
Symbolic Polynomial Maximization over Convex

Sets and its Application to Memory Requirement

Estimation

PHILIPPE CLAUSS

Université Louis Pasteur, France

and

FEDERICO JAVIER FERNÁNDEZ and DIEGO GARBERVETSKY

Universidad De Buenos Aires, Argentina

and

SVEN VERDOOLAEGE

Universiteit Leiden, The Netherlands

Memory requirement estimation is an important issue in the development of embedded systems,
since memory directly influences performance, cost and power consumption. So it is crucial to have
tools that automatically compute accurate estimates of the memory requirements of programs to
better control the development process and avoid some catastrophic execution exceptions. In this
paper, we propose an original approach based on the theory of Bernstein expansion allowing the
resolution of many important memory issues that are expressed as the problem of maximizing a
parametric polynomial defined over a parametric convex domain. The paper is illustrated with
several application examples.

Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors—Compilers,
Memory management, Optimization

General Terms: Design, Languages, Measurement, Performance, Verification

Additional Key Words and Phrases: Bernstein expansion, convex polytopes, memory requirement,
static program analysis, program optimization

1. INTRODUCTION

The determination of the amount of memory required by a program through static
analysis has received a lot of attention in recent years [Verbauwhede et al. 1994;
Grun et al. 1998; Zhao and Malik 2000; Ramanujam et al. 2001; Kjeldsberg et al.

Author’s address: Ph. Clauss, ICPS-LSIIT, Université Louis Pasteur, Pôle API, Boul. S. Brant,
67400 Illkirch, France.

F. J. Fernández and D. Garbervetsky, Departamento de Computación, Facultad de Ciencias Ex-
actas y Naturales, Universidad De Buenos Aires, Argentina
S. Verdoolaege, Leiden Institute of Advanced Computer Science, Universiteit Leiden, Niels
Bohrweg 1, 2333 CA Leiden, The Netherlands
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 20YY ACM 0000-0000/20YY/0000-0001 $5.00

ACM Journal Name, Vol. V, No. N, Month 20YY, Pages 1–28.

2 · Ph. Clauss et al.

2004; Zhu et al. 2006]. Usually, the first step is to determine the amount of memory
“in use” at a given point during the execution of the program. The memory re-
quirement is then obtained by computing the maximum of the resulting expression
over all such points.

In particular, if the program consists of a sequence of loop nests with loop bounds
and array references that are affine functions of the enclosing loop iterators and
structural parameters, then the iterations of the loops can be represented by the
integer points in parametric polytopes. This representation is known as the poly-
tope model [Feautrier 1996]. The memory in use at a given loop iteration is or can
be approximated by a polynomial in both the loop iterators and the structural pa-
rameters. The problem of calculating the memory requirements of a program then
reduces to computing the maximum of a polynomial over all integer points in a
parametric polytope, resulting in an expression that only depends on the structural
parameters. This maximization of a polynomial over a parametric polytope also
has applications in extending static analysis beyond the polytope model [Clauss
and Tchoupaeva 2004].

De Loera et al. [2006] have recently shown that maximizing an arbitrary polyno-
mial over the integer points in a non-parametric polytope is NP-hard, but have also
given a fully polynomial-time approximation scheme for computing this maximum
when the polynomial is non-negative and the dimension of the polytope is fixed.
However, to the best of our knowledge, their algorithm has not been implemented
yet and it cannot easily be extended to the parametric case. This evidence suggests
that the exact parametric maximum over the integer points in a parametric poly-
tope may not in general be easily computable. We therefore relax our problem first
by computing the maximum over all rational points instead of all integer points and
second by computing an upper bound rather than the maximum. In particular, we
will use an extension of Bernstein expansion to parametric polytopes to compute
these upper bounds. The resulting upper bounds will usually be fairly accurate and
we can detect whether we have computed the actual maximum or not.

Bernstein expansion [Bernstein 1952; 1954] allows for the determination of bounds
on the range of a multivariate polynomial considered over a box [Berchtold and
Bowyer 2000; Farouki and Rajan 1987; Clauss and Tchoupaeva 2004]. Numerical
applications of this theory have been proposed to the resolution of systems of strict
polynomial inequalities [Garloff 1999; Garloff and Graf 1999]. A symbolic approach
to Bernstein expansion used in program analysis has also been proposed by Clauss
and Tchoupaeva [2004]. It has been shown that Bernstein expansion is generally
more accurate than classic interval methods [Martin et al. 2002]. Moreover, Stahl
[1995] has shown that for sufficiently small boxes, the exact range is obtained.

Bernstein polynomials are particular polynomials that form a basis for the space
of polynomials. Hence any polynomial can be expressed in this basis through co-
efficients, the Bernstein coefficients, that have interesting properties and that can
be computed through a direct formula. Due to the Bernstein convex hull prop-
erty [Farin 1993], the value of the polynomial is then bounded by the values of the
minimum and maximum Bernstein coefficients. The direct formula allows symbolic
computation of these Bernstein coefficients giving a supplementary interest to the
use of this theory [Clauss and Tchoupaeva 2004].

ACM Journal Name, Vol. V, No. N, Month 20YY.

Symbolic Polynomial Maximization over Convex Sets... · 3

Bernstein expansion has already been used by Clauss and Tchoupaeva [2004]
to handle parameterized polynomials defined over parameterized boxes. Several
applications such as non-linear dependence analysis or dead code elimination are
shown. However, the proposed approach is limited to domains defined as boxes.
These boxes also need to be linearly transformed to unit boxes. This transforma-
tion, when applied to parameterized boxes, has to exclude some parameter values
for which the transformation would yield divisions by zero. Hence the considered
polynomials have to be evaluated for these specific values.

In this paper, we propose an extension of the theory of Bernstein expansion to
handle parameterized multivariate polynomial expressions where the possible values
of the variables are defined over parametric convex polytopes. These parametric
polytopes can be described either as the convex hull of a finite set of parametric
generators or as the solution set of a finite number of linear constraints over the
variables and the parameters. Then we use this extension to compute upper bounds
for multivariate polynomials modeling the memory usage of programs. More pre-
cisely, it is shown how the described technique can be used to compute bounds on
the memory consumption of programs.

This paper is organized as follows. In Section 2, the necessary theoretical concepts
used in the rest of the paper are presented. We first recall how Bernstein expansion
is classically done for a polynomial defined over an interval, and then how it can be
extended to polynomials defined over convex polytopes by use of the barycentric
coordinates of the studied values. The general use of Bernstein expansion in some
classic static analysis issues is detailed in Section 3. It is shown how accurate results
are obtained for the bounds of a multivariate polynomial defined over a parametric
domain and also for the bounds of the number of live elements occurring during
the execution of a program. We briefly give some additional information about our
software implementation in Section 4. Section 5 is devoted to the description of
several interesting applications of the Bernstein approach to program analysis issues
and more specifically to important memory behavior issues: the computation of the
parametric memory size used by a program, of the FIFO sizes in process networks, of
bounds on the data reuse distances to select efficient cache hints for load instructions
and finally the estimation of dynamic memory requirements for imperative object-
oriented programs. This section is illustrated with several examples. Comparisons
with other related works are given in Section 6: works focusing on polynomials in
program analysis and works focusing on memory requirement estimation. Finally,
conclusions and further perspectives are given in Section 7.

2. SYMBOLIC BERNSTEIN EXPANSION OVER A CONVEX POLYTOPE

This section explains the theory behind Bernstein expansion. We first recall the
classical Bernstein expansion of a univariate polynomial over an interval and then
show how it can be extended to multivariate parametric polynomials over paramet-
ric convex polytopes.

2.1 Bernstein Expansion over an Interval

There are many ways to represent a (rational) univariate degree-d polynomial p(x) ∈
Q[x]. The canonical representation of p(x) is as a Q-linear combination of the power

ACM Journal Name, Vol. V, No. N, Month 20YY.

4 · Ph. Clauss et al.

base, i.e., the powers of x,

p(x) =
d
∑

i=0

aix
i, (1)

with ai ∈ Q. The polynomial p(x) can also be represented as a Q-linear combination
of the degree-d Bernstein base polynomials [Bernstein 1952; 1954; Farouki and
Rajan 1987; Berchtold and Bowyer 2000]:

p(x) =
d
∑

k=0

bd
kBd

k(x), (2)

where the Bernstein polynomials Bd
i (x) are defined by:

Bd
k(x) =

(

d

k

)

xk(1 − x)d−k k = 0, 1, ..., d

(

d

k

)

=
d!

k!(d − k)!
, (3)

and bd
i ∈ Q are the Bernstein coefficients corresponding to the degree-d basis.

Example 2.1. Here is an example of a univariate polynomial in its power form
and in its Bernstein form:

p(x) = x3 − 5x2 + 2x + 4 = 4B3
0(x) +

14

3
B3

1(x) +
11

3
B3

2(x) + 2B3
3(x)

where B3
0(x) = (1 − x)3, B3

1(x) = 3x(1 − x)2, B3
2(x) = 3x2(1 − x) and B3

3(x) = x3.
We will explain below how to compute the Bernstein coefficients in this expression.

The Bernstein expansion of a polynomial has many interesting properties. The
properties that will interest us most here is that the sum of the Bernstein base
polynomials (3) is 1 and that, on the interval [0, 1], 0 ≤ Bd

k(x) ≤ 1. The first
property follows from the identity:

1 = (x + (1 − x))
d

=

d
∑

k=0

Bd
k(x).

On the interval [0, 1], Equation (2) expresses the polynomial p(x) as a convex com-
bination (with coefficients Bd

i (x)) of the Bernstein coefficients bd
i . On this interval,

the polynomial p(x) is therefore bounded by its Bernstein coefficients, i.e.,

min
0≤i≤d

bd
i ≤ p(x) ≤ max

0≤i≤d
bd
i .

Moreover, if the minimum or maximum of the bd
i is bd

0 or bd
d then this bound is

exact, since they correspond to values taken by p(x) at the vertices as is clear
from (3). These coefficients where the bound is exact are sometimes referred to as
sharp coefficients.

Example 2.2. Figure 1 shows the polynomial p(x) = x3 − 5x2 + 2x + 4 from the
previous example, the terms b3

i B
3
i (x) of its Bernstein form and the constants b3

i .
On the interval [0, 1], the polynomial is bounded by the minimal and maximal
Bernstein coefficients, b3

3 = 2 and b3
1 = 14/3. The first of these coefficients is sharp;

the second is not.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Symbolic Polynomial Maximization over Convex Sets... · 5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 0.2 0.4 0.6 0.8 1

p(x)

b30
b31
b32
b33

b30B3
0(x)

b31B3
1(x)

b32B3
2(x)

b33B3
3(x)

Fig. 1. Decomposition of the polynomial p(x) = x3 − 5x2 + 2x + 4 in the Bernstein basis

To compute the Bernstein coefficients bd
i from the power form coefficients ai, we

write the point x on the interval [0, 1] in terms of its barycentric coordinates,

x = α0 v0 + α1 v1,

with

αi ≥ 0 for i ∈ {0, 1} and α0 + α1 = 1

and where v0 = 0 and v1 = 1 are the vertices of the interval [0, 1]. We see that
α1 = x and α0 = 1 − x and that the Bernstein base polynomials (3) are homoge-
neous polynomials of degree d in α0 and α1. To write p(x) (1) as a homogeneous
polynomial in α0 and α1, we simply substitute x = α0 0 + α1 1 = α1 and multiply
each degree-i homogeneous component of p(α0, α1) (i ≤ d) by 1 = (α0 + α1)

d−i,
i.e.:

p(α0, α1) =

d
∑

i=0

aiα
i
1(α0 + α1)

d−i

=

d
∑

i=0

aiα
i
1

d−i
∑

j=0

(

d − i

j

)

αd−i−j
0 αj

1

 =

d
∑

k=0

(

k
∑

i=0

ai

(

d − i

k − i

)

)

αk
1αd−k

0 .

Comparing with (2) and noting that

Bd
k(x) = Bd

k(α0, α1) =

(

d

k

)

αk
1(α0)

d−k, (4)

we obtain:

bd
k =

k
∑

i=0

(

d−i
k−i

)

(

d
k

) ai =
k
∑

i=0

(

k

i

)

(

d
i

)ai,

where the last equality follows from the identity:
(

d − i

k − i

)(

d

i

)

=

(

d

k

)(

k

i

)

.

ACM Journal Name, Vol. V, No. N, Month 20YY.

6 · Ph. Clauss et al.

Bounds on the values attained by a polynomial over an arbitrary interval [a, b]
can be obtained using essentially the same technique. We write:

x = α0 a + α1 b,

with

αi ≥ 0 for i ∈ {0, 1} and α0 + α1 = 1,

substitute this expression in p(x) to obtain a polynomial p(α0, α1) ∈ Q[α0, α1],
multiply each term with the appropriate power of 1 = α0 + α1 and compute the
coefficients bd

k with respect to the basis formed by the terms in the expansion

1 = (α0 + α1)
d

=

d
∑

k=0

Bd
k(α0, α1).

The terms Bd
k(α0, α1) are defined as in (4). They are then again the coefficients in

the expression of p(α0, α1) as a convex combinations of the bd
k and so

min
0≤i≤d

bd
i ≤ p(x) ≤ max

0≤i≤d
bd
i

on the interval [a, b].

2.2 Bernstein Expansion over a Convex Polytope

In this subsection, we generalize the so-called Bernstein-Bezier form of a polynomial
defined over a triangle [Farin 1993], and apply the same principles to multivariate
parameterized polynomials defined over parameterized polytopes of any dimension.

A (rational) convex polytope P ⊂ Qn is the convex hull of a set of points vi,

P =

{

x | ∃αi ∈ Q : x =
∑

i

αivi, αi ≥ 0,
∑

i

αi = 1

}

.

If no vi is a convex combination of the other vi and then these vi are called the
vertices of the polytope.

To compute lower and upper bounds on a (rational) multivariate polynomial
p(x) ∈ Q[x] = Q[x1, . . . , xn],

p(x1, x2, . . . xn) =

d1
∑

i1=0

d2
∑

i2=0

· · ·

dn
∑

in=0

ai1,i2,...,in
xi1

1 xi2
2 · · ·xin

n (5)

over a polytope P ⊂ Qn, we essentially follow the procedure from the previous
section. We first write x as a convex combinations of the vertices

x =
∑

i

αivi

and substitute this expression in the polynomial p(x). We then multiply each term
in the result with the appropriate power of 1 =

∑

i αi to obtain a homogeneous
polynomial in the αi of degree d, where d is the maximum of the di. Finally, we
compute the coefficients bd

k
, for k = (k1, . . . , kn), 0 ≤ ki,

∑

ki = d, in terms of
the generalized Bernstein base polynomials Bd

k
. These generalized Bernstein base

ACM Journal Name, Vol. V, No. N, Month 20YY.

Symbolic Polynomial Maximization over Convex Sets... · 7

polynomials are the terms in the expansion of

1 = (α1 + α2 + · · · + αn)
d

=
∑

k1,k2,...,kn≥0
k1+k2+···+kn=d

(

d

k1, k2, . . . , kn

)

αk1

1 αk2

2 · · ·αkn

n =
∑

k1,k2,...,kn≥0
k1+k2+···+kn=d

Bd
k
(α),

where
(

d

k1, k2, . . . , kn

)

=
d!

k1!k2! . . . kn!

are the multinomial coefficients. Note that, again, the Bd
k
(α) are nonnegative and

sum to 1 and so can be considered to be the coefficients in the expression of p(x)
as a convex combination of the bd

k
. We therefore have

min
k1,k2,...,kn≥0

k1+k2+···+kn=d

bd
k
≤ p(x) ≤ max

k1,k2,...,kn≥0
k1+k2+···+kn=d

bd
k

(6)

on the polytope P ⊂ Qn. The generalized Bernstein base polynomials we use
here are different from the multivariate Bernstein polynomials [Zettler and Garloff
1998; Clauss and Tchoupaeva 2004], which are products of standard Bernstein
polynomials.

Note that the algorithm outlined above does not require the points vi to be the
vertices of the polytope P . They may instead be any set of generators for the
polytope P .

We may also consider parametric polytopes P : D → Qn : q 7→ P (q),

P (q) =

{

x | ∃αi ∈ Q : x =
∑

i

αivi(q), αi ≥ 0,
∑

i

αi = 1

}

,

where D ⊂ Qr is the parameter domain and vi(q) ∈ Q[q] are arbitrary polynomials
in the parameters q. Note that some of these generators may be vertices for only
a subset of the values of the parameters. The coefficients ai of the polynomial p(x)
(5) may also themselves be polynomials in the parameters q, i.e., p(x) ∈ (Q[q])[x]
and

ai =

m1
∑

j1=0

m2
∑

j2=0

· · ·

mr
∑

jr=0

bj1,j2,...,jr
qj1
1 qj2

2 · · · qjr

r .

Applying the algorithm outlined above, we obtain parametric generalized Bernstein
coefficients bd

k
(q) and parametric bounds

min
k1,k2,...,kn≥0

k1+k2+···+kn=d

bd
k(q) ≤ p(q)(x) ≤ max

k1,k2,...,kn≥0
k1+k2+···+kn=d

bd
k(q).

The removal of redundant bounds in this expression is discussed in Section 3.1.

Example 2.3. Consider the polynomial p(x1, x2) = 1
2x2

1 + 1
2x1 + x2 over the

parametric polytope generated by the points

(

0
0

)

,

(

N
0

)

and

(

N
N

)

. Hence any

ACM Journal Name, Vol. V, No. N, Month 20YY.

8 · Ph. Clauss et al.

 0
 2

 4
 6

 8
 10 0 2 4 6 8 10

 0

 10

 20

 30

 40

 50

 60

 70

x1

x2

p(x1, x2)

Fig. 2. The polynomial p(x1, x2) = 1
2
x2
1 + 1

2
x1 + x2 and the corresponding Bernstein coefficients

point

(

x1

x2

)

in the polytope is a convex combination of these points:

(

x1

x2

)

= α1

(

0
0

)

+ α2

(

N
0

)

+ α3

(

N
N

)

0 ≤ αi ≤ 1
3
∑

i=1

αi = 1

By replacing

(

x1

x2

)

with this convex combination, a new polynomial is obtained

whose variables are α1, α2, α3:

1

2
N2α2

2 + N2α2α3 +
1

2
N2α2

3 +
1

2
Nα2 +

3

2
Nα3

Monomials of degree less than 2 are transformed into sums of monomials of
degree 2:

1

2
Nα2 =

1

2
Nα2(α1 + α2 + α3)

3

2
Nα3 =

3

2
Nα3(α1 + α2 + α3).

The final polynomial is:

p(α1, α2, α3) =

(

1

2
N2 +

1

2
N

)

α2
2 +

(

1

2
N2 +

3

2
N

)

α2
3

+
1

2
Nα1α2 +

3

2
Nα1α3 + (N2 + 2N)α2α3.

The basis is built from the expansion of (α1 + α2 + α3)
2 providing the following

ACM Journal Name, Vol. V, No. N, Month 20YY.

Symbolic Polynomial Maximization over Convex Sets... · 9

monomials:

B2,0,0 = α2
1

B0,2,0 = α2
2

B0,0,2 = α2
3

B1,1,0 = 2α1α2

B1,0,1 = 2α1α3

B0,1,1 = 2α2α3.

Rewriting p(α1, α2, α3) in terms of this basis, we obtain

0 B2,0,0 +

(

1

2
N2 +

1

2
N

)

B0,2,0 +

(

1

2
N2 +

3

2
N

)

B0,0,2

+
1

4
NB1,1,0 +

3

4
NB1,0,1 +

(

1

2
N2 + N

)

B0,1,1.

It can then be concluded that the polynomial varies between 0 and 1
2N2 + 3

2N .
Since both of these coefficients are sharp coefficients, the bounds are exact bounds.
The graph of the polynomial and the corresponding Bernstein coefficients are shown
in Figure 2 for N = 10.

3. COMMON OPERATIONS

In this section, we explain how to perform some operations that are common to
many applications of Bernstein expansion. In particular, we provide more details
on how to compute an upper bound of a polynomial over a parametric domain
bounded by linear constraints and we show how to apply this computation to find
a bound on the number of integer points in sets that can be described by linear
constraints.

3.1 Bounding a Polynomial over a Parametric Domain

We already explained in Section 2.2 that given a polynomial and a set of parametric
points, we can compute the Bernstein coefficients of the polynomial over the para-
metric convex polytope generated by the parametric points and that for any value
of the parameters the minimum and maximum values over all Bernstein coefficients
evaluated for this particular value of the parameters, provide a lower and an upper
bound for the value of the polynomial over the convex polytope associated to these
parameter values. However, in many situations where we wish to find a bound for
a polynomial, the domain over which we wish to compute this bound is not given
by a set of generators, but rather by a set of constraints. Also, when evaluating
the lower or upper bound, we want to evaluate as few of the Bernstein coefficients
as possible. We discuss these two issues in this section.

For example, suppose we want to compute an upper bound for the polynomial

−
1

2
i2 −

3

2
i − j − n2 + 4n + 2in (7)

over the domain

D(n) = { (i, j) | 0 ≤ i ≤ 3n − 1 ∧ 0 ≤ j ≤ n − 1 ∧ 3n − 1 ≤ i + j ≤ 4n− 2 }, (8)

ACM Journal Name, Vol. V, No. N, Month 20YY.

10 · Ph. Clauss et al.

where n is a parameter. The first step is to compute the (parametric) vertices
of D(n). If the domain is bounded by linear constraints in the variables and the
parameters, then we can use PolyLib [Loechner 1999] to compute these vertices.
The result is a subdivision of the parameter space in polyhedral cells, each with
an associated set of parametric vertices [Clauss and Loechner 1998]. Note that
we mentioned in Section 2.2 that the generators of a parametric polytope do not
need to be vertices for all values of the parameters. However, they do obviously
have to be inside the parametric polytope. Vertices associated with one subdomain
that are not also associated with another subdomain will lie outside of this other
subdomain. We therefore need to treat each subdomain separately. In the example,
there is only one parameter domain and we find the vertices

{(

2n
n − 1

)

,

(

3n − 1
0

)

,

(

3n − 1
n − 1

)}

if n ≥ 1.

If the constraints describing the domain are only linear in the variables (and not
in the parameters), then we may still compute the vertices of the domain, but the
subdomains of the parameter space that have a fixed set of parametric vertices will
no longer be polyhedral [Rabl 2006].

The next step is to compute the Bernstein coefficients as explained in Section 2.2.
For our example we obtain the coefficients

n2 −
n

4
+

5

4
,
n2

2
+

n

2
+ 1,

n2

2
+

3

2
, n2 + 1,

n2

2
−

n

2
+ 2, n2 −

3n

4
+

7

4
.

An upper bound u(n) for the value of the polynomial over D(n) is therefore

u(n) = max

{

n2−
n

4
+

5

4
,
n2

2
+

n

2
+ 1,

n2

2
+

3

2
, n2 + 1,

n2

2
−

n

2
+2, n2−

3n

4
+

7

4

}

if n ≥ 1.

(9)
To compute the upper bound for any particular value of n, we therefore need to
evaluate these 6 polynomials at this value and take the maximum. However, it
is clear that some of these polynomials are redundant in the sense that for any
value of the parameters in the domain the polynomial always evaluates to a smaller
number than some other polynomial.

The simplest way to eliminate redundant Bernstein coefficients, is to examine
the sign of the difference between two polynomials. If the sign is constant over the
domain (where a zero sign may be treated as either positive or negative), then one
of the two is redundant. Some easy ways of determining the sign of a (difference)
polynomial are as follows.

—If the difference is a constant, the check is trivial.

—If the difference is linear in the parameters, we add the constraint that the dif-
ference be strictly larger than zero to the domain and check whether it becomes

empty. For example, the polynomial n2

2 + 3
2 is redundant since

(

n2

2
+

3

2

)

−

(

n2

2
+

n

2
+ 1

)

=
1

2
−

n

2

and this difference polynomial is never greater than zero for n ≥ 1. The poly-

nomial n2

2 − n
2 + 2 is eliminated for the same reason, while n2 − n

4 + 5
4 and

ACM Journal Name, Vol. V, No. N, Month 20YY.

Symbolic Polynomial Maximization over Convex Sets... · 11

n2 − 3n
4 + 7

4 are eliminated because they are redundant with respect to n2 + 1.
If it turns out that the sign of the difference varies over the domain, we could in
principle further subdivide the domain along the above constraint.

—If the domain over which we want to determine the sign is bounded, we can
apply Bernstein expansion again on the difference over this domain, which is
now considered to be a fixed domain without parameters. The resulting Bernstein
coefficients are therefore constants. If all the non-zero Bernstein coefficients have
the same sign, then so will the difference over the whole domain. For example,
if we assume that there is an upper bound on n, say 1000, then we can perform
Bernstein expansion on

(

n2

2
+

n

2
+ 1

)

−
(

n2 + 1
)

= −
n2

2
+

n

2
(10)

over 1 ≤ n ≤ 1000. The resulting Bernstein coefficients are
{

0,−499500,
−999

4

}

and so we can conclude that n2

2 + n
2 +1 is redundant with respect to n2 +1. Note

that if the polynomial is univariate of degree d with coefficients ci then we know
that all real roots lie in the interval [−M, M] with M = 1 + max0≤i≤d−1 |ci|/|cd|
(Cauchy’s bound). It is therefore sufficient to consider the intersection of a strict
superset of this interval with the possibly unbounded domain of interest. In the
example, it would be sufficient to consider the domain 1 ≤ n ≤ 3.

—If the domain over which we want to determine the sign is not bounded, but there
is a lower bound on one of the parameters, we can write the Taylor expansion of
the difference about this lower bound and determine the signs of the coefficients
in the Taylor expansion. Note that we can easily compute these coefficients using
synthetic division. If all signs are constant and equal, then also the difference
will have this constant sign. For example, we can write (10) as

−
1

2
(n − 1) −

1

2
(n − 1)2

and the coefficients are clearly negative, so we can again conclude that n2

2 + n
2 is

redundant, over the whole domain n ≥ 1.

In our example we have now been able to simplify (9) to

u(n) = n2 + 1 if n ≥ 1. (11)

In general, we will however not be able to identify all but one polynomial as re-
dundant. Still, it may be desirable in some cases to have only a single polynomial
associated to every subdomain, such that for a given subdomain only this sin-
gle polynomial needs to be evaluated. If the difference between two polynomials
is linear then this can easily be accomplished by splitting the domain along the
hyperplane where the difference is zero. For example, suppose we have two poly-
nomials n2 + 3n − 500 and n2 + n in the maximum expression associated to the
domain n ≥ 4. The difference between these two polynomials 2n−500 is zero along
n = 250 and so we would split the domain into, say, 4 ≤ n < 250 and 250 ≤ n. If

ACM Journal Name, Vol. V, No. N, Month 20YY.

12 · Ph. Clauss et al.

1 f o r (i = 0 ; i < 4∗n−1; ++i)
f o r (j = 0 ; j < n ; ++j) {

i f (i+j >= n−1 && i+j <= 3∗n−2)
a [i] [j] = f (i , j) ;

i f (i+j >= 2∗n−1 && i+j <= 4∗n−2)
6 b [j] = b [j] + a [i−n] [j] ;

}

Fig. 3. A nested loop with temporary array a

the differences between pairs of polynomials is not linear, but they are univariate,
then we may not be able to easily split the domain into subdomains where only a
single polynomial remains, but based on Cauchy’s bounds, we can identify and split
off a region of “big” values where the upper bound is given by a single polynomial.

3.2 Bounding the Number of Elements in a Set

A common problem in compiler analysis is that of finding a bound on the number
of elements in a set of integers. In this section we describe how to use Bernstein
expansion to solve this problem in the case the set is described by linear constraints.
A typical example of such an analysis is that of finding the maximal number of live
elements during the course of a program, where an element is “live” at a given point
in the program if it has been defined (written) and still needs to be used (read). A
bound on the maximal number of live elements is an indication of the amount of
memory required for the execution of the program.

Consider, for example, the code fragment in Figure 3 and assume that array
a is a temporary array only used inside this loop nest. Let us concentrate on the
subproblem of finding the maximal number of live elements in the array a. For each
iteration of the loop nest, we can describe the set of elements of the array a that
have already been defined and that still need to be used and we want to compute
the maximal number of elements in this set over all iterations of the loop nest. In
this simple example, each array element that is defined in line 4 is used exactly
once in line 6 and is therefore live between its definition and its first and only use.
The number of elements live at a given iteration is therefore simply the number of
elements defined before that iteration minus the number of elements used before
that iteration, i.e.,

L(n, i, j) = |{(i′, j′) ∈ D1(n) | (i′, j′) 4 (i, j)}|−|{(i′, j′) ∈ D2(n) | (i′, j′) ≺ (i, j)}|,
(12)

with

D1(n) = {(i, j) | 0 ≤ i < 4n − 1 ∧ 0 ≤ j < n ∧ n − 1 ≤ i + j ≤ 3n − 2}

and

D2(n) = {(i, j) | 0 ≤ i < 4n − 1 ∧ 0 ≤ j < n ∧ 2n− 1 ≤ i + j ≤ 4n − 2}

the iteration domains of the definition and the use respectively, and ≺ denoting
“lexicographically smaller than”. Note that (i′, j′) ≺ (i, j) ≡ i′ < i∨(i′ = i∧j′ < j)
is not a linear constraint, but rather a disjunction of linear constraints. If we want to
describe our sets using only (conjunctions of) linear constraints, we will therefore

ACM Journal Name, Vol. V, No. N, Month 20YY.

Symbolic Polynomial Maximization over Convex Sets... · 13

need to split each of the counting problems in (12) into two separate counting
problems. The maximal number of live elements is then simply

M(n) = max
(i,j)∈D2(n)

L(n, i, j).

Note that it is sufficient to compute the maximum of D2(n) rather than the whole
iteration domain since the maximal number of live elements will always occur right
before an element is used.

In general we see that we can identify three sets of variables in such problems:

—the elements that need to be counted; in the example these are the indices of the
array or the iteration in which they are defined or used

—the variables over which the maximum needs to be taken; in the example these
are the iterations of D2(n)

—the structural parameters; in the example, there is a single structural parameter n.

The latter two sets of variables will be parameters for the counting problem, while
only the structural parameters will be parameters for the maximization problem.

Counting the number of integer elements in a parametric set bounded by linear
constraints can be performed very efficiently using Barvinok’s algorithm [Barvinok
and Pommersheim 1999; Verdoolaege et al. 2007]. If the description also contains
existentially quantified variables, then some extensions can be used that work fairly
well in practice [Verdoolaege et al. 2005; Seghir and Loechner 2006]. The result
of this counting problem is a piecewise quasi-polynomial, i.e., a subdivision of the
parameter space (of the counting problem), with a quasi-polynomial associated to
each region of the subdivision. These piecewise quasi-polynomials that result from
counting problems are also called Ehrhart polynomial by some authors [Clauss and
Loechner 1998]. A quasi-polynomial is a polynomial expression where the coeffi-
cients depend periodically on the variables. We can, however, avoid this periodicity
(i.e., obtain an actual polynomial) by approximating the original parametric poly-
tope to obtain either an underestimate or an overestimate [Meister 2004]. In our
example, the number of elements defined before an iteration of D2(n) is8>>><>>>:ni + j − 1

2
n2 + 1

2
n + 1 if (i, j) ∈ D2(n) ∧ i ≤ 2n − 1

− 1
2
i2 + 4ni − 1

2
i + j − 5

2
n2 + 3

2
n + 1 if (i, j) ∈ D2(n) ∧ i ≥ 2n ∧ i + j ≤ 3n − 2

− 1
2
i2 + 3ni − 3

2
i − 5

2
n2 + 9

2
n if (i, j) ∈ D2(n) ∧ i + j ≥ 3n − 2 ∧ i ≤ 3n − 1

2n2 + 1 if (i, j) ∈ D2(n) ∧ i ≥ 3n,

while the number of elements used before an iteration of D2(n) is8>>><>>>: 1
2
i2 − ni + 3

2
i + j + 1

2
n2 − 5

2
n + 1 if (i, j) ∈ D2(n) ∧ i ≤ 2n − 1

ni + j − 3
2
n2 + 1

2
n if (i, j) ∈ D2(n) ∧ i ≥ 2n ∧ i + j ≤ 3n − 2

ni + j − 3
2
n2 + 1

2
n if (i, j) ∈ D2(n) ∧ i + j ≥ 3n − 2 ∧ i ≤ 3n − 1

− 1
2
i2 + 4ni − 1

2
i + j − 6n2 + 2n if (i, j) ∈ D2(n) ∧ i ≥ 3n.

The number of live elements L(n, i, j) at a given iteration of D2(n) is therefore8>>><>>>:2ni − n2 + 3n − 1
2
i2 − 3

2
i if (i, j) ∈ D2(n) ∧ i ≤ 2n − 1

− 1
2
i2 + 2ni − 1

2
i − n2 + n + 1 if (i, j) ∈ D2(n) ∧ i ≥ 2n ∧ i + j ≤ 3n − 2

− 1
2
i2 + 2ni − 3

2
i − n2 + 4n − j if (i, j) ∈ D2(n) ∧ i + j ≥ 3n − 2 ∧ i ≤ 3n − 1

8n2 + 1
2
i2 − 4ni + 1

2
i − j − 2n + 1 if (i, j) ∈ D2(n) ∧ i ≥ 3n.

ACM Journal Name, Vol. V, No. N, Month 20YY.

14 · Ph. Clauss et al.

We now proceed as in Section 3.1 on each of the subdomains in the result of
the counting problem. That is, for each subdomain, we compute its vertices and
then compute the Bernstein coefficients for each of the subdomains in the parameter
space with a fixed set of vertices. In our example, each subdomain of the parameter
space of the counting problem yields a single subdomain of the parameter space of
the maximization problem. The domain D2(n)∩{(i, j) | i+ j ≥ 3n−2∧ i ≤ 3n−1}
has already been handled in Section 3.1. For the other domains we obtain for the
set D2(n) ∩ {(i, j) | i ≤ 2n − 1}, the vertices

{(

2n− 1
n − 1

)

,

(

n
n − 1

)

,

(

2n − 1
0

)}

if n ≥ 1,

for the set D2(n) ∩ {(i, j) | i ≥ 2n ∧ i + j ≤ 3n− 2}, the vertices
{(

3n − 2
0

)

,

(

2n
0

)

,

(

2n
n − 2

)}

if n ≥ 2,

and for the set D2(n) ∩ {(i, j) | i ≥ 3n}, the vertices
{(

4n − 2
0

)

,

(

3n
0

)

,

(

3n
n − 2

)}

if n ≥ 2.

On the first domain, the Bernstein coefficients are
{

n2 +
n

4
+

3

4
, n2 + 1,

n2

2
+

3

2
n

}

,

on the second domain, the Bernstein coefficients are
{

n2 + 1, n2 −
n

4
+

3

2
,
n2

2
+

3

2
n

}

.

while on the final domain, the Bernstein coefficients are
{

2,
n2

2
−

3

2
n + 3,

n2

2
− n + 2,

3

4
n +

1

2
,
n2

2
−

n

2
+ 1,

n

4
+

3

2

}

.

The maximum of all these coefficients, including those from Section 3.1, is therefore
an upper bound on the number of live elements for n ≥ 2.

In general we obtain for each subdomain of the counting problem a subdivision of
the parameter space with a set of Bernstein coefficients associated to each cell. The
bounds on the set are then given by the common refinement of the parameter space
subdivisions over all maximization problems where the set of Bernstein coefficients
associated to each cell in the common refinement is the union of the sets of Bernstein
coefficients associated to the corresponding cells in the individual solutions. In our
example, the common refinement consists of two cells: n = 1, with coefficients from
two problems only, and n ≥ 2, with coefficients from all problems. In the first cell,
we can evaluate the polynomials and the upper bound is simply 1, while in the
second cell we can remove redundant polynomials as described in Section 3.1 and
the only remaining polynomial is n2 + n

4 + 3
4 . Our upper bound on the number of

ACM Journal Name, Vol. V, No. N, Month 20YY.

Symbolic Polynomial Maximization over Convex Sets... · 15

live elements is therefore
{

2 if n = 1

n2 + n
4 + 3

4 if n ≥ 2,

which can be simplified to n2 + n
4 + 3

4 if n ≥ 1.

4. SOFTWARE IMPLEMENTATION

We have implemented the computation of a bound on an arbitrary multivariate
polynomial defined over a linearly parameterized convex polytope, as explained in
Section 3.1, in our bernstein library. This includes the computation of the Bern-
stein coefficients of the polynomial as well as the removal of redundant coefficients.
Our library is built on top of two other libraries:

—the polyhedral library PolyLib [Loechner 1999] to compute the vertices of a
linearly parameterized polytope,

—the GiNaC library [Bauer et al. 2002] for symbolic polynomial manipulations.

Both of these libraries use the GMP library [GMP] (as part of the CLN [Haible
2006] library in the case of GiNaC) for arbitrary precision arithmetic on integers.
Furthermore, the bernstein library has been integrated into the barvinok library
[Verdoolaege 2006], which has been augmented with a procedure for computing
a bound on the result of a counting problem using bernstein. This procedure
effectively implements the approach discussed in Section 3.2.

5. APPLICATIONS TO MEMORY REQUIREMENT ESTIMATION

In this section, we describe some applications to memory requirement estimation.
In each of these applications we are given a polynomial expression of the amount of
“memory in use” at a given “execution point” and we want to compute an upper
bound on the amount of memory used over all execution points. The memory in use
can be the set of live array elements, the tokens in a FIFO, the elements accessed
between two uses of the same element or the size of the memory scope of a method
in terms of its parameter values. Our technique can also be used to extend the
applicability of the applications of Clauss and Tchoupaeva [2004] from “boxes” to
parametric polytopes. We will not repeat those applications here.

5.1 Memory Size Computation

The problem of computing the “exact memory size” of a program is that of finding
the minimum amount of memory locations needed to store the data of the pro-
gram during its execution [Zhu et al. 2006]. This problem is basically the liveness
analysis we used as an example in Section 3.2 and variations of this problem have
been studied earlier in the literature (e.g., [Verbauwhede et al. 1994; Grun et al.
1998; Zhao and Malik 2000; Ramanujam et al. 2001]). Zhu et al. [2006] distinguish
themselves from previous research by computing the memory size exactly, rather
than approximately. We focus on their work because it is the most recent and be-
cause they cite some numbers to which we can compare our results. They propose
a rather complicated algorithm where they first decompose the array references

ACM Journal Name, Vol. V, No. N, Month 20YY.

16 · Ph. Clauss et al.

into disjoint linearly bounded lattices and then compute the number of live ele-
ments both between consecutive top-level loops and inside top-level loops. For this
last computation, they determine the iteration where the number of live elements
changes and then presumably iterate over all these iterations to find the maximum
number of live elements. Their algorithm is fundamentally non-parametric, so they
need to redo the whole computation for each value of the parameters.

Using Bernstein expansion, we can compute (an upper bound of) the memory
size parametrically. We implemented a very straightforward algorithm where we
first compute pairs of consecutive accesses to array elements, where the first is
either a write or a read and the second is a read. We perform this computation
using a variation of array dataflow analysis [Feautrier 1991], resulting in a union
of relations described by linear constraints. For each statement in the program
and for each relation in this union, we then compute the number of live elements
in the relation as a function of the iterators of the enclosing loops and sum these
together for all relations in the union. The number of live elements is determined
by projecting the relation on both the first and the second access, computing the
number of both these accesses that precede a given iteration of the statement using
barvinok [Verdoolaege 2006] and taking the difference. The maximum number of
live elements is then computed as explained in Section 3.2.

Although the procedure outlined above can still be significantly optimized by
avoiding redundant computations, even the straightforward implementation can
compute the parametric memory size for the 2D Gaussian blur filter in 44 seconds
on an Athlon MP 1500+ with 512MiB internal memory, while Zhu [2006] reports
computation times of 3 and 103 seconds on a slightly faster machine for parameter
values N = 100, M = 50 and M = N = 500 respectively. The size we com-
pute is MN + 5, which agrees with the values 5005 and 250005 reported by Zhu
[2006]. We should point out that the algorithm of Zhu et al. [2006] appears to be
fairly inefficient for large values of the parameters. In an alternative, again very
straightforward, implementation, we first basically perform the dependence analysis
outlined above and generate code using CLooG [Bastoul 2004] to count the number
of live elements by incrementing a counter each time a value is read or written that
is still needed and decrementing the same counter each time a value is read and
report the maximal value attained by the counter. For each value of the param-
eters we then compile and execute the generated code. For the same application,
we found that the analysis and code generation takes about 9 seconds, compilation
takes about 0.5 seconds and the actual execution is too fast to be measured for
N = 100, M = 50 while it takes about 0.03 seconds for M = N = 500.

Note that the size computed by our procedure may be an overestimate. However,
the actual memory size may not be very useful, since in order to fit all data in the
“exact memory size” you would still have to derive an appropriate mapping of
the array elements to this minimally sized memory. This addressing issue is not
discussed by Zhu et al. [2006].

5.2 Computing FIFO Sizes in Process Networks

The conversion of a sequential program to a process network is a way of exposing
the task-level parallelism in the program [Turjan et al. 2004; Verdoolaege et al.
2006]. In a process network, independent processes communicate with each other

ACM Journal Name, Vol. V, No. N, Month 20YY.

Symbolic Polynomial Maximization over Convex Sets... · 17

through communication channels. The derivation of process networks is an exten-
sion of array dataflow analysis [Feautrier 1991], where array reads are analyzed
to determine where the data was produced and where all array accesses are sub-
sequently replaced by reads and writes to the communication channels. In many
cases, the reads and writes occur (or can be made to occur) in the same order
and the communication channel is a FIFO. In an idealized form, these FIFOs are
unbounded, but for a practical (hardware or software) implementation we need to
be able to compute bounds on the sizes of the FIFOs.

We first consider self-loops, i.e., FIFOs from a given process to itself. The itera-
tion order inside any given process is fixed and corresponds to the iteration order
in the original program. To compute the maximal number of tokens in the FIFO,
we again apply the technique of Section 3.2. The set for which we want to compute
an upper bound is the set of tokens in the FIFO for any iteration of the process
and it is composed of the tokens that have been written to the FIFO but have not
been read yet. To count the number of elements in this set, we count the number
of write operations that precede the given iteration as well as the number of read

operations that precede the iteration and take the difference.
For FIFOs between two distinct processes, it is in general impossible to know how

many tokens are in the FIFO at any given instant of time because the processes
are essentially independent. The only influence they exert on each other is through
the communication channels. If a process reads from an empty FIFO, it will block
until data is available. Likewise, if a process writes to a full FIFO, it will block until
sufficient room is available. Note that if the size of a FIFO is too small, then the
network will deadlock. FIFO sizes that are too large, however, waste resources. Our
objective is therefore to find the smallest FIFO sizes that still ensure a deadlock free
execution. Note that in practice we would not necessarily use the absolute smallest
sizes, since they could hinder the parallel execution of the processes as these could
spend a substantial amount of time blocking on reads or writes. Knowledge of the
smallest sizes is however a good starting point for finding good sizes.

Unfortunately, computing the minimal deadlock-free FIFO sizes is a non-trivial
global optimization problem. The easiest way to obtain (non-minimal) deadlock-
free FIFO sizes is to take the declared sizes of the arrays whose elements are sent
across the FIFOs, but this typically results in a huge overestimate. Another option
is to take the schedule of the original sequential program and compute the FIFO
sizes as for self-loops, but this may again lead to a substantial overestimate. To
improve on this estimate we instead first compute a global schedule, independent
of the schedule of the sequential program, that strives to minimize the FIFO sizes
[Verdoolaege et al. 2006].

Our approach greedily combines iteration domains of different statements un-
til all iteration domains share a common iteration space. The relative position of
two iteration domains that are combined together is chosen such that the mini-
mal distance vector of any dependence between the two iteration domains is zero,
meaning that at least one token is used immediately after it has been produced.
This algorithm ensures that a valid schedule is found, provided that it starts from
a sequential program [Verdoolaege et al. 2003].

Example 5.1. Consider the program in Figure 4. The process network derived

ACM Journal Name, Vol. V, No. N, Month 20YY.

18 · Ph. Clauss et al.

f o r (j = 0 ; j < N; ++j)
f o r (i = j ; i < N; ++i)

R[j] [i] = Zero () ;
f o r (k = 0 ; k < K; ++k)

f o r (j = 0 ; j < N; ++j)
X[k] [j] = ReadMatrix () ;

f o r (k = 0 ; k < K; ++k)
f o r (j = 0 ; j < N; ++j) {

Vector i ze (R[j] [j] , X[k] [j] , &R[j] [j] , &X[k] [j] , &t) ;
f o r (i = j +1; i < N; ++i)

Rotate (R[j] [i] , X[k] [i] , t , &R[j] [i] , &X[k] [i] , &t) ;
}

f o r (j = 0 ; j < N; ++j)
f o r (i = j ; i < N; ++i)

WriteMatrix (R[j] [i]) ;

Fig. 4. QR algorithm

Zero

Vectorize

R: 1

Rotate

R: N-1

ReadMatrix

X: 1

 X: 1R: N

 t: 1

WriteMatrix

R: 1

X: 1

X: N-2 R: (N*N-N)/2 t: 1

R: 1

Fig. 5. QR Process Network

from this code using the methods of Verdoolaege et al. [2006] is shown in Figure 5.
The network consists of 5 nodes, corresponding to the statements in the original
program, and 12 edges, 4 of which are self-loops. For example, the edge from the
Vectorize node to itself has the following dependence relation, relating iterations
that write to the FIFO to the corresponding iteration that reads from the FIFO:

{[k, j] → [k′, j′] : k′ = 1 + k ∧ j′ = j ∧ 0 ≤ j < N ∧ 0 ≤ k ≤ K − 2}.

Projection on domain and range yields

W = {[k, j] : 0 ≤ j ≤ N − 1 ∧ 0 ≤ k ≤ K − 2}

and

R = {[k, j] : 0 ≤ j ≤ N − 1 ∧ 1 ≤ k ≤ K − 1}

ACM Journal Name, Vol. V, No. N, Month 20YY.

Symbolic Polynomial Maximization over Convex Sets... · 19

f o r (a = 0 ; a <= K−1 a++)
f o r (b = 0 ; b <= N−1; b++)

f o r (c = b ; c <= 2∗N−2; c++) {
i f (a == 0 && c <= N−1)

R[b] [c] = Zero () ;
i f (b == 0 && N−1 <= c)

X[a] [c−N+1] = ReadMatrix () ;
i f (c == N−1)

Vector i ze (R[b] [b] , X[a] [b] , &R[b] [b] , &X[a] [b] , &t) ;
i f (b <= c−N)

Rotate (R[b] [c−N+1] ,X[a] [c−N+1] , t ,&R[b] [c−N+1] ,&X[a] [c−N+1] ,& t) ;
i f (a == K−1 & b <= c−N+1)

WriteMatrix (R[b] [c−N+1]) ;
}

Fig. 6. Rescheduled QR algorithm

for the sets of iterations that write to and read from the FIFO respectively. The
number of elements of W that precede a given iteration (k, j) in R is

{

Nk if 0 ≤ j ≤ N − 1 ∧ k = K − 1

Nk + j if 0 ≤ j ≤ N − 1 ∧ 1 ≤ k ≤ K − 2,

while the number of elements of R that precede the same iteration is Nk + j − N .
The number of elements in the FIFO at iteration (k, j) is therefore

{

N − j if 0 ≤ j ≤ N − 1 ∧ k = K − 1

N if 0 ≤ j ≤ N − 1 ∧ 1 ≤ k ≤ K − 2

and the maximum is clearly N .
As explained above, to compute deadlock-free FIFO sizes for the other edges,

we place the iteration domains in a common space. In order to be able to do
so, however, we first need to ensure all iteration domains have the same dimen-
sion. We apply a simple heuristic that inserts fixed-valued iterators in the lower
dimensional iteration domains based on the dependences they share with higher
dimensional iteration domains. For example, the dependence between the Rotate

and WriteMatrix nodes is described by

{[k, j, i] → [j′, i′] : k = K − 1 ∧ j′ = j ∧ i′ = i ∧ 0 ≤ j < i < N}.

Since both j′ and j as well as i′ and i are equal to each other up to a constant (in
this case 0), inserting an extra iterator with an arbitrary value in the first position
will allow a relative offset to be chosen that places the write and read on top of
each other. Similarly, an extra iterator is inserted in the first position for node
Zero, in the second position for node ReadMatrix and in the third position for
node Vectorize. The algorithm then greedily combines the iteration domains into
a common iteration space, in each step choosing a relative offset that minimizes
some distance vectors. Finally, an extra iterator is added in the last position to
ensure that all reads occur after the corresponding writes. For example, the above
dependence between the Rotate and WriteMatrix nodes is now described by

{[a, b, c, 1] → [a′
, b

′
, c

′
, 2] : a

′ = a = K−1∧b
′ = b∧c

′ = c∧N ≤ c ≤ 2N−2∧0 ≤ b ≤ c−N},

ACM Journal Name, Vol. V, No. N, Month 20YY.

20 · Ph. Clauss et al.

where the innermost iterator takes the values 1 and 2 respectively. Writing out the
(re)scheduled algorithm would result in the code shown in Figure 6. In the common
iteration space, the computation of the FIFO sizes can proceed as for self-loops.
The final results are shown in Figure 5.

5.3 Reuse Distances

The (forward) reuse distance of a memory access to a memory element is the number
of distinct memory elements accessed between the given access and the next access
to the same memory element. It is a measure for the locality of the access as the
element will still be in the cache on the next access depending on whether the reuse
distance is smaller than the cache size, assuming that the cache is fully associative
with LRU replacement policy [Beyls and D’Hollander 2005]. Beyls and D’Hollander
[2005] propose to use the reuse distance to select cache hints. Since the cache hint
of a given instruction is fixed during the entire execution of the program, while it
may give rise to many accesses with different reuse distances, they propose to base
their cache hint selection on the cache that is sufficiently large to hold 90% of the
elements accessed by the instruction until their next use.

To be able to determine the appropriate cache size, they need to evaluate the reuse
distance for each loop iteration of the loops surrounding the given instruction, even
though the reuse distance itself can be computed parametrically in terms of the
loop iterators and structural parameters. Although Bernstein expansion cannot
help to easily determine the minimum size that will hold 90% of the accesses, it
can help to determine the minimum size that will hold all accesses that will still
be reused, by computing an upper bound of the reuse distance over all iterations.
This strategy can be further refined by also considering the lower bound of the
reuse distance, which can be computed in a similar way or simply by noticing that
min f(i) = −max −f(i), as well as the average reuse distance, which can also be
computed parametrically [Verdoolaege 2005, Section 4.5.4].

5.4 Estimating Dynamic Memory Requirements

Braberman et al. [2006] present a static analysis approach for computing a para-
metric upper-bound of the amount of memory dynamically allocated by (Java-like)
imperative object-oriented programs. Their major contribution is a technique to
quantify dynamic allocations performed by a method. Given a method m with pa-
rameters p1, . . . , pk, they propose an algorithm that computes a parametric polyno-
mial in p1, . . . , pk that over-approximates the amount of memory allocated during
the execution of m, i.e., all the dynamic memory claimed from the memory manager
without considering any kind of (garbage) collection.

Roughly speaking, the technique works as follows: For every allocation statement,
an invariant is derived that relates program variables in such a way that the amount
of consumed memory is a function of the number of integer points that satisfy the
invariant. This number is given in a parametric form as a polynomial where the
unknowns are method parameters. The technique does not require annotating the
program in any form and produces polynomials that bound the memory usage.

Combining this algorithm with static pointer and escape analysis [Salcianu and
Rinard 2001; Blanchet 1999], it is also possible to compute memory region sizes
to be used in scope-based memory management [Garbervetsky et al. 2004; Cherem

ACM Journal Name, Vol. V, No. N, Month 20YY.

Symbolic Polynomial Maximization over Convex Sets... · 21

void m0(i n t m) {
f o r (c = 0 ; c < m; c++) {

m1(c) ;
B [] m2Arr = m2(2∗m−c) ;

}
}

B [] m2(i n t n) {
B [] arrB = new B[n] ;
f o r (j = 1 ; j <= n ; j++)

B b = new B() ;
r e turn arrB ;

}

void m1(i n t k) {
f o r (i = 1 ; i <= k ; i++) {

A a = new A() ;
B [] dummyArr = m2(i) ;

}
}

Fig. 7. Dynamic memory allocation example

and Rugina 2004]. In a scope-based memory management the heap is basically di-
vided into regions associated with computation units (methods or threads). Escape
analysis is used to decide in which region objects have to be allocated. This kind of
memory management strategy is often used as an alternative to garbage-collected
memory management in environments where performance or predictability are re-
quired. In general, the developer has to provide upper bounds of the size of each
region, in order to ensure these performance requirements.

Given a method m with parameters p1, . . . , pk, the paper presents algorithms for
computing parametric polynomials in p1, . . . , pk that over-approximate the amount
of memory that escapes from and is captured by m respectively.1 In particular, the
latter can be used as an upper bound for the size of the region associated to m. In
this section, we will present a simplified version of this algorithm.

In our simplified algorithