because the ratio of nodes
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belonging to several cells is high. The complexity of this algorithm is thus
O(N ), where N is the number of nodes of the mesh.

Algorithm 2: Node evaluation

Input: Mn,Mn+1, Fn

Output: Mn+1, Fn+1

begin1

for each cell α of Mn+1 do2

for each node a of α (a 6∈ Fn+1) do3

set β to the unique cell of Mn such as An(a) ∈ β4

v := interpolate(An(a), β)5

add the pair (a, v) to Fn+1
6

end7

Our algorithm for compressing the cells of mesh Mn+1 (algorithm 3)
applies to every coarse cell (of level j0). If the cell belongs to the mesh, the
algorithm terminates. Else the algorithm is �rst applied to each daughter
and then it checks whether every daughter belong to the mesh and this
group of daughters verify the coarsening criterium. In this case, this group
is replaced with the mother in Mn+1 and the algorithm terminates. Like
mesh prediction, the algorithm is naturally recursive and performs a depth-
�rst scan of the cell hierarchy. Its complexity is also O(T ).

Algorithm 3: Mesh compression

Input: Mn+1, Fn+1

Output: Mn+1

compress(α) ::1

begin2

if α 6∈ Mn+1 then3

b := true4

for each daughter αk∈0..3 of α do5

compress(αk)6

b := b ∧ (αk ∈Mn+1)7

if b ∧ compression-test(α) then8

add α and remove its 4 daughters from Mn+1
9

end10
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4 Recursion removal

Recursive algorithms are often more elegant than iterative algorithms, but
most of the time their implementation lacks of e�ciency. To obtain good
performances, we have thus to eliminate recursion from our algorithms, but
preserve the depth-�rst traversal order that enables to obtain the best com-
putational complexity.

For the algorithm 1, elimination of recursion is achieved in a very classical
way, by using a stack of cells saving the recursion context. This is shown by
algorithm 4.

Algorithm 4: Mesh prediction (iterative version)

Input: Mn

Output: Mn+1

begin1

set P to a new stack2

push α to P3

while ¬ empty(P) do4

pop α from P5

c := centre(α)6

set β to the unique cell of Mn such as An(c) ∈ β7

if min (J−1, |β|) ≥ |α| then8

push each α's daughter to P9

else10

add α to Mn+1
11

end12

In algorithm 3, the recursion is only used to perform a depth-�rst scan
of existing cells. It can thus be removed provided the cells of Mn+1 can
be accessed in depth-�rst order in the data structure into which they are
stored. For example, if we use a stack of cells, say P, as for prediction, and
assume the cells are arranged in depth-�rst order in this stack, then we can
eliminate recursion from algorithm 3 and obtain algorithm 5.
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Algorithm 5: Mesh compression (iterative version)

Input: Mn+1, Fn+1,P
Output: Mn+1

begin1

k[j0..J ] := 02

b[j0..J ] := true3

while ¬ empty(P) do4

pop α from P5

j := |α|6

k[j] := k[j] + 17

while k[j] = 4 ∧ j > j0 do8

k[j] := 09

α := mother(α)10

if b[j] ∧ compression-test(α) then11

add α and remove its 4 daughters from Mn+1
12

else13

b[j − 1] := false14

b[j] := true15

j := j − 116

k[j] := k[j] + 117

end18

In order to restore the context of each recursive call, the successive values
of each variable b and k in algorithm 3 are stored in an array. The array stores
the values at each level of recursion. As the recursive algorithm scans cells
in depth-�rst order, each level of recursion identi�es a level of cell between j0

and J . Therefore, the array range of indices is [j0..J ]. The values are updated
according to algorithm 3. The values of k is incremented each times a new
cell of level j is read. When k[j] reaches value 4, it means that a group of
4 cells of level j is to be considered for compression and k[j] is set again to
zero for the next group at the same level. The value of b[j] is updated (set
to false) as soon as one compression test fails at level j+1 (it corresponds
to the result of the logical and in algorithm 3 and set again to true before
a new group of cells of level j is to be considered for compression (at the
beginning of the recursive algorithm).

