
Memory Optimization by Counting Points in Integer
Transformations of Parametric Polytopes

Rachid Seghir
seghir@icps.u-strasbg.fr

Vincent Loechner
loechner@icps.u-strasbg.fr

LSIIT (UMR 7005 CNRS), ICPS
Université Louis Pasteur, Strasbourg, France

ABSTRACT
Memory size reduction and memory accesses optimization
are crucial issues for embedded systems. In the context of
affine programs, these two challenges are classically tackled
by array linearization, cache access optimization and mem-
ory size computation. Their formalization in the polyhedral
model reduce to solving the following problem: count the
number of solutions of a Presburger formula.

In this paper we propose a novel algorithm that answers
this question. We solve the Presburger formula whose so-
lution is a union of parametric Z-polytopes and we propose
an algorithm to count points in such a union of parametric
Z-polytopes. These algorithms were implemented and we
compare them to other existing methods.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—Compil-
ers, Optimization; G.2.1 [Discrete Mathematics]: Com-
binatorics—Counting problems

General Terms
Algorithms, Performance.

Keywords
Exact memory size computation, array linearization, cache
access optimization, polytope model, counting lattice points
in polytopes.

1. INTRODUCTION
Two parameters particularly impact the size and the cost

of an embedded system: memory size, and power consump-
tion. In many applications, and especially in real-time mul-
timedia processing systems, a large part of power consump-
tion is due to data transfers and memory access operations.
For these two reasons -memory size reduction and memory

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CASES’06,October 23–25, 2006, Seoul, Korea.
Copyright 2006 ACM 1-59593-543-6/06/0010 ...$5.00.

accesses optimization- memory optimization is a crucial is-
sue in compilation techniques for high performance embed-
ded computing [19]. The class of ”affine programs” (affine
access functions to arrays in affine bounded loop nests) has
been tackled in the past by many researchers, since they
occur frequently and are resource-consuming, in applica-
tions like digital audio/video, imaging, graphics, compres-
sion/decompression, etc. In this context, array linearization
[28], cache access optimization [11, 5, 15], and memory size
computation [32, 33] reduce to the problem of counting the
number of images of integer points in a polytope (or a Z-
polytope1) by an affine function, or equivalently counting
the solutions to a Presburger formula. If the considered
programs contain unknown variables at compile-time, this
problem has to be solved analytically, and the solution has
to be expressed as a function of these parameters. In such
a case, we manipulate parameteric Z-polytopes.

The first solutions proposed approximations or minima of
this number [32, 25] or solved the subproblem of count the
integer points in polytopes with one [1, 7] or many [4, 3, 30]
parameters. Then, some exact methods to count transfor-
mation of polytopes were proposed for the non-parametric
case [20, 2, 33].

Pugh [22] first proposed an algorithm to solve the general-
case problem, based on the Fourier-Motzkin variable elim-
ination [6]. However, it seems that complexity considera-
tions prevented the algorithm to be ever implemented, as the
number of splinters built by his method is a function of the
coefficients of the formula. Moreover, it is not clear whether
his method is able to eliminate more than one existential
variable without scanning a large number of polytopes.

More recently, Verdoolaege et al. [29] proposed to apply
simple rewriting rules (existential variables that are unique
or redundant, decomposition in independent splits) to a dis-
joint union of parametric sets computed using the Omega
Calculator [22], and to use the PIP library [9] if these rewrit-
ing rules fail. But the input of their algorithm, the disjoint
union of sets computed from a Presburger formula is worst-
case exponential; and PIP is worst-case exponential.

Another theoretical polynomial-time algorithm was pro-
posed by Verdoolaege and Woods [31] but its implementa-
tion remains a challenge.

In this paper, we propose a new algorithm handling this
problem, based on: (i) a polynomial method to count the
number of integer points in a union of a fixed number of
parametric Z-polytopes (of fixed dimension), (ii) a method

1A Z-polytope is the intersection of an integer lattice and a
polytope.

to compute the integer projection of a union of parametric
Z-polytopes as a worst-case exponential union of parametric
Z-polytopes.

We compared our implementation to the one of Verdoolae-
ge [29], and showed that, for an important set of examples, it
is more efficient. Moreover, the resulting quasi-polynomials
are significantly smaller using our algorithm, and, as these
polynomials are used in the optimized programs, their code
size is smaller, which also is an important issue in the context
of memory for embedded systems.

In section 2 we show the motivation of this work by means
of an example: array linearization for cache optimization
and memory compression. We present our algorithm for
computing the integer transformation of a Z-polytope in sec-
tion 3. Section 4 presents our algorithm for counting inte-
ger points in arbitrary unions of parametric Z-polytopes. In
section 5 we provide experiments comparing our implemen-
tation to the one of Verdoolaege. Finally, the conclusions
are given in section 6.

2. MOTIVATING EXAMPLE
In this section, we will optimize the loop nest in Figure

1.(a). We chose such a complex example to show the gen-
erality of our method, even if such array references occur
seldom in real applications. Notice however that when the
loop contains many references to an array, there are no other
methods than array linearization to achieve memory com-
pression.

