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Abstract

The polyhedral model is a well-known framework for the analysis and transforma-
tion of affine loop nests. In this paper, we present a new method concerning one of the
most delicate geometric operations that is raised by this model, namely the transfor-
mation of integer points in parametric polytopes, which is equivalent to eliminating the
existential variables from a Presburger formula. The result of such a transformation
is given by a union of Z-polytopes.

We also propose a polynomial algorithm, in the input size (for fixed dimension), to
count integer points in arbitrary unions of a fixed number of parametric Z-polytopes.
These results allow us to compute data layout transformations improving memory
compression and spatial locality: only data that are actually used by a loop nest are
allocated in memory, and they are allocated in the same order as they are accessed
for the first time, ensuring stride-one accesses when possible.

1 Introduction

Many affine loop nests analyses and optimizations raise the problem of counting the num-
ber of images by an affine integer transformation of the integer points contained in a
parametric polytope (a bounded polyhedron depending on parameters), or equivalently
counting the solutions to a Presburger formula. The following works, among many others,
raise this problem.

[11] and [5] propose a method to compute the number of cache misses by solving cache
miss equations. [12] optimize the data distribution of parallel programs through volume
of distant accesses for NUMA-machines. [28] calculate the number of memory locations
touched by a loop nest to compress memory. [7] quantify data misses depending on the
cache line size to minimize power consumption in embedded systems with adaptative
memory hierarchy. [2] compute reuse distances to improve cache effectiveness.

In this work, the integer transformation of parametric polytopes is used to extend
and improve the data layout remapping, discussed in [15]. The basic idea is the array
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linearization: the data are stored in a first-access ordered one-dimensional array. In the
new layout, array elements are remapped to main memory in the order in which they are
accessed for the first time. As a result, almost all subsequent iterations refer to adjacent
elements, which ensures spatial locality improvement, and memory compression. Indeed,
only data that are actually used are allocated in memory.

Many approaches to count the image of integer points in polytopes have been proposed
[21, 4, 1, 16, 19, 3], but none of them definitively solves this problem, particularly when the
polytopes are parametric. Recently, Verdoolaege et al. [25] proposed to apply a number
of simple rewriting rules to a disjoint union of parametric polytopes, and to use PIP [9] if
these rules fail. Note that the preprocessing step of computing the disjoint union, using the
Omega Calculator [20], is worst-case exponential, and so is PIP. A theoretical polynomial-
time algorithm was proposed in [27] but its implementation remains a challenge.

Pugh et al. [20, 21, 22] proposed an algorithm based on Fourier-Motzkin variable elim-
ination. Their algorithm allows to decide whether a Presburger formula is valid, i.e., if
it admits an integer solution. In certain cases, this algorithm introduces extra existential
variables which simplify the decision of the existence of a solution. Introducing new con-
straints with extra existential variables is not adapted to the problem of counting integer
points after projecting out more than one variable of a polytope, and no implementation
of this algorithm has been reported.

The integer transformation of a polytope by an affine function consists in eliminating
equalities from the corresponding Presburger formula first and then projecting it along
possibly many dimensions. In this paper we propose a new projection method, based
on Pugh and Wonnacott’s work [22], whose result is given by a union of parametric Z-
polytopes.1 The number of resulting Z-polytopes is worst-case exponential, when the
coefficients of the existential variables are large. Note that in our context (array references
linearization), these coefficients are usually not too large. We also provide an algorithm
for counting integer points in such unions. When the number of Z-polytopes in the union
is fixed, this algorithm computes the solution in a polynomial time in the input size (for
fixed dimension). Finally, we show through experiments that, for an important set of
representative examples, our method is more efficient than the one of Verdoolaege [25].

This paper is organized as follows: in Section 2 we show the motivation of this work
by means of an example. The data layout transformations for strides minimization is pre-
sented in Section 3. In Section 4 we present our method for calculating the transformation
of parametric polytopes. Section 5 discusses a new algorithm for counting integer points
in arbitrary unions of parametric Z-polytopes. In Section 6, we provide experiments com-
paring our method to the one of Verdoolaege [25]. Finally, the conclusions are given in
Section 7.

2 Motivating example

In this section, we will optimize the loop nest in Figure 1.(a) whose iteration domain
corresponds to the parametric polytope P = {(i, j, k) ∈ Z3 | 1 ≤ i ≤ N ∧ 1 ≤ j ≤
N ∧ 1 ≤ k ≤ N}, and the affine access function to the elements of array A is T (i, j, k) =
(x = 3i + 6k, y = 2j + 5).

1A Z-polytope is the intersection of a polytope with a non-standard integer lattice.
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do i=1, N

do j=1, N

do k=1, N

A(3*i+6*k, 2*j+5)= ...

enddo

enddo

enddo

(a) Original loop nest

do i=1, N

do j=1, N

do k=1, N

if (i+2*k>=2*N+3)

B((i+2*k-3)*N+j-1)=...

else if (i+2*k<=2*N+1 & i mod 2 =1)

B((j-1)*N+(i+2k-3)/2)=...

else B((N+j-1)*N+i/2+k-2)=...

enddo

enddo

enddo

(b) Transformed loop nest

Figure 1: Data layout transformation: array A in loop nest (a) is transformed into a
one-dimensional array B in loop nest (b).

The elements of array A accessed by this loop nest are given by the transformation
by T of the integer points of the polytope P . The integer points of the rational image of
P which do not have integer preimages in P are not accessed by this loop nest. We call
these points the holes.

The transformation by T of the integer points of P is given by the following Presburger
formula [21]:

S = {(x, y) ∈ Z2 | ∃(i, j, k) ∈ Z3 :

1 ≤ i ≤ N ∧ 1 ≤ j ≤ N ∧ 1 ≤ k ≤ N ∧ x = 3i + 6k ∧ y = 2j + 5}.

The problem of calculating the integer image reduces then to the elimination of the exis-
tential variables i, j and k.

The transformation of the polytope P without taking into account the problem of
the holes, i.e., directly applying Fourier-Motzkin variable elimination, gives the following
result:

T (P ) = {(x, y) ∈ Z2 | 9 ≤ x ≤ 9N ∧ 7 ≤ y ≤ 2N + 5} with N ≥ 1.

The number of integer points in this polytope is given by the following Ehrhart polynomial
[8, 6, 26]:

E(T (P )) = 18N2 − 25N + 8 if N ≥ 1 and 0 otherwise.

While the exact number of images of the integer points in P , computed as explained in
Section 4, is:

E(S) = 3N2 − 2N if N ≥ 1 and 0 otherwise.

That is to say, the number of array elements actually accessed is 3N2 − 2N , which means
that the size of unused allocated memory is 15N2 − 23N + 8 array elements.

We now discuss the linearization of the above array. For simplicity, we process on
an equivalent set of the accessed elements. This set is obtained applying a variable com-
pression [16] to the access function T (i, j, k) = (x = 3i + 6k, y = 2j + 5), which gives
T ′(i, j, k) = (x′ = i + 2k, y′ = j + 2). The reference in Figure 1.(a) is assumed to be
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A(i+2k, j+2)=.... Each datum A(x0, y0) will be remapped to B(E(x0, y0,N)), where
E(x0, y0, N) is the Ehrhart polynomial corresponding to the number of all array elements
accessed before A(x0, y0). This polynomial is obtained by counting integer points in the
exact integer transformation of all iterations that are lexicographically smaller (≺) than
the first iteration accessing A(x0, y0). Let T ′−1(x0, y0) ∩ P be the set of all iterations
referencing A(x0, y0). The first iteration accessing the datum A(x0, y0) is equal to the lex-
icographic minimum imin(x0, y0, N) of the set T ′−1(x0, y0)∩P . PIP [9] allows to compute
the integer lexicographic minimum of a set of parametric constraints. In our example, the
lexicographic minimum is given by PIP as:

imin(x0, y0, N) =

{

imin1(x0, y0,N) = (x0 − 2N, y0 − 2, N) if x0 ≥ 2N + 2
imin2(x0, y0,N) = (x0 − 2M + 2, y0 − 2, M − 1) otherwise,

where M (introduced by PIP) is equal to ⌊x0+1
2 ⌋, with ⌊.⌋ denoting the lower integer part.

In the following we focus on the linearization of array A when the lexicographic mini-
mum equals imin1(x0, y0, N). Let S1(x0, y0) be the set of iterations preceding the first one
accessing the datum A(x0, y0). This set is given by:

S1(x0, y0) = {(i, j, k) ∈ P | (i, j, k) ≺ imin1(x0, y0,N) =

i < x0 − 2N ∨ (i = x0 − 2N ∧ j < y0 − 2) ∨ (i = x0 − 2N ∧ j = y0 − 2 ∧ k < N)}

The array elements accessed by this set of iterations is given by the following Presburger
formula:

π(S1(x0, y0)) = {(x′, y′)Z2 | ∃(i, j, k) ∈ S1(x0, y0) : x′ = i + 2k ∧ y′ = j + 2},

where x0 and y0 are now considered as parameters. The number of integer points in this
Presburger formula is given by the Ehrhart polynomial:

E1(x0, y0, N) =







N2 + (y0 − 2)N − 1 if x0 = 2N + 2
(x0 − 3)N + y0 − 3 if x0 ≥ 2N + 3
0 otherwise.

In the same way, we calculate the new access function, when the lexicographic minimum
equals imin2(x0, y0, N).

Finally, the reference A(3i + 6k, 2j + 5) is replaced by B(E(x0, y0,N)), where B is a
one-dimensional array, x0 = i + 2k and y0 = j + 2 (see Figure 1):

E(x0, y0, N) =







(x0 − 3)N + y0 − 3 if x0 ≥ 2N + 3
(y0 − 3)N + (x0 − 3)/2 if x0 ≤ 2N + 1 ∧ x0 odd
N2 + (y0 − 3)N + (x0 − 4)/2 if x0 ≤ 2N + 2 ∧ x0 even.

Let us now discuss the benefit of the new access function as compared to the original
one, first in terms of allocated memory and then in terms of spatial locality. As we
mentioned at the beginning of this example, the size of the array A is 18N2 − 25N + 8,
whereas that of B is 3N2 − 2N . Suppose the array element size is 4 bytes. This makes
array A requiring 4(15N2 − 23N + 8) bytes more than B, which is more than 576 KB
when N = 100 and more than 57 MB when N = 1000.
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We now focus on the spatial locality improvement, assuming row-major order storage
of arrays. Obviously, for the original reference (3i+ 6k, 2j + 5), a jump of six rows is done
each time the index of the innermost loop k changes. Since there are 2N − 1 elements per
row, a jump of 12N − 6 elements is done when the index k changes, whatever the other
indices. This could lead to a cache or TLB miss at each iteration (when N is large). In
contrast, the new access function always ensures stride-one accesses for fixed i and j such
that i+2k ≤ 2N +1 (which is the case occurring most often). When i+2k ≥ 2N +3 only
a jump of 2N is done. Statistically speaking, this function leads to roughly 74.5 percent of
stride-one accesses, 23.5 percent of accesses of stride 2N and less than 2 percent of accesses
of stride more than 2N . Note that when there is no data reuse, the new access function
always ensures stride-one accesses. As an example, we can fix i to 3, j to 6 and N to 100.
When 1 ≤ k ≤ 3, the new access function respectively refers to elements B(501), B(502)
and B(503). One can also check the data coherence, i.e., if two iterations in the former
layout access the same datum, they also do in the new one. Of course, later accesses to
the same data have to be transformed as well using the same access function.

3 Data layout transformation

In [15], Loechner et al. presented an algorithm to optimize spatial locality through data
layout transformation. The data are stored in memory in the same order as they are
accessed for the first time by a loop nest. The previous example illustrates this method,
for one loop nest accessing one array reference. The method consists in computing:

1. the first iteration imin(x0,p) referencing an array element x0, where p is a vector of
parameters: it is the lexicographic minimum of the set of iterations I(x0), referencing
array element x0 through reference function T , I(x0) = {i ∈ (P ∩Zd) | T (i) = x0},
where P is a d-dimensional polytope representing the parametric constraints on the
loop nest indices. imin(x0,p) is computed from I(x0) using parametric polytope
operations and PIP [9];

2. the number of array elements being accessed by the loop nest before iteration
imin(x0,p): the image by the access function T of the iterations lexicographically
smaller than imin(x0,p).

In general, when there are two references R1 and R2 to the same array in a loop nest, the
data accessed by both access functions can not be optimized for both accesses. In [15],
the proposed method was to choose one of the references to optimize for these data, and
the other one will not be optimized. Let us consider that R1 is optimized. Then, all data
accessed through R1 will be optimized as presented above. The data accessed through
both R1 and R2 are using the same access function, not optimized for R2. And the data
accessed through R2 but not through R1 can also be optimized, using another data layout.
Generating code from this solution consists in either adding tests when accessing R2, or
splitting the loop nest such that the iterations accessing R2 through the first computed
function are separated from the iterations accessing R2 through the second function.

When there are two loop nests accessing the same data, the proposed solution is similar:
for the data accessed by both loop nests, one has to be chosen to be optimized, and the
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other one is split into two parts, one accessing the same data using the same not optimized
access function, and the other one that can be optimized.

In the following, we propose a new data layout remapping policy, based on parametric
Z-polytope transformations. This technique has the advantage to deal with the particular
cases for which the former method leads to an inefficient remapping or even fails to give
a solution.

Let us consider two references R1 and R2 to the same array A, occurring at the same
loop-level of a loop nest such that R1 precedes R2. We need to define two access functions
E1(x0,p) and E2(x0,p), respectively optimizing the references R1 and R2, where x0 is
the index vector of a referenced datum and p is the parameter vector. Let P be the
polytope defining the iteration space of the loop nest, R1 = A(T1(i)) and R2 = A(T2(i)),
where T1 and T2 are affine functions and i is a vector of the iteration space P . The first
iteration accessing a datum A(x0) according to the reference R1, (resp. R2) is given by the
lexicographic minimum of the set T−1

1 (x0)∩ P (resp. T−1
2 (x0)∩ P ). Let imin1(x0,p) and

imin2(x0,p) be these minima, and D1 and D2 their respective validity domains.2 Three
cases are possible:

When A(x0) is only accessed by R1, i.e., x0 ∈ D1 \ D2, the new access function
for the reference R1 is equal to the number of array elements accessed before iteration
imin1(x0,p) by both references R1 and R2. These elements are given by the union of
the transformations by T1 and T2 of the iterations that are lexicographically smaller than
imin1(x0,p).

E1(x0,p) = #({T1(i) | i ∈ P ∧ i ≺ imin1(x0,p)} ∪ {T2(i) | i ∈ P ∧ i ≺ imin1(x0,p)}).

When A(x0) is only accessed by R2, i.e., x0 ∈ D2 \D1, the new access function for the
reference R2 is equal to the number of array elements accessed before iteration imin2(x0,p)
by R2 union those accessed by R1 before iteration imin2(x0,p) (included).

E2(x0,p) = #({T1(i) | i ∈ P ∧ i � imin2(x0,p)} ∪ {T2(i) | i ∈ P ∧ i ≺ imin2(x0,p)}).

Finally, when A(x0) is accessed by both references R1 and R2, i.e., x0 ∈ D1 ∩D2, the
new access function E(x0,p), for R1 and R2, is given by the number of array elements
accessed before the minimum of imin1(x0,p) and imin2(x0,p) by both references.

E(x0,p) = #({T1(i) | i ∈ P ∧ i ≺ imin1(x0,p) ∧ i � imin2(x0,p)} ∪

{T2(i) | i ∈ P ∧ i ≺ imin1(x0,p) ∧ i ≺ imin2(x0)}).

We now consider two references R1 and R2, to the same array A, occurring in different
loop nests such that R1 precedes R2. Let P1 and P2 be the polytopes defining the iter-
ation spaces of R1 and R2, and consider again a datum A(x0) first accessed at iteration
imin1(x0,p) ∈ P1 by the reference R1 (resp. at imin2(x0,p) ∈ P2 by R2). The reference
R1 has to be optimized independently of the second one, since it is the first one accessing
all the data it touches. In contrast the reference R2 is optimized in two different ways.

When A(x0) is also accessed by R1, i.e., x0 ∈ D1 ∩ D2, the new access function for
R2 is equal to that of R1, which is given by the number of array elements accessed by R1

before iteration imin1(x0,p).

E2(x0,p) = E1(x0,p) = #{T1(i) | i ∈ P1 ∧ i ≺ imin1(x0,p)}.

2The constraints on x0 and p for which the lexicographic minimum iminj(x0,p) exists.
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When A(x0) is only accessed by R2, i.e., x0 ∈ D2 \ D1, the access function E2(x0,p)
is given by the number of all array elements accessed by R1 union those accessed before
imin2(x0) by the reference R2.

E2(x0,p) = #({T1(i) | i ∈ P1} ∪ {T2(i) | i ∈ P2 ∧ i ≺ imin2(x0,p)}).

Of course, this generalizes to more than two references, appearing in possibly many dif-
ferent loop nests and accessing the same array, as described in [15].

Many improvements are ensured by this new data layout remapping method. First, it
deals effectively with the general case for which the method in [15] fails to give a solution.
This concerns the case where holes occur in the data space being accessed by a loop nest.
It occurs, for example, when the coefficients of the loop indices in the access function are
not coprime, as in T (i, j) = 2i + 4j for i, j ∈ {1, 2}, where only even elements between 6
and 12 are accessed. This is solved using Z-polyhedra integer transformations.

When two references to the same array occur in a loop nest, the old remapping tech-
nique does not optimize both references when they access the same data. Moreover, it
optimizes each reference independently of the other, i.e., it omits the fact that data are
alternatively accessed by both references, which leads to non-strict first-access ordered ar-
rays. This has been solved by enumerating unions of transformed parametric Z-polytopes.
Finally, since it is difficult to separate the iteration space into convex regions, when data
are accessed by both references, loop splittings are replaced by tests checking whether a
datum has a lexicographic minimum according to each reference.

We have seen that the data layout transformation is based on counting integer points
in unions of transformations of parametric polytopes. The following section describes the
way we calculate these integer transformations.

4 Integer transformations of parametric polytopes

As we mentioned in Section 2, the problem of calculating the affine transformation of a
polytope is equivalent to the elimination of the existential variables from the Presburger
formula defining the transformation. The current section describes the way we deal with
parametric Presburger formulas of the form:

{x ∈ Zd | ∃x′ ∈ Zd′ : Ax′ + Bx + Cp + c = 0, A′x′ + B′x + C ′p + c′ ≥ 0}, (1)

where A,B,C,A′, B′, C ′ are integer matrices, x and x′ are subvectors of the data space, c

and c′ are constant vectors and p is a parameter vector.

4.1 Non-full-dimensional polytope preprocessing

The Presburger formulas we are interested in consist of a conjunction of affine equalities
and inequalities in which a number of variables are linked with the existential quantifier
∃, as shown by formula (1). The conjunction of equalities and inequalities is called a
non-full-dimensional polytope (when it is bounded).

A common way to handle existential variables is to project them out of a polytope. The
first thing to do before projecting out the existential variables from a non-full-dimensional
polytope is to remove its equalities, which automatically eliminates a certain number of
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the existential variables.3 The removal of a set of equalities from such a polytope must be
done so that there exist integer values of the variables to be eliminated for each integer
value of the other variables. In the following, we summarize an existing technique [17] for
transforming a non-full dimensional polytope into a full-dimensional one. For simplicity,
we consider here a non-parametric case, i.e., parameters are considered as regular variables.
Indeed, the removal of equalities from a non-full-dimensional parametric polytope is done
in the same way as for a non-parametric polytope. Notice, however, that parameters are
never eliminated whatever the number of equalities.

Definition 4.1 [23] A d-dimensional integer lattice is a subset of Zd defined by linear
combinations of linearly independent integer vectors, called lattice-generating vectors (or
lattice basis), plus an affine part.

L =
{

Ax + c | x ∈ Zd
}

, (2)

where A is a d×d integer matrix whose column vectors are the generators of the lattice and
c is a constant integer vector. The integer lattice (2) can also be given in the homogeneous
form:

L =

{(

A c

0 1

)(

x

1

) ∣

∣

∣

∣

x ∈ Zd

}

, (3)

where

(

A c

0 1

)

is the homogeneous matrix generating latice L.

Consider a d-dimensional polytope P , defined by a non-redundant system of e equalities
and e′ inequalities, and let E(xe,xd′) = 0 be the subsystem of equalities, where xe is
a vector of e variables to be eliminated and xd′ is a vector of d′ remaining variables
(d′ = d−e). In order to obtain a d′-full-dimensional polytope, it suffices to solve the system
E(xe,xd′) = 0 in xe as a function of xd′ , and to substitute the result in the subsystem of
inequalities. The resulting polytope is then intersected with an integer lattice defining the
valid values of xd′ (we call this a Z-polytope). Indeed, the solutions xe to E(xe,xd′) = 0
may be integers for only a subset of Zd′ . This subset is defined by an integer lattice,
obtained by solving a system of modulo equalities.

The system of equalities E(xe,xd′) = 0 can be written in the matrix form:

Axe + Bxd′ + C = 0, (4)

where A,B and C are respectively e × e, e × d′ and e × 1 matrices. There is an integer
solution in xe to (4) if the d′-dimensional point Bxd′ + C belongs to the lattice of integer
points spanned by the column vectors of A.

Let A = [HA 0]UA be the Hermit normal form of A. As the column vectors of A
and those of HA span the same lattice [24], the solutions to (4) are also solutions to
HAxe + Bxd′ + C = 0 and vis versa. Since HA is invertible, the integer solutions to (4)
are given by xe = −H−1

A (Bxd′ +C). As we only look for integer solutions, H−1
A (Bxd′ +C)

must be integer. The general solution is given by an integer lattice [17]:

xd′ = {Gx′ + x0 | x′ ∈ Zd′}.

Two cases are possible once the equalities are eliminated.

3The number of eliminated variables is equal to the number of removed non-redundant equalities.
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• There are no remaining existential variables (this is the case when the number of
existential variables is small or equal to the number of equalities). In this case, the
resulting full-dimensional Z-polytope corresponds to the transformation.

• There still remain existential variables. In this case, we first calculate the preimage
of the resulting full-dimensional Z-polytope by the homogeneous matrix generating
its lattice. Then, we eliminate the remaining existential variables as explained next
in subsection 4.3. In order to preserve the original coordinates, we calculate the
image of the resulting polytopes by the submatrix obtained by removing the lines
and columns corresponding to existential variables from the above homogeneous
matrix. The result is finally intersected with the sublattice defined by this latter
submatrix.

In the following, we consider without loss of generality, that our formulas do not contain
equalities, and we focus on eliminating the remaining existential variables.

4.2 Existential variable elimination and integer projection

The Fourier-Motzkin variable elimination procedure allows the elimination of an existential
variable from a system of affine inequalities, defined on the set of rational numbers. Its
main idea consists in rewriting the original system in the form of a set of lower and upper
bounds on the variable to be eliminated. Then, each pair of lower and upper bounds of the
form: {l(x,p) ≤ βz, αz ≤ u(x,p)} is to be replaced by its equivalent αl(x,p) ≤ βu(x,p),
where z is the existential variable chosen to be eliminated first, l(x,p) and u(x,p) are
affine functions of the variables and parameters independent of z, and α and β are strictly
positive integer constants. This procedure has been extended to integers by W. Pugh et
al. [20, 21, 22] as follows:

Any pair of lower and upper bounds {l(x,p) ≤ βz, αz ≤ u(x,p)} defines:

• an exact shadow, corresponding to the rational projection of the points which
belong to this pair of constraints. This is given by: αl(x,p) ≤ βu(x,p).

• a dark shadow, corresponding to the convex part of the exact shadow in which any
integer point has at least one integer preimage. This is given by: αl(x,p) + (α −
1)(β − 1) ≤ βu(x,p). Notice that if α = 1 or β = 1, the dark shadow is equal to the
exact shadow.

The part of the exact shadow which does not belong to the dark shadow may contain
integer points having integer preimages, and other integer points having only rational
preimages, i.e., defining so-called holes (see Figure 2).

The Omega test [20] answers the question: “is there an integer point in the projection
having at least an integer preimage?” as follows:

• if the exact shadow does not contain any integer point, the answer is: no,

• if the dark shadow contains at least one integer point, the answer is: yes,

• else, the answer is not obvious. In this case, we have to know whether the part of the
exact shadow which does not belong to the dark shadow contains an integer point
having integer preimages.
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x

y

hole hole

exact shadow

dark shadow

0

(P)

(1,1)

(13,6)

Figure 2: The integer projection of a polytope.

In order to answer this latter question, Pugh and Wonnacott [22] check whether the
intersection of a certain number (function of α and β) of hyperplanes with the constraints
of the original system contains an integer point. This solution provides new constraints
with possibly extra existential variables, which complicates the answer to the two following
questions:

• how many integer points are contained in the integer projection of the polytope?

• how to project the result along another dimension?

Example 1 Consider the following example (introduced in [22]):

S = {x ∈ Z | ∃y ∈ Z : 0 ≤ 3y − x ≤ 7 ∧ 1 ≤ x − 2y ≤ 5}.

The exact shadow defined by the elimination of y is given by: 3 ≤ x ≤ 29 and the dark
shadow is given by: 5 ≤ x ≤ 27.

Pugh and Wonnacott’s algorithm [22] calculates the set of constraints containing the
images which do not belong to the dark shadow as follows:

{x ∈ Z | ∃y ∈ Z : x = 3y ∧ 1 ≤ y ≤ 5 }∪
{x ∈ Z | ∃y ∈ Z : x = 3y − 1 ∧ 2 ≤ y ≤ 6 }∪
{x ∈ Z | ∃y ∈ Z : x = 2y + 5 ∧ 5 ≤ y ≤ 12}.

While our method gives these images directly in the form: {x = 3, x = 29}.

4.3 Projection method

In this section, we will focus on the projection of a single pair of lower and upper bounds on
the existential variable chosen to be eliminated first. Indeed, the projection of the whole
polytope is simply obtained by intersecting the projections of all its pairs of bounds.4

Consider a pair of lower and upper bounds {l(x,p) ≤ βz, αz ≤ u(x,p)}. The projec-
tion of such a pair is given by the union of its dark shadow (αl(x,p) − βu(x,p) + (α −
1)(β − 1) ≤ 0) and another set of integer points which can not be obtained by applying
simple rules. The following theorem defines the hyperplanes on which these latter points
lie.

4The result is also intersected with the constraints that are independent of the eliminated variable.
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Lemma 4.2 Let x, y be two rational numbers and ⌈x⌉, ⌈y⌉ (resp. ⌊x⌋, ⌊y⌋) be their upper
(resp. lower) integer parts. By definition, the following properties are equivalent.

1. ∃n ∈ Z such that x ≤ n ≤ y,

2. ⌈x⌉ ≤ ⌊y⌋,

3. ⌈x⌉ ≤ y,

4. x ≤ ⌊y⌋.

Theorem 4.3 Consider the pair of bounds {l(x,p) ≤ βz, αz ≤ u(x,p)} and let l(x,p) =
ll(x,p) + cl and u(x,p) = lu(x,p) + cu, where ll(x,p) and lu(x,p) are linear functions, cl

and cu are integer constants and g is the greatest common divisor (gcd) of the coefficients
of the variables and parameters in the linear function αll(x,p) − βlu(x,p). Then

• the points outside the dark shadow which belong to the integer projection, with respect
to this pair of bounds, lie on hyperplanes of the form:

αl(x,p) − βu(x,p) + γ = 0, (5)

with γ ∈ Z, 0 ≤ γ ≤ αβ − α − β and g divides (βcu − αcl − γ).

• the values of γ for which the hyperplane (5) contains the points we are interested in
are those verifying the following inequality:

α(−l(x,p) mod β) ≤ γ, (6)

which is equivalent to:
β(u(x,p) mod α) ≤ γ. (7)

Proof 1 We recall that the exact and the dark shadows are respectively given by αl(x,p)−
βu(x,p) ≤ 0 and αl(x,p)−βu(x,p) ≤ −(α−1)(β−1) [22]. By definition, The part of the
exact shadow containing the points outside the dark shadow which belong to the projection
(see Figure 2) is given by: −(αβ−α−β) ≤ αl(x,p)−βu(x,p) ≤ 0 which is equivalent to:
αl(x,p)− βu(x,p) + γ = 0, where γ is an integer constant such that 0 ≤ γ ≤ αβ −α− β.

Let l(x,p) = ll(x,p) + cl and u(x,p) = lu(x,p) + cu, where ll(x,p) and lu(x,p)
are linear functions of the variables and parameters, and cl and cu are integer constants.
Substituting the values of l(x,p) and u(x,p) in (5) we obtain: αll(x,p) − βlu(x,p) =
βcu − αcl − γ, where (αll(x,p) − βlu(x,p)) is a linear function and (βcu − αcl − γ) is
an integer constant. A necessary and sufficient condition for this hyperplane to contain
integer points is that the gcd of the coefficients in the linear function (αll(x,p)−βlu(x,p))
divides the constant (βcu − αcl − γ).

On another hand, {l(x,p) ≤ βz, αz ≤ u(x,p)} is equivalent to l(x,p)
β

≤ z ≤ u(x,p)
α

(since α, β > 0), where l(x,p)
β

and u(x,p)
α

are rational functions. According to the properties

1 and 2 of Lemma 4.2, there exists an integer z such that l(x,p)
β

≤ z ≤ u(x,p)
α

if and only if:

⌈

l(x,p)

β

⌉

≤
u(x,p)

α
, (8)
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with
⌈

l(x,p)
β

⌉

= 1
β
(l(x,p) + (−l(x,p)) mod β). Simplifying inequality (8), we obtain:

α(−l(x,p) mod β) ≤ βu(x,p) − αl(x,p), with βu(x,p) − αl(x,p) = γ (according to
equality (5)). Hence inequality (6) is satisfied. Applying Lemma 4.2, we can similarly
prove inequality (7).

Note 1 If one of the bounds l(x,p) or u(x,p) is independent of the variables and the
parameters, the elimination of the existential variable results in only the dark shadow,

because in this case,
⌈

l(x,p)
β

⌉

or
⌊

u(x,p)
α

⌋

is simply replaced by a constant.

We calculate the solutions of inequality (6) or (7) in two different ways, depending on
whether the coefficients α and β are coprime or not.

4.3.1 Case of coprime coefficients

Theorem 4.4 Consider the pair of bounds {l(x,p) ≤ βz, αz ≤ u(x,p)}. The calculation
of the values of γ, for which the hyperplane (5) contains the points outside the dark shadow
which belong to the integer projection, does not depend on the variables and the parameters,
i.e., it depends only on the constants α and β. In this case, the inequalities (6) and (7)
are respectively equivalent to (9) and (10).

α((c1γ) mod β) ≤ γ, (9)

β((c2γ) mod α) ≤ γ, (10)

where c1 and c2 are integer constants such that c1α + c2β = 1.

Proof 2 When the coefficients of the existential variables, α and β are coprime, the fol-
lowing property follows immediately from Bezout’s identity theorem. There exists two
integer constants c1 and c2 such that:

c1α + c2β = 1. (11)

Multiplying the equality (5) by c1, we obtain: c1αl(x,p) − c1βu(x,p) + c1γ = 0. This is
equivalent to (1 − c2β)l(x,p) − c1βu(x,p) + c1γ = 0 (according to (11)). Hence

l(x,p) = β(c2l(x,p) + c1u(x,p)) − c1γ.

Substituting the value of l(x,p) in inequality (6), we obtain:

α((−β(c2l(x,p) + c1u(x,p)) + c1γ) mod β) ≤ γ ⇔ α(c1γ mod β) ≤ γ,

since −β(c2l(x,p) + c1u(x,p)) is a multiple of β. In the same way, one can prove (10),
starting from inequality (7).

Example 2 Consider the following Presburger formula:

S = {x ∈ Z | ∃y ∈ Z : 2 ≤ 3y − x ≤ 5 ∧ −1 ≤ x − 2y ≤ N − 1}.

This set is equivalent to projecting out the variable y from the polytope P pictured in Figure
2 (when N = 2), where N is a positive integer parameter.

12



According to the pair of bounds {x − N + 1 ≤ 2y, 3y ≤ x + 5}, we have:

l(x) = x − N + 1, u(x) = x + 5, α = 3, β = 2 ⇒ c1 = 1, c2 = −1.

The constraint on the dark shadow, corresponding to this pair of bounds, is x ≤ 3N + 5.
The points of the projection which do not belong to the dark shadow are given by:

αl(x) − βu(x) + γ = 0, 0 ≤ γ ≤ αβ − α − β and α((c1γ) mod β) ≤ γ

⇒ x − 3N − 7 + γ = 0, 0 ≤ γ ≤ 1 and 3(γ mod 2) ≤ γ.

The only value of γ satisfying these constraints is: γ = 0. The corresponding point (a
hyperplane in the general case) is x = 3N +7. Similarly, one can calculate the point x = 1
from the other pair of bounds {x + 2 ≤ 3y, 2y ≤ x + 1} generating the constraint x ≥ 3
on the dark shadow.

The integer projection of the polytope P can then be obtained by intersecting the pro-
jections of the two pairs, i.e., S = {x = 3N + 7 ∪ x ≤ 3N + 5} ∩ {x = 1 ∪ x ≥ 3}. Since
N is positive, this set is equal to:

S = {x ∈ Z | x = 1 ∨ 3 ≤ x ≤ 3N + 5 ∨ x = 3N + 7}.

4.3.2 Case of non-coprime coefficients

In the previous subsection, we showed the way we calculate the projection of a pair of
bounds when the coefficients α and β are coprime. Let us now consider the case of non-
coprime coefficients. In this case, the calculation of the values of γ, for which the hyper-
plane (5) contains the points of the projection, which are outside the dark shadow, depends
on the constants α and β, and furthermore depends on the variables and parameters. Let
g′ = gcd(α, β), α′ = α/g′, β′ = β/g′ and g be the gcd of the coefficients of the variables
and parameters in the linear function α′ll(x,p) − β′lu(x,p), with l(x,p) = ll(x,p) + cl

and u(x,p) = lu(x,p) + cu (see Theorem 4.3). One can then rewrite the equation of the
hyperplane (5) as follows:

α′l(x,p) − β′u(x,p) + γ = 0, (12)

with γ ∈ Z, 0 ≤ γ ≤ αβ′ − α′ − β′ and g divides (β′cu − α′cl − γ).
The inequalities (6) and (7) can be rewritten respectively in the form (13) and (14):

α′(−l(x,p) mod β) ≤ γ, (13)

β′(u(x,p) mod α) ≤ γ. (14)

In this case, it may happen that only a subset of the integer points of the hyperplane (12)
belong to the projection. These points are defined by the intersection of the hyperplane
with a union of lattices obtained by solving one of the following modulo equalities.

−l(x,p) mod β = γ′, with 0 ≤ γ′ ≤ min
(⌊ γ

α′

⌋

, β
)

, (15)

u(x,p) mod α = γ′, with 0 ≤ γ′ ≤ min

(⌊

γ

β′

⌋

, α

)

. (16)
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In practice, it is worth to consider equality (15) when β < α and equality (16) otherwise.
The solution to a modulo equality f(x,p) mod a = b is a lattice of the form:

L =

{

(

Ax Ap

)

(

x

p

)

+ c

∣

∣

∣

∣

x ∈ Zd, p ∈ Zn

}

, (17)

where Ax, Ap are integer matrices, c is an integer vector, x is a vector of the data space and
p is a vector of parameters. We calculate this solution using the technique presented in [17]
and summarized in subsection 4.1. Of course, only non-empty lattices and hyperplanes
are taken into account.

Example 3 Consider a pair of bounds in which the coefficients of the existential variable
y are not coprime {x − N − 2 ≤ 2y, 4y ≤ x + 5}. We have:

l(x) = x − N − 2, u(x) = x + 5, α = 4, β = 2 ⇒ gcd(α, β) = 2, α′ = 2, β′ = 1.

The corresponding constraint on the dark shadow is 2x ≤ 4N + 15 ⇔ x ≤ 2N + 7.
The points outside the dark shadow and belonging to the projection lie on the following
hyperplane:

x − 2N − 9 + γ = 0, such that 0 ≤ γ ≤ 1 and 2((x − N − 2) mod 2) ≤ γ.

For both values of γ, the solution to the above modulo inequality is a lattice:

L =

{(

2 1
0 1

)(

x
N

)

+

(

−2
0

) ∣

∣

∣

∣

x ∈ Z, N ∈ Z

}

.

Hence, the points x = 2N + 9 and x = 2N + 8 (obtained by substituting the values of γ
in equality x − 2N − 9 + γ = 0) belong to the projection only if x and N belong to the
lattice L.

The whole projection of the pair of bounds is then given by:

S = {x ∈ Z | (x = 2N + 8 ∧ (x,N) ∈ L) ∨ (x = 2N + 9 ∧ (x,N) ∈ L) ∨ x ≤ 2N + 7}.

Projecting out a first existential variable may result in a union of Z-polytopes, i.e., a
union of intersections of polytopes and lattices of the form (17). This may occur when the
the coefficients of the existential variable are not coprime. Therefore, in order to project
out a second variable, this union has to be projected again, and so on. The projection
of a Z-polytope is obtained by first transforming the polytope according to its associated
lattice, then projecting it as explained before and finally rewriting it as a function of its
original variables and parameters.

In the following section, we will be interested in counting integer points in arbitrary
unions of parametric Z-polytopes.

5 Counting integer points in unions of parametric Z-polytopes

Counting integer points in unions of parametric Z-polytopes is very useful, for counting
points in integer transformations of polytopes, but also to solve many other problems,
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such as non-unit stride loop nest analyses. In the following, we will discuss an algorithm
dealing with general parametric Z-polytopes of the form Z = P ∩ L, with:

P =

{

x ∈ Qd,p ∈ Zn

∣

∣

∣

∣

(

Ax Ap

)

(

x

p

)

+ a ≥ 0

}

,

L =

{

(

Bx Bp

)

(

x

p

)

+ b

∣

∣

∣

∣

x ∈ Zd, p ∈ Zn

}

,

where P is a parametric polytope, L is a parametric integer lattice, Ax, Ap, Bx and Bp

are integer matrices, a and b are integer vectors, x is a vector of the data space and p is
a vector of parameters.

Let Z1 = P1 ∩L1 and Z2 = P2 ∩L2 be two Z-polytopes. The number of integer points
in Z1 (resp. in Z2) is equal to the number of points in P ′

1 (resp. in P ′

2), where P ′

1 and P ′

2

are the transformations of P1 and P2 respectively by the matrices defining the lattices L1

and L2. Unfortunately, the number of integer points in Z1 ∪ Z2 is obviously not equal to
that in P ′

1 ∪P ′

2 since the applied transformation preserves the number of points in Z1 and
Z2 but does not preserve their original coordinates.

Example 4 Consider the two Z-polytopes pictured in Figure 3, Z1 = P1 ∩ L1 and Z2 =
P2 ∩ L2, where dots belong to Z1, squares belong to Z2 and diamonds belong to both Z-
polytopes:

P1 = {(x, y) ∈ Q2 | 1 ≤ x ≤ 10 ∧ 3 ≤ y ≤ 7},

L1 =

{(

2 0
0 2

)(

x′

y′

)

+

(

1
1

) ∣

∣

∣

∣

(x′, y′) ∈ Z2

}

,

P2 = {(x, y) ∈ Q2 | 3 ≤ x ≤ 12 ∧ 1 ≤ y ≤ 6},

L2 =

{(

3 0
0 2

)(

x′

y′

)

+

(

0
1

) ∣

∣

∣

∣

(x′, y′) ∈ Z2

}

.

Substituting x = 2x′ + 1 and y = 2y′ + 1 in P1 (resp. x = 3x′ and y = 2y′ + 1 in P2)
we respectively obtain P ′

1 and P ′

2 in which the numbers of integer points are respectively
15 and 12:

P ′

1 = {(x′, y′) ∈ Z2 | 0 ≤ 2x′ ≤ 9 ∧ 1 ≤ y′ ≤ 3},

P ′

2 = {(x′, y′) ∈ Z2 | 1 ≤ x′ ≤ 4 ∧ 0 ≤ 2y′ ≤ 5}.

One can check that the number of integer points in P ′

1 ∪P ′

2 is 19, whereas that in Z1 ∪Z2

is 23 as showed in Figure 3.

To the best of our knowledge, the only technique describing how to enumerate such
unions is due to B.Meister [16]. His method is lattice-union based, which is exponential in
the size of lattice generators and their least common multiple. This method has not been
implemented. In contrast, our method is lattice-intersection based, which is polynomial
since the intersection of two lattices results in only one lattice, whatever their generators.
We provide a sketch of complexity analysis after a short description of the algorithm.

In our algorithm, we process on a set of signed Z-polytopes. The number of integer
points in the union of two Z-polytopes Z1 and Z2, (say E(Z1∪Z2)) is equal to the number
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(P1)

(P2)

y

0 x

Figure 3: Union of two Z-polytopes

of points in Z1, plus the number of points in Z2, minus the number of points in Z1 ∩ Z2.
Therefore, the signs of Z1 and Z2 are set to +1 and that of Z1 ∩ Z2 is set to −1.

The integer points in a union of three Z-polytopes is counted as follows:

E(Z1 ∪ (Z2 ∪ Z3)) = E(Z1) + E(Z2 ∪ Z3) − E(Z1 ∩ (Z2 ∪ Z3)) =

E(Z1) + (E(Z2) + E(Z3) − E(Z2 ∩ Z3)) − E((Z1 ∩ Z2) ∪ (Z1 ∩ Z3)) =

E(Z1) + E(Z2) + E(Z3) − E(Z2 ∩ Z3) − E(Z1 ∩ Z2) − E(Z1 ∩ Z3) + E(Z1 ∩ Z2 ∩ Z3).

Of course, this generalizes to any number of Z-polytopes. Finally, the number of points
in the union is simply given by summing the number of points in each of the resulting
Z-polytopes.

Before counting points in a Z-polytope Yi = Pi ∩ Li we need to transform the matrix
generating the lattice:

Li =

{

(

Bx Bp

)

(

x

p

)

+

(

bx

bp

) ∣

∣

∣

∣

x ∈ Zd,p ∈ Zn

}

into a new matrix of the form:

M =

(

Bxx Bxp

0 Bpp

)

. I.e., M is a matrix in which the rows which transform the parameter

space are independent of the variables.5 This is required to keep the data space compressed
when rewriting the transformed polytope as a function of its original parameters. We
calculate matrix M from the Hermit normal form [24] of

(

Bx Bp

)

. We then apply the

affine transformation

(

M

(

bx

bp

) )

to Pi to get an ordinary polytope P ′. Then, P ′ is

rewritten as a function of the original parameters using the submatrix (Bpp|bp) and finally,
we use our counting algorithm [26] to calculate the Ehrhart polynomial corresponding to
the number of integer points in the resulting polytope. Note that when the submatrix Bpp

is not equal to the identity matrix, the polytope is valid for only the parameter values
generated by the lattice Lp whose basis is Bpp and affine part is bp. In this case, the
resulting Ehrhart polynomial is to be multiplied by one if the parameter values are valid
(i.e. if they belong to the points spanned by the lattice Lp) and zero otherwise.

5The matrix M generates the same integer points as the original matrix.
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Algorithm 1 Parametric Z-polytope union enumeration

Input: List = {(List[i].P, List[i].L)} with 1 ≤ i ≤ size(List)
List of pairs (Polyhedron, Lattice)

Output: E(List) = Number of integer points in List
Variables: I = {(I[i].sign, I[i].P, I[i].L)}, with sign = ±1

O = {(O[i].sign, O[i].P, O[i].L)}

1. For i = 1 to size(List)

I[i] = (+1, List[i].P, List[i].L)

2. O[1] = I[1], E(List) = 0

3. For i = 2 to size(List)

(a) For j = 1 to size(O)

If O[j].P ∩ I[i].P 6= φ and O[j].L ∩ I[i].L 6= φ

O = O + (−O[j].sign × I[i].sign, O[j].P ∩ I[i].P, O[j].L ∩ I[i].L)

(b) O = O + I[i]

4. For i = 1 to size(O)

(a) P = V ariableSubstitution(O[i].P, O[i].L)

(b) E(List) = E(List) + O[i].sign × Enumerate(P )

Example 5 Consider parametric versions of Z-polytopes Z1 = P1 ∩L1 and Z2 = P2 ∩L2

from Example 4, with

P1 = {(x, y) ∈ Q2 | 1 ≤ x ≤ N + 5 ∧ 3 ≤ y ≤ 7},

L1 =











2 0 3
0 2 0

0 0 1









x′

y′

N ′



 +





1
1
0





∣

∣

∣

∣

∣

∣

(x′, y′) ∈ Z2, N ′ ∈ Z







,

P2 = {(x, y) ∈ Q2 | 3 ≤ x ≤ 2N + 7 ∧ 1 ≤ y ≤ 6},

L2 =











3 0 0
0 2 0

0 0 3









x′

y′

N ′



 +





2
1
0





∣

∣

∣

∣

∣

∣

(x′, y′) ∈ Z2, N ′ ∈ Z







,

where N ∈ Z+ is a parameter. The number of integer points in the union Z1 ∪ Z2 is
given by:

E(Z1 ∪ Z2) = E(Z1) + E(Z2) − E(Z1 ∩ Z2).
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Let (Z1 ∩ Z2) = Z3 = (P3 ∩ L3), with

P3 = P1 ∩ P2 = {(x, y) ∈ Q2 | 3 ≤ x ≤ N + 5 ∧ 3 ≤ y ≤ 6},

L3 = L1 ∩ L2 =











3 0 0
0 2 0

3 0 6









x′

y′

N ′



 +





2
1
3





∣

∣

∣

∣

∣

∣

(x′, y′) ∈ Z2, N ′ ∈ Z







.

The number of integer points in Z3 is calculated as follows:

First of all, the basis





3 0 0
0 2 0

3 0 6



 of lattice L3 is transformed into a new basis





6 0 3
0 2 0

0 0 3



 in which the variable coefficients in the parameter row are all equal to zero.

The new basis spans the same integer points as the original one since it is calculated from
its Hermit normal form. Z-polytope Z3 is then transformed into a regular polytope P given

by the preimage of P3 by the homogeneous matrix









6 0 3 2
0 2 0 1
0 0 3 3

0 0 0 1









:

P = {(x′, y′) ∈ Q2 | −3N ′ + 1 ≤ 6x′ ≤ 6 ∧ 2 ≤ 2y′ ≤ 5}.

Before counting points in P , we need to write it as a function of the original parameter

N . To do this, it suffices to calculate its image by the matrix M =









1 0 0 0
0 1 0 0
0 0 3 3

0 0 0 1









, and

we obtain:
P ′ = {(x′, y′) ∈ Q2 | −N + 4 ≤ 6x′ ≤ 6 ∧ 2 ≤ 2y′ ≤ 5}.

The number of points in this polytope is given [26] in the form:

E(P ′) =
1

3
N +

[

2,
5

3
,
4

3
, 1,

8

3
,
7

3

]

N

,

where
[

2, 5
3 , 4

3 , 1, 8
3 , 7

3

]

N
is a periodic number whose value is 2 when N mod 6 = 0, 5

3 when
N mod 6 = 1 and so on.

The third row in matrix M states that N = 3N ′ + 3, with N ′ ∈ Z. In other words, N
must be a multiple of 3 (N mod 3 = 0). Therefore the resulting polynomial is multiplied by
a periodic number [1, 0, 0]N which is equal to one when N mod 3 = 0 and zero otherwise.
The result is

E(Z3) =

[

1

3
, 0, 0

]

N

N + [2, 0, 0, 1, 0, 0]N

The numbers of points in Z1 and Z2 are obtained in a similar way as:

E(Z1) =
3

2
N +

[

9,
15

2

]

N

,
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E(Z2) = [2, 0, 0]N N + [3, 0, 0]N .

Finally, the number of points in Z1 ∪ Z2 is given by:

E(Z1 ∪ Z2) = E(Z1) + E(Z2) − E(Z3) =

[

19

6
,
3

2
,
3

2

]

N

N +

[

10,
15

2
, 9,

19

2
, 9,

15

2

]

N

.

The complexity of Algorithm 1 depends on the complexity of the significant Z-polytope
operations (step 3.(a)), the complexity of counting integer points in a parametric polytope
(step 4.(b)) and the number of resulting Z-polytopes in the set O (calculated in step 3).
The only significant Z-polytope operation used in this algorithm is the intersection, which
is polynomial since the intersection of two polytopes is simply given by concatenating
their constraints, and the intersection of two lattices reduces to solving a system of linear
equalities [18], which is polynomial in the input size [24]. Counting integer points in
a parametric polytope is also polynomial in the input size (for fixed dimension), as we
showed in [26]. Finally, the resulting Z-polytopes in the set O is given by the inclusion-
exclusion principle. When the number of input Z-polytopes, in the set I is fixed, the
inclusion-exlusion principle provides a polynomial number of Z-polytopes.6 Hence the
whole algorithm is polynomial in the input size (for fixed dimension and fixed number of
input Z-polytopes).

6 Experiments

These experiments were undertaken with PolyLib version 5.22 and Barvinok version 0.20.
The first library is used to realize polyhedral operations, while the second one is used to
count integer points in parametric polytopes. In addition, Verdoolaege et al. [25] use the
PIP library [10] to handle the remaining existential variables (when their rewriting rules
fail to eliminate them). Verdoolaege’s implementation also (optionally) uses the Omega
library [13] to simplify the input polytopes. In almost all our examples, Verdoolaege’s
method gives better results when it uses Omega preprocessing. We therefore activated
this option for these experiments. The test set was built to be representative of a large
number of cases. The dimension of the polytopes vary between 3 and 7, the number of
parameters between 1 and 3, and the number of eliminated variables from 1 to 5. In
almost all our tests, the exact shadow is not equal to the dark shadow, i.e., the integer
projection is different from the rational one.

In these experiments, the execution times and the output sizes are plotted as a function
of the number of Z-polytopes that are generated by our method, which is proportional
to the number of holes in the projection and the size of the existential variable coeffi-
cients. We compare our work against the one of Verdoolaege et al. [25] using Ehrhart
quasi-polynomials representation as lookup-table and fractional enumerators. Let f(p) be
a rational affine function of the parameters. The lookup-table representation expresses
a periodic number (f(p) mod n) as a multi-dimensional table, whose dimension is the
number of parameters, and where the number of elements in each dimension is the period
of the corresponding parameter. When the periods are large, the lookup-table represen-
tation is known to be exponential [26]. In order to avoid the exponential behavior of

6Only non-empty sets are taken into account.
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Figure 4: Execution time comparison with Verdoolaege’s implementation.

lookup tables, a fractional representation was proposed [26]. In this representation, a pe-
riodic number (f(p) mod n) is expressed as a function of the fractional part of f(p), with
frac(f(p)) = f(p) − ⌊f(p)⌋. The disadvantage of the fractional representation is that
additions and multiplications of fractional numbers may not be fully simplified. Indeed,
when the periods are not large, the result size of the fractional representation may be
larger than the one of the lookup-table representation.

Figure 4 shows that, for almost all these tests, our execution times are lower than
Verdoolaege’s ones. The ratio is more significant when using lookup-table representation.
Indeed, most of the polynomials generated by Verdoolaege’s method have larger periods
than those generated by ours. Therefore, when using the fractional representation, our
times do not change much, while Verdoolaege’s times are better fore some examples. Note
that Verdoolaege’s method does not calculate the real projection, but an equivalent set of
polytopes, having the same number of integer points. These polytopes are sometimes of
larger dimensions, which may increase the execution time.

Figure 5 shows the difference between the sizes of the output polynomials. Again,

20



 100

 1000

 10000

 100000

 1  10  100

si
ze

 (
by

te
s)

number of Z-polytopes

(a) lookup-table representation

Verdoolaege’s algorithm
Our algorithm

 100

 1000

 10000

 100000

 1  10  100

si
ze

 (
by

te
s)

number of Z-polytopes

(b) fractional representation

Verdoolaege’s algorithm
Our algorithm

Figure 5: Output size comparison with Verdoolaege’s implementation.

since our method generates smaller periods, the resulting polynomials are smaller than
Verdoolaege’s. Note that our output sizes are better with lookup-table representation,
because there are no large periods in these tests.

7 Conclusion

We have presented in this paper a new technique for calculating the transformation of
integer points in parametric polytopes. The basic idea is the Fourier-Motzkin variable
elimination procedure, processing pairs of lower and upper bounds on the existential vari-
ables to be eliminated. The computation time of our method depends on the coefficients
of the existential variable in each pair. If these coefficients are small, the elimination
of the existential variable results in a relatively small number of Z-polytopes. In con-
trast, if the coefficients are large, the result could be given by a possibly large set of
Z-polytopes, increasing the execution time. Further work goes on to minimize this num-
ber of Z-polytopes, by choosing the best order and rules of variable eliminations. We also
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presented a polynomial algorithm (for fixed dimension) to count integer points in unions
of a fixed number of parametric Z-polytopes. The proposed algorithms are implemented
using the Polyhedral and Barvinok libraries [14, 26]. This work allows to compress effi-
ciently the data space of arrays accessed by affine functions in loop nests: only data that
are actually used are allocated in memory. We extended and improved the data locality
optimization presented in [15]: the data are allocated to memory in the order they are
accessed for the first time by the loop nests. Our method is more general and increases
the number of stride-one accesses compared to the one of [15]. This work also has many
other applications in parametric affine loop nest analysis and optimization.
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