As said previously, our algorithm for going forward one time step consists
in performing three phases successively. It entails three traversal of the cell
hierarchy. An interesting optimization is thus to perform only one traversal
of the cell hierarchy by applying a part of the three phases on each cell. This
can be achieved since cells are traversed in the same order in prediction and
in compression phase and the node evaluation is not driven by a particular
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order. The algorithm 6 described this last transformation.

Algorithm 6: One time step (only one traversal of the mesh hierarchy)

Input: Mn, Fn

Output: Mn+1, Fn+1

begin1

k[j0..J ] := 02

b[j0..J ] := true3

for each cell α of level j0 do4

push α to P5

while ¬ empty(P) do6

pop α from P7

j := |α|8

c := centre(α)9

set β to the unique cell of Mn such as An(c) ∈ β10

if min(J − 1, |β|) ≥ j then11

push each of α's daughter to P12

else13

add α to Mn+1
14

for each node a of α (a 6∈ Fn+1) do15

set β to the unique cell of Mn such as An(a) ∈ β16

v := interpolate(An(a), β)17

add the pair (a, v) to Fn+1
18

k[j] := k[j] + 119

while k[j] = 4 ∧ j > j0 do20

k[j] := 021

α := mother(α)22

if b[j] ∧ compression-test(α) then23

add α and remove its 4 daughters from Mn+1
24

else25

b[j − 1] := false26

b[j] := true27

j := j − 128

k[j] := k[j] + 129

end30

5 Data structure

The data structure used to represent the adaptive mesh and store values
(i.e., to represent Mn and Fn) is of great importance in the e�cient imple-
mentation of an adaptive method. Data should be as local as possible which
leads to a treelike representation of the information. Moreover, the actual
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Figure 1: Data organization

numerical method derived from the semi-Lagrangian scheme exhibits ran-
dom accesses determined by the backward advection operator (that depends
itself from the electric �eld): the value of fn+1 at (x, v) is the value of fn

interpolated at An(x, v). Thus the values should be organized by location
in phase space to provide fast random access given a point of the space.
Therefore, as in [7], we use arrays to store values.

The values at nodes of a coarse cell are stored in one single 2D array,
so called coarse array, and for any coarse cell α which does not belong to
the mesh, all the values at nodes of descendant cells (whose ancestor is α)
are stored in their own 2D array, so called �ne array. Each element of these
2D arrays either stores an approximate of the solution, or stores a special
constant which means that no value is present at this node. Therefore the
test a 6∈ Fn is e�ciently implemented by just comparing the element with
the constant. Notice that this is an important reduction of memory usage
compared with using an unique 2D array. However, since some nodes are
shared between coarse and �ner cells, it may happen that some values are
stored and computed several times in our data structure.

In addition to these arrays of values, another array, so called sparse ar-
ray, represents an approximate of the treelike structure of the adaptive mesh.
Elements of this array are in one-to-one corespondance with cells of the uni-
form grid of level j0. Each element either is the null pointer identifying the
presence of a coarse cell, or a pointer to an array of values identifying the
presence of some �ner cells. Hence, getting access to a value at an exist-
ing node requires only two memory address reads: one for reading the right
pointer within the coarse array, and one other for accessing to the right ele-
ment in the right 2D array (coarse or �ne as the pointer is null or not). Fig.1
illustrates our data organization.

Among the operations whose complexity depends on the data structure,
one occurs a number of times about the number of nodes and therefore
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its complexity has to be inspected carefully. This operation is searching
the unique cell which contains a given point of the phase space. It can be
performed in various ways:

• Linear search. Checks all the cells which contains the point by scanning
levels from J to j0 until the center node has a value or else from
j0 to J until the center node has no value. The linear search thus
runs in O(J − j0 + 1).

• Binary search. Find the median level and check the cell of this level.
If no value exists at center node (it means no �ner cells exist), then
search strictly coarser cells in same manner, else (it means no coaser
cells exist in the mesh) search �ner cells until only one level remains.
The binary search thus runs in O(log2(J − j0 + 1) + 1).

• Storage of level. This process uses an additional 2D array for each �ne
array. Its elements are in one-to-one correspondance with the cells of
the �ne uniform grid. This array stores, for each �ne cells, say α, the
level of the mesh cell which contains α. Hence, getting the level of the
searched cell requires only one read in this array. This process thus
runs in O(1). But drawback is that any time a cell is added to the
mesh, the additional array has to be updated. The update complexity
is of order of the cell surface, i.e., O((J − j + 1)2), where j is the cell
level.

Therefore some performance measurements have to be performed in order
to determine the best process in any case. The experimental results and
conclusions are reported in section 6.

6 Experimental results

The algorithm presented in this paper had been implemented in C with spe-
cial care on structures for recursion removal. For example, the stack of states
(P), used in our iterative algorithm (see section 4), can be advantageously
represented by an array whose indices range from j0 to J and identify cell
levels. Each element of this array is an array itself, storing at most four cells
of the same level. This small structure is su�cient to describe all states of
the recursive traversal because we have to consider at most 4 sister cells for
each level at a same time.

For the data structure presented in section 5, we implemented all three
searching algorithms. Then we made some measurements in order to com-
pare their performances in a real simulation of a semi-gaussian beam under
the e�ect of a uniform electric �eld. The simulation last for 500 iterations
of the algorithm, with at most 2048 points per dimension (J = 10). The
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program runs on a linux PC with an Athlon64 processor at 2.4GHz with
1024KB of cache and a 4GB RAM. The table 6 gives execution time for
this simulation. It shows that the linear search algorithm, which is the most
simple of the three algorithms, is also the fastest whatever the size of �ne
arrays is used.

coarse level (j0) 3 4 5 6 7 8

linear 407 353 335 342 376 495
binary 438 387 369 374 402 529

level storage 409 356 344 346 387 510

Table 1: Execution time (s) with di�erent searching algorithms

coarse level (j0) 3 4 5 6 7 8

linear 1.50 1.54 1.50 1.49 1.40 1.21
binary 3 3 2.90 2.85 2 2

Table 2: Number of access to the data structure

Results exposed in table 6 are rather unexpected. The level storage
algorithm is slower than the linear search, that can be explained by the
writing overhead introduced which is more important than the reduction of
the number of accesses to one. But we could expect that binary search will
also reduce the number of accesses for a very low cost overhead of the median
level computation. But table 6 shows that for this realistic simulation, binary
search accesses more times to data structure than the simple linear search.
First of all, the binary search has a serious drawback because it always need
an extra access to con�rm the result. It implies that the minimum number of
access with the binary search is 2 whereas linear search needs only 1 access
in the best case. And as there is more �ne level elements than coarse one
(simply because of their size), there is more favorable cases for the linear
search than the binary search. If a case is more advantageous for binary
than linear search, we could almost say that the chosen �nest level J should
be coarsened.

7 Conclusion and futur works

We have presented a new adaptation framework for solving Vlasov equation.
Our method is based on a recursive algorithm that allows a by-block process-
ing of a time step. This locality reduces the accesses to adaptive mesh which
are the main cause of overhead in this adaptive method. This study has
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been de�ned for a 2 dimensional domain. It has to be extended for higher
dimensions.

Moreover, for a future parallelization, the block processing is advanta-
geous because it will minimize synchronization barriers that restrict speedup
of code. Recursion removal and a study on how to search for mesh elements
in the sparse structure make the sequential code more e�cient. Now we
have to parallelize this solver in order to run simulations in higher dimen-
sions. We have to give a particular attention to load balancing and mesh
distribution. The inherent recursive construction of the mesh and distant
access to elements make this load balancing a main convern to achieve a
good scalability.
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