The new access function (b) as compared to the original
one, requires less memory: the size of array A is 18N2 −
25N + 8, whereas the number of array elements that are
actually accessed is 3N2−2N (it is the size of array B, com-
puted using the algorithm described in Section 3). Under
the assumption that the array element size is 4 bytes, array
A requires 4(15N2 − 23N + 8) bytes more than B, which
is more than 576KB when N = 100 and more than 57MB
when N = 1000.

We now focus on the spatial locality improvement, as-
suming row-major order storage of arrays. Obviously, for
the original reference (3i + 6k, 2j + 5), a jump of six rows is
done each time the index of the innermost loop k changes.
Since there are 2N − 1 elements per row, a jump of 12N − 6
elements is done when the index k changes, whatever the
other indices. This probably leads to a cache miss at each
iteration when N is large, and page misses are very frequent.
In contrast, the new access function always ensures stride-
one accesses for fixed i and j such that i+2k ≤ 2N+1 (which
is the case occurring most often). When i + 2k ≥ 2N + 3
only a jump of 2N is done. Statistically speaking, this func-
tion leads to roughly 74.5% of stride-one accesses, 23.5%
of accesses of stride 200 and less than 2% of accesses of
stride greater than 200 and smaller than 30000, for N = 100.
While the original program leads to 99% of strides 1194 and
1% of strides greater than 100000.

When there is no data reuse, the new access function that
we calculate always ensures stride-one accesses. In our ex-
ample there is data reuse, but the number of stride-one ac-
cesses is improved. Let us fix i to 3, j to 6 and N to 100;
when 1 ≤ k ≤ 3, the new access function respectively refers
to elements B(501), B(502) and B(503). One can also check
the data coherence, i.e., if two iterations in the former lay-
out access the same datum, they also do in the new lay-
out. Of course, later accesses to the same data have to be

transformed as well using the same access function. A gen-
eral framework for optimizing many references to arrays in
many loops is out of the scope of this paper, but can be
found in [15].

Let us now present the linearization method for this exam-
ple. The iteration domain of loop 1.(a) corresponds to the
parametric polytope P = {(i, j, k) ∈ Z

3 | 1 ≤ i ≤ N ∧ 1 ≤
j ≤ N ∧ 1 ≤ k ≤ N}, and the affine access function to the
elements of array A is T (i, j, k) = (x = 3i + 6k, y = 2j + 5).
The elements of the array accessed by this loop nest are
given by the transformation by T of the integer points of
polytope P . The integer points of the rational image of P
which do not have integer preimages in P are not accessed
by this loop nest. We call these points the holes.

The transformation by T of the integer points of P is given
by the following Presburger formula [22]:

S = {(x, y) ∈ Z
2 | ∃(i, j, k) ∈ Z

3 : 1 ≤ i ≤ N

∧ 1 ≤ j ≤ N ∧ 1 ≤ k ≤ N ∧ x = 3i + 6k ∧ y = 2j + 5}.

The problem of calculating the integer image reduces then
to the elimination of the existential variables i, j and k.

The transformation of polytope P without taking into
account the problem of the holes, i.e., directly applying
Fourier-Motzkin variable elimination, gives the following re-
sult:

T (P) = {(x, y) ∈ Z
2 | 9 ≤ x ≤ 9N ∧ 7 ≤ y ≤ 2N + 5}

with N ≥ 1. The number of integer points in this polytope
is given by the following Ehrhart quasi-polynomial [8, 4, 30]:

E(T (P)) = 18N2 − 25N + 8 if N ≥ 1 and 0 otherwise.

While the exact number of images of the integer points in
P , computed as explained in Section 3, is:

E(S) = 3N2 − 2N if N ≥ 1 and 0 otherwise.

That is to say, the number of array elements actually ac-
cessed is 3N2 − 2N , which means that the size of unused
allocated memory is 15N2 − 23N + 8 array elements.

We now discuss the linearization of the above array. For
simplicity of this presentation, we process on an equiva-
lent set of the accessed elements. This set is obtained ap-
plying a variable compression [16] to the access function
T (i, j, k) = (x = 3i+6k, y = 2j+5), which gives T ′(i, j, k) =
(x′ = i + 2k, y′ = j + 2). The reference in Figure 1.(a) is
assumed to be A(i+2k, j+2)=.... Each datum A(x0, y0)
will be remapped to B(E(x0, y0, N)), where E(x0, y0, N) is
the Ehrhart quasi-polynomial corresponding to the number
of all array elements accessed before A(x0, y0). This poly-
nomial is obtained by counting integer points in the exact
integer transformation of all iterations that are lexicographi-
cally smaller (≺) than the first iteration accessing A(x0, y0).
Let T ′−1(x0, y0) ∩ P be the set of all iterations referencing
A(x0, y0). The first iteration accessing datum A(x0, y0) is
equal to the lexicographic minimum imin(x0, y0, N) of the
set T ′−1(x0, y0) ∩ P . PIP [9] allows to compute the integer
lexicographic minimum of a set of parametric constraints.
In our example, the lexicographic minimum is given by PIP
as:

imin(x0, y0, N) =

8

<

:

(x0 − 2N, y0 − 2, N) if x0 ≥ 2N + 2,
(x0 − 2M + 2, y0 − 2, M − 1)

otherwise,

do i=1, N

do j=1, N

do k=1, N

A(3*i+6*k, 2*j+5)= ...

enddo

enddo

enddo

(a) Original loop nest

do i=1, N

do j=1, N

do k=1, N

if (i+2*k>=2*N+3)

B((i+2*k-3)*N+j-1)=...

else if (i+2*k<=2*N+1 & i mod 2=1)

B((j-1)*N+(i+2k-3)/2)=...

else B((N+j-1)*N+i/2+k-2)=...

enddo

enddo

enddo

(b) Transformed loop nest

Figure 1: Data layout transformation: array A in loop nest (a) is transformed into a one-dimensional array
B in loop nest (b).

where M (introduced by PIP) is equal to ⌊x0+1
2

⌋, with ⌊.⌋
denoting the lower integer part.

Let us focus on the linearization of array A in the first
case, when the lexicographic minimum equals (x0−2N, y0−
2, N). Let S1(x0, y0) be the set of iterations preceding the
first one accessing datum A(x0, y0). This set is given by:

S1(x0, y0)
= {(i, j, k) ∈ P | (i, j, k) ≺ (x0 − 2N, y0 − 2, N)}
= {(i, j, k) ∈ P | i < x0 − 2N ∨ (i = x0 − 2N ∧

j < y0 − 2) ∨ (i = x0 − 2N ∧ j = y0 − 2 ∧ k < N)}

The array elements accessed by this set of iterations are
given by the following Presburger formula:

π(S1(x0, y0)) = {(x′, y′)Z2 | ∃(i, j, k) ∈ S1(x0, y0),
x′ = i + 2k ∧ y′ = j + 2},

where x0 and y0 are now considered as parameters. The
number of solutions to this Presburger formula is given by
the Ehrhart quasi-polynomial:

E1(x0, y0, N) =

8

<

:

N2 + (y0 − 2)N − 1 if x0 = 2N + 2
(x0 − 3)N + y0 − 3 if x0 ≥ 2N + 3
0 otherwise.

In the same way, we calculate the new access function in
the second case, when the lexicographic minimum equals
(x0 − 2M + 2, y0 − 2, M − 1).

Finally, reference A(3i+6k, 2j+5) is replaced by B(E (x0,
y0, N)), where B is a one-dimensional array, x0 = i + 2k
and y0 = j + 2 (see Figure 1):

E(x0, y0, N) =

8

>

>

>

>

>

<

>

>

>

>

>

:

(x0 − 3)N + y0 − 3
if x0 ≥ 2N + 3

(y0 − 3)N + (x0 − 3)/2
if x0 ≤ 2N + 1 ∧ x0 odd

N2 + (y0 − 3)N + (x0 − 4)/2
if x0 ≤ 2N + 2 ∧ x0 even.

3. INTEGER TRANSFORMATIONS OF PA-
RAMETRIC POLYTOPES

The problem of calculating the affine transformation of
a polytope is equivalent to the elimination of the existen-
tial variables from the Presburger formula representing the
transformation. The first step consists in removing all the
equalities of the formula, which automatically eliminates a

number (equal to the number of non-redundant equalities)
of existential variables. The removal of an equality from a
polytope defined on the set of integers, must be done so that
there exist integer values of the variables to be eliminated
for each integer value of the other variables. We use Meis-
ter’s technique described in [16] to eliminate the equalities.
Note that since this algorithm modifies the coordinates of
the considered polytopes, we must rewrite each transformed
polytope as a function of its original variables and param-
eters before counting the integer points in the result. In
the following, we consider without loss of generality, that
our formulas do not contain equalities, and we focus on the
remaining existential variables. We can then rewrite the
formulas in the form of a set of lower and upper bounds
{l(x,p) ≤ βz, αz ≤ u(x,p)}, where z is a variable chosen
to be eliminated, l(x,p) and u(x,p) are affine functions of
variables x and parameters p independent of z, and α and
β are strictly positive integer constants.

3.1 Existential variable elimination and inte-
ger projection

W. Pugh et al. [21, 22, 23] proposed an extension of the
Fourier-Motzkin existential variable elimination [6] from real
numbers to integers, as follows:

Any pair of lower and upper bounds {l(x, p) ≤ βz, αz ≤
u(x,p)} defines:

• an exact shadow, corresponding to the rational pro-
jection of the points which belong to this pair of con-
straints. This is given by: αl(x,p) ≤ βu(x,p).

• a dark shadow, corresponding to the convex part of
the exact shadow in which any integer point has at
least one integer preimage. This is given by: αl(x,p)+
(α−1)(β−1) ≤ βu(x,p). Notice that if α = 1 or β = 1,
the dark shadow is equal to the exact shadow.

The part of the exact shadow which does not belong to
the dark shadow may contain integer points having inte-
ger preimages, and other integer points having only rational
preimages, i.e., defining so-called holes (see Figure 2).

The Omega test [21] answers the question: “is there an
integer point in the projection having at least an integer
preimage?” as follows:

• if the exact shadow does not contain any integer point,
the answer is: no,

x

y

hole hole

exact shadow

dark shadow

0

(P)

Figure 2: The integer projection of a polytope.

• if the dark shadow contains at least one integer point,
the answer is: yes,

• else, the answer is not obvious. In this case, we have
to know whether the part of the exact shadow which
does not belong to the dark shadow contains an integer
point having integer preimages.

In order to answer this latter question, Pugh and Wonna-
cott [23] check whether the intersection of a certain number
(function of α and β) of hyperplanes with the constraints
of the original system contains an integer point. This solu-
tion provides new constraints with possibly extra existential
variables (the splinters) which complicate the answer to the
two following questions:

• how many integer points are contained in the integer
projection of the polytope?

• how to project the result along another dimension?

Note that the splinters provided by Pugh’s method are some-
what similar to our Z-polytopes (when the coefficients of the
existential variable are not coprime, see Section 3.2.2). But
it is not clear whether these splinters can be projected along
another dimension without scanning a possibly large num-
ber of polytopes. Also, when the coefficients are coprime,
Pugh’s method does not propose a simple solution as we do,
and no explanation is given for non-coprime coefficients nor
for the parametric case.

Example 1. Consider the following example (introduced
in [23]):

S = {x ∈ Z | ∃y ∈ Z : 0 ≤ 3y − x ≤ 7 ∧ 1 ≤ x − 2y ≤ 5}.

The exact shadow defined by the elimination of y is given by:
3 ≤ x ≤ 29 and the dark shadow is given by: 5 ≤ x ≤ 27.

Pugh and Wonnacott’s algorithm [23] calculates the set
of constraints containing the images which do not belong to
the dark shadow as follows:

{x ∈ Z | ∃y ∈ Z : x = 3y ∧ 1 ≤ y ≤ 5 }∪
{x ∈ Z | ∃y ∈ Z : x = 3y − 1 ∧ 2 ≤ y ≤ 6 }∪
{x ∈ Z | ∃y ∈ Z : x = 2y + 5 ∧ 5 ≤ y ≤ 12}.

While our rules provide these images directly in the form:
{x = 3, x = 29}.

3.2 Projection method
In this section, we will focus on the projection of a single

pair of lower and upper bounds on an existential variable
chosen to be eliminated. Indeed, the projection of the whole
polytope is simply obtained by intersecting the projections
of all its pairs of bounds (as for the well-known Fourier-
Motzkin procedure).2

Consider a pair of lower and upper bounds {l(x,p) ≤
βz, αz ≤ u(x,p)}. The projection of such a pair is given
by the union of its dark shadow (αl(x,p)− βu(x,p) + (α−
1)(β−1) ≤ 0) and another set of integer points which cannot
be obtained by applying simple rules. We calculate these
points as follows.

The set of points we are searching for lie on the region
given by the difference between the exact shadow and the
dark shadow. This region is given by: −(αβ − α − β) ≤
αl(x,p) − βu(x,p) ≤ 0 which is equivalent to:

αl(x, p) − βu(x,p) + γ = 0, (1)

where γ is an integer constant such that 0 ≤ γ ≤ αβ−α−β.
The values of γ for which the hyperplane (1) contains the
points we are interested in are those verifying the inequality:

α(−l(x, p) mod β) ≤ γ ⇔ β(u(x,p) mod α) ≤ γ (2)

Note 1. The values of γ for which the hyperplane (1)
contains no integer points are excluded from the search set.
On another hand, if one of the bounds l(x,p) or u(x,p) is
a constant, the elimination of the existential variable results
in the dark shadow only.

We calculate the solutions of inequality (2) in two different
ways, depending on whether the coefficients α and β are
coprime or not.

3.2.1 Case of coprime coefficients
When the coefficients of the existential variable are co-

prime, the calculation of the values of γ for which the hy-
perplane (1) contains the points we are searching for, de-
pends neither on the variables nor on the parameters, i.e.,
it depends only on the constants α and β. In this case, the
inequality (2) is equivalent to:

α((c1γ) mod β) ≤ γ ⇔ β((c2γ) mod α) ≤ γ, (3)

where c1 and c2 are integer constants such that c1α+ c2β =
1. Proofs are given in an extended technical report [27].

Example 2. Consider the following Presburger formula:

S = {x ∈ Z | ∃y ∈ Z : 2 ≤ 3y−x ≤ 5∧−1 ≤ x−2y ≤ N−1}.

This set is equivalent to projecting out the variable y from
the polytope P pictured in Figure 2 (when N = 2), where N
is a positive integer parameter.

According to the pair of bounds {x − N + 1 ≤ 2y, 3y ≤
x + 5}, we have:

l(x, N) = x − N + 1, u(x,N) = x + 5, α = 3, β = 2.

Let c1 = 1, c2 = −1. The constraint on the dark shadow,
corresponding to this pair of bounds, is x ≤ 3N + 5. The

2The result is also intersected with the constraints that are
independent of the eliminated variable.

points of the projection which do not belong to the dark
shadow are given by:

αl(x, N) − βu(x, N) + γ = 0, 0 ≤ γ ≤ αβ − α − β
and α((c1γ) mod β) ≤ γ

⇒ x − 3N − 7 + γ = 0, 0 ≤ γ ≤ 1 and 3(γ mod 2) ≤ γ.

Scanning the values of γ, we find that the only one satisfying
these constraints is: γ = 0. The corresponding point (a
hyperplane in the general case) is x = 3N+7. Similarly, one
can calculate the point x = 1 from the other pair of bounds
{x + 2 ≤ 3y, 2y ≤ x + 1}, generating the constraint x ≥ 3
on the dark shadow. The integer projection of the polytope
P can then be obtained by intersecting the projections of the
two pairs. Since N is positive, the result is:

S = {x ∈ Z | x = 1 ∨ 3 ≤ x ≤ 3N + 5 ∨ x = 3N + 7}.

3.2.2 Case of non-coprime coefficients
Let us now consider the case of non-coprime coefficients

(gcd(α, β) 6= 0). The calculation of the values of γ, for
which the hyperplane (1) contains the points of the projec-
tion which are outside the dark shadow, depends on the con-
stants α and β, and furthermore depends on the variables
and parameters. Let g = gcd(α, β), α′ = α/g, β′ = β/g.
One can then rewrite the equation of the hyperplane (1) in
the form:

α′l(x,p) − β′u(x,p) + γ = 0, (4)

with γ ∈ Z, 0 ≤ γ ≤ αβ′ −α′ − β′, and the inequality (2) in
the form:

α′(−l(x,p) mod β) ≤ γ ⇔ β′(u(x,p) mod α) ≤ γ. (5)

Again, only the values of γ for which the hyperplane (4)
contains integer points are taken into account.

In this case, it may happen that only a subset of the in-
teger points of the hyperplane (4) belong to the projection.
These points are defined by the intersection of the hyper-
plane with a union of integer lattices obtained by solving
one of the following modulo equalities:

−l(x,p) mod β = γ′, with 0 ≤ γ′ ≤ min
“j γ

α′

k

, β
”

, (6)

u(x,p) mod α = γ′, with 0 ≤ γ′ ≤ min

„—

γ

β′

�

, α

«

. (7)

In practice, it is worth to consider equality (6) when β < α
and equality (7) otherwise.

The solution to a modulo equality f(x,p) mod a = b is a
lattice of the form:

L =



`

Ax Ap

´

„

x
p

«

+ c

˛

˛

˛

˛

x ∈ Z
d,p ∈ Z

n

ff

, (8)

where Ax, Ap are integer matrices, c is an integer vector, x
is a vector of the data space and p is a vector of parameters.
We calculate this solution using the technique presented in
[17]. Of course, only non-empty lattices and hyperplanes are
considered.

Example 3. Consider a pair of bounds in which the co-
efficients of the existential variable y are not coprime {x −
N − 2 ≤ 2y, 4y ≤ x + 5}. We have:

l(x, N) = x − N − 2, u(x, N) = x + 5, α = 4, β = 2
⇒ gcd(α, β) = 2, α′ = 2, β′ = 1.

The corresponding constraint on the dark shadow is 2x ≤
4N +15 ⇔ x ≤ 2N +7. The points outside the dark shadow
and belonging to the projection lie on the hyperplane:

x − 2N − 9 + γ = 0,

such that 0 ≤ γ ≤ 1 and 2((x − N − 2) mod 2) ≤ γ.
For both values of γ, the solution to the above modulo

inequality is a lattice:

L =

 „

2 1
0 1

« „

x
N

«

+

„

−2
0

« ˛

˛

˛

˛

x ∈ Z, N ∈ Z

ff

.

Hence, the points x = 2N + 9 and x = 2N + 8 (obtained
by substituting the values of γ in equality x − 2N − 9 + γ =
0) belong to the projection only if x and N belong to the
lattice L. The whole projection of the pair of bounds is then
given by:

S =

8

<

:

x ∈ Z

˛

˛

˛

˛

˛

˛

(x = 2N + 8 ∧ (x, N) ∈ L)
∨ (x = 2N + 9 ∧ (x,N) ∈ L)
∨ x ≤ 2N + 7

9

=

;

.

Projecting out an existential variable may result in a union
of Z-polytopes, i.e., a union of intersections of polytopes and
lattices of the form (8). This may occur when the coefficients
of the existential variable are not coprime. Therefore, in or-
der to project out a second variable, this union has to be
projected again, and so on. The projection of a Z-polytope
is obtained by first transforming the polytope according to
its associated lattice, then projecting it as explained before
and finally rewriting it as a function of its original variables
and parameters.

The number of Z-polytopes in the final resulting union,
and thus the complexity of the algorithm, is worst-case ex-
ponential in the coefficients of the eliminated variables.

In the following section, we will be interested in counting
integer points in arbitrary unions of parametric Z-polytopes.

4. COUNTING POINTS IN UNIONS OF PA-
RAMETRIC Z-POLYTOPES

Counting integer points in unions of parametric Z-polyto-
pes is useful for counting points in integer transformations
of polytopes, but also to handle non-unit stride loop nest
analyses [24, 12]. In the following, we will discuss an al-
gorithm dealing with general parametric Z-polytopes of the
form Z = P ∩ L, with:

P =

„

x
p

«

∈ Z
(d+n)

˛

˛

˛

˛

`

Ax Ap

´

„

x
p

«

+ a ≥ 0

ff

,

L =



`

Bx Bp

´

„

x
p

«

+ b

˛

˛

˛

˛

x ∈ Z
d, p ∈ Z

n

ff

,

where P is a parametric polytope, L is a parametric integer
lattice, Ax ∈ Z

m×d, Ap ∈ Z
m×n, Bx ∈ Z

(d+n)×d and Bp ∈
Z

(d+n)×n are integer matrices, a ∈ Z
m and b ∈ Z

d+n are
integer vectors, x is a vector of the data space and p is a
vector of parameters.

To the best of our knowledge, the previous methods [16,
33] to count points in unions of Z-polytopes are lattice-union
based, which is exponential in the size of lattice generators
and their least common multiple. Furthermore, Zhu et al.’s
method [33] only deals with non-parametric Z-polytopes.

In contrast, our method is lattice-intersection based: the
lattice intersection is polynomial since the intersection of two

Counting the integer transformation of a polytope

Input:
P : Polytope
T : Transformation matrix

Output:
L: List of (Validity domain, Ehrhart quasi-polynomial)

Variables:
F, U : Presburger Formulas
S, S′: List of (sign, Z-polytope)

F = PresburgerFormula (P, T)
F = EliminateEqualities (F)

// Existential variables elimination
For each v in variables to be eliminated in F

F = ReduceLattice (v, F)
U = Universe (Dim(F) − 1)
For each αu, βl in pairs of bounds on v in F

D = DarkShadow (αu, βl)
If α = 1 or β = 1

U = U ∩ D
Else

E = ExactShadow (αu, βl)
U = U ∩ (D ∪ RemoveHoles(E − D, αu, βl))

End If
End For
F = U

End For
// F is now a union of Z-polytopes

// Inclusion-exclusion principle
S = Empty
For each Z in F

S′ = S
For each (s,Y) in S

I = Z ∩ Y
If Not Empty (I)

S′ = S′ + (−1 × s, I)
End If

End For
S = S′ + (+1,Z)

End For

// Enumeration of S
L= Empty ()
For each (s,Y) in S

L = AddAndSimplify (L, s×Enumerate (Y))
End For

Figure 3: Algorithm

lattices results in only one lattice, whatever their generators.
Previous algorithms start by calculating a disjoint union of
the input Z-polytopes. It is usually very hard to separate a
union of Z-polytopes into a disjoint union [33], and it may
be exponential even for a fixed number of Z-polytopes.

We therefore rather use the well-known inclusion-exclusion
principle to generate a set of Z-polytopes, where only non-
empty intersections are taken into account. In our algo-
rithm, we process on a set of signed Z-polytopes: the num-
ber of integer points in the union of two Z-polytopes Z1 and
Z2, say E(Z1 ∪Z2), is equal to E(Z1)+ E(Z2)−E(Z1 ∩Z2).
Of course, this generalizes to any number of Z-polytopes.

After applying the inclusion-exclusion principle, the num-
ber of points in each of the resulting Z-polytope Yi = Pi∩Li

is calculated as follows. First, we transform the matrix
`

Bx Bp

´

generating the lattice:

Li =



`

Bx Bp

´

„

x
p

«

+

„

bx

bp

«
˛

˛

˛

˛

x ∈ Z
d,p ∈ Z

n

ff

into a new matrix of the form: M =

„

Bxx Bxp

0 Bpp

«

. In ma-

trix M , the rows which transform the parameter space are
independent of the variables.3 This is required to keep the
data space compressed when rewriting the transformed poly-
tope as a function of its original parameters. Matrix M is
calculated from the Hermit normal form [26] of

`

Bx Bp

´

.

Then, we apply the affine transformation

„

M

„

bx

bp

« «

to Pi to get an ordinary polytope P ′. Finally, P ′ is rewrit-
ten as a function of the original parameters using the sub-
matrix (Bpp|bp), and we use our counting algorithm [30]
to calculate the Ehrhart quasi-polynomial corresponding to
the number of integer points in the resulting polytope. Note
that when submatrix Bpp is not equal to the identity matrix,
the polytope is valid only for the parameter values generated
by the lattice Lp, whose basis is Bpp and affine part is bp.
In this case, the resulting Ehrhart quasi-polynomial is to be
multiplied by one if the parameter values are valid and zero
otherwise.

The complexity of the proposed algorithm depends on
the complexity of the significant Z-polytope operations, the
complexity of counting integer points in a parametric poly-
tope and the number of resulting Z-polytopes after applica-
tion of the inclusion-exclusion principle. The only significant
Z-polytope operation used in this algorithm is the intersec-
tion, which is polynomial since the intersection of two poly-
topes is simply given by concatenating their constraints, and
the intersection of two lattices reduces to solving a system
of linear equalities [18], which is polynomial in the input
size [26]. Counting integer points in a parametric polytope
is also polynomial in the input size (for fixed dimension), as
we showed in [30]. Finally, when the number of input Z-
polytopes is fixed, the inclusion-exclusion principle provides
a polynomial number of Z-polytopes. Hence the whole al-
gorithm is polynomial in the input size (for fixed dimension
and fixed number of input Z-polytopes).

The whole algorithm is summarized Figure 3.

3Matrix M generates the same integer points as the original
matrix.

 0.01

 0.1

 1

 10

 100

 1 10 100

ac
ce

le
ra

tio
n

number of Z-polytopes

(a) lookup-table representation

 0.01

 0.1

 1

 10

 100

 1 10 100

ac
ce

le
ra

tio
n

number of Z-polytopes

(b) fractional representation

Figure 4: Execution time comparison with Ver-
doolaege’s implementation.

5. EXPERIMENTS
In this section, we compare our implementation to the one

of Verdoolaege et al., since it is the most efficient known
exact method to be implemented [29].

These experiments were undertaken with PolyLib version
5.22 and Barvinok version 0.20. In both implementations,
the first library is used to realize polyhedral operations, and
the second one to count integer points in parametric poly-
topes. In addition, Verdoolaege et al. use the PIP library
[10], and the Omega library [13] to simplify the input poly-
topes.

This random test set is representative of an important
number of complex cases (which do not reduce to the ra-
tional transformation, easily computed in polynomial time
by both implementations). The dimension of the polytopes
vary between 3 and 7 (corresponding to the loop depth plus
the array dimension), the number of parameters vary be-
tween 1 and 3, and the number of eliminated variables from
1 to 5. We chose to plot the acceleration and output size
ratio as a function of the number of Z-polytopes generated
after transformation by our algorithm, since it is the most
significant parameter on its complexity. The comparison
is performed using two representations of Ehrhart quasi-
polynomials: as lookup-table and as fractional enumerators.

The lookup-table representation is known to be exponen-

 0.01

 0.1

 1

 10

 100

 1 10 100

si
ze

 r
at

io

number of Z-polytopes

(a) lookup-table representation

 0.01

 0.1

 1

 10

 100

 1 10 100

si
ze

 r
at

io

number of Z-polytopes

(b) fractional representation

Figure 5: Output size comparison with Ver-
doolaege’s implementation.

tial [29] but its advantage, compared to the fractional rep-
resentation, is that it can be fully simplified. Therefore,
lookup-table quasi-polynomials may be of smaller size than
fractional ones (when their periods are small).

Figure 4 shows that, for many of these tests, our execu-
tion times are significantly lower than Verdoolaege’s ones
(the scale is logarithmic). The acceleration is about 2.05 in
the fractional case, and 2.71 when using lookup-table repre-
sentation. Indeed, most of the quasi-polynomials generated
by Verdoolaege’s method have larger periods than those gen-
erated by ours. Therefore, when using the fractional repre-
sentation, the performance of our algorithm does not change
much, while Verdoolaege’s algorithm is faster for some ex-
amples. Note that Verdoolaege’s method does not calculate
the actual projection, but an equivalent set of polytopes hav-
ing the same number of integer points. These polytopes are
sometimes of larger dimensions and may have larger con-
straints coefficients, which increases the execution time.

Figure 5 shows the size ratio of the output polynomials.
Again, since our method generates smaller periods, the re-
sulting polynomials are smaller than Verdoolaege’s. The
geometric mean of the size ratio in this set of examples is
1.94 in the fractional case and 3.23 in the periodic case.

6. CONCLUSION
We presented a new algorithm for calculating the trans-

formation of integer points in parametric polytopes. The so-
lution is given as a union of parametric Z-polytopes, worst-
case exponential but efficient in practical cases, and less
complex compared to other existing methods. A general
polynomial algorithm for computing the exact solution re-
mains a challenge. We also proposed a new polynomial algo-
rithm to count points in arbitrary unions of a fixed number
of Z-polytopes (of fixed dimension).

These algorithms have been implemented using the Poly-
hedral library [14] and Barvinok library [30].

These results have many applications in parametric affine
loop nest analysis and optimization, for example array lin-
earization, cache optimization, and memory size computa-
tion. The exact computation of the transformation of a
Z-polytope allows static generation of optimized code and
hardware, reducing power consumption and memory size in
embedded systems. Moreover, the smaller quasi-polynomials
that we obtain (compared to other methods) leads to smaller
optimized code.

7. ACKNOWLEDGEMENTS
We are grateful to the anonymous referees for their helpful

comments.
We would like to thank Catherine Mongenet for careful

reading of previous versions of this paper. Many thanks to
Sven Verdoolaege and Benôıt Meister for providing us with
their implementations and for many fruitful discussions.

8. REFERENCES
[1] A. I. Barvinok. Computing the Ehrhart polynomial of

a convex lattice polytope. Discrete Comput. Geom.,
12:35–48, 1994.

[2] B. Boigelot and L. Latour. Counting the solutions of
Presburger equations without enumerating them.
Theoretical Computer Science, 313(1):17–29, Feb.
2004.

[3] P. Boulet and X. Redon. Communication
pre-evaluation in HPF. In EUROPAR’98, volume 1470
of LNCS, pages 263–272. Springer Verlag, 1998.

[4] P. Clauss and V. Loechner. Parametric Analysis of
Polyhedral Iteration Spaces. Journal of VLSI Signal
Processing, 19(2):179–194, July 1998.

[5] P. D’Alberto, A. Veidembaum, A. Nicolau, and
R. Gupta. Static analysis of parameterized loop nests
for energy efficient use of data caches. In Workshop on
Compilers and Operating Systems for Low Power
(COLP01), Sept. 2001.

[6] G. B. Dantzig and B. C. Eaves. Fourier-Motzkin
elimination and its dual. J. Comb. Theory, Ser. A,
14(3):288–297, 1973.

[7] J. A. De Loera, R. Hemmecke, J. Tauzer, and
R. Yoshida. Effective lattice point counting in rational
convex polytopes. Journal of Symbolic Computation,
38(4):1273–1302, 2004.

[8] E. Ehrhart. Polynômes arithmétiques et méthode des
polyèdres en combinatoire. International Series of
Numerical Mathematics, 35, 1977.

[9] P. Feautrier. Parametric integer programming.
Operationnelle/Operations Research, 22(3):243–268,
1988.

[10] P. Feautrier, J. Collard, and C. Bastoul. Solving
systems of affine (in)equalities. Technical report,
PRiSM, Versailles University, 2002.

[11] S. Ghosh, M. Martonosi, and S. Malik. Cache miss
equations: a compiler framework for analyzing and
tuning memory behavior. ACM Transactions on
Programming Languages and Systems, 21(4):703–746,
1999.

[12] P. Held. Hipars: a tool for automatic conversion of
nested loop programs into single assignment programs.
Technical report, Dept. Electrical Engineering, Delft
University of Technology, 1994.

[13] W. Kelly, V. Maslov, W. Pugh, E. Rosser,
T. Shpeisman, and D. Wonnacott. The Omega
Library. Technical report, Institue for advanced
computer studies, University of Maryland, College
Park, 1996.

[14] V. Loechner. Polylib: A library for manipulating
parameterized polyhedra. Technical report, LSIIT -
ICPS UMR7005 Univ. Louis Pasteur-CNRS, Mar.
1999.

[15] V. Loechner, B. Meister, and P. Clauss. Precise data
locality optimization of nested loops. Journal of
Supercomputing, 21(1):37–76, 2002.

[16] B. Meister. Projecting periodic polyhedra for loop
nest analysis. In Proceedings of the 11th Workshop on
Compilers for Parallel Computers (CPC 04), Kloster
Seeon, Germany, pages 13–24, July 2004.

[17] B. Meister. Stating and Manipulating Periodicity in
the Polytope Model. Applications to Program Analysis
and Optimization. PhD thesis, December 2004.

[18] S. P. K. Nookala and T. Risset. A library for
Z-polyhedral operations. Technical report, 1330, Irisa,
2000.

[19] P. R. Panda, F. Catthoor, N. D. Dutt, K. Danckaert,
E. Brockmeyer, C. Kulkarni, A. Vandercappelle, and
P. G. Kjeldsberg. Data and memory optimization
techniques for embedded systems. ACM Trans. Des.
Autom. Electron. Syst., 6(2):149–206, 2001.

[20] E. Parker and S. Chatterjee. An automata-theoretic
algorithm for counting solutions to Presburger
formulas. In Compiler Construction 2004, volume
2985 of Lecture Notes in Computer Science, pages
104–119, Apr. 2004.

[21] W. Pugh. The Omega test: a fast and practical integer
programming algorithm for dependence analysis. In
Proceedings of the 1991 ACM/IEEE conference on
Supercomputing, pages 4–13. ACM Press, 1991.

[22] W. Pugh. Counting solutions to Presburger formulas:
how and why. In SIGPLAN Conference on
Programming Language Design and Implementation
(PLDI’94), pages 121–134, 1994.

[23] W. Pugh and D. Wonnacott. Experiences with
constraint-based array dependence analysis. In
Principles and Practice of Constraint Programming,
pages 312–325, 1994.

[24] P. Quinton, S. Rajopadhye, and T. Risset. On
manipulating Z-polyhedra using a canonical
representation. Parallel Processing Letters,
7(2):181–194, 1997.

[25] J. Ramanujam, J. Hong, M. Kandemir, and
A. Narayan. Reducing memory requirements of nested

loops for embedded systems. In DAC ’01: Proceedings
of the 38th conference on Design automation, pages
359–364, New York, NY, USA, 2001. ACM Press.

[26] A. Schrijver. Theory of linear and integer
programming. John Wiley & Sons, 1986.

[27] R. Seghir and V. Loechner. Minimizing memory
strides using integer transformations of parametric
polytopes. Technical report, LSIIT - ICPS UMR7005
ULP-CNRS, oct 2006. http://icps.u-strasbg.fr.

[28] A. Turjan, B. Kienhuis, and E. Deprettere. Solving
out-of-order communication in Kahn process networks.
J. VLSI Signal Process. Syst., 40(1):7–18, 2005.

[29] S. Verdoolaege, K. Beyls, M. Bruynooghe, and
F. Catthoor. Experiences with enumeration of integer
projections of parametric polytopes. In R. Bodik,
editor, Compiler Construction: 14th International
Conference, volume 3443, pages 91–105, Edinburgh, 3
2005. Springer.

[30] S. Verdoolaege, R. Seghir, K. Beyls, V. Loechner, and
M. Bruynooghe. Analytical computation of Ehrhart
polynomials: Enabling more compiler analyses and
optimizations. In Proceedings of International
Conference on Compilers, Architectures, and
Synthesis for Embedded Systems, Washington D.C.,
pages 248–258, Sept. 2004.

[31] S. Verdoolaege and K. Woods. Counting with rational
generating functions, 2005.
http://arxiv.org/abs/math/0504059.

[32] Y. Zhao and S. Malik. Exact memory size estimation
for array computations. IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, 8(5):517–521,
October 2000.

[33] H. Zhu, I. I. Luican, and F. Balasa. Memory size
computation for multimedia processing applications.
In Proceedings of 11th Asia and South Pacific Design
Automation Conference, pages 802–807, Jan. 2006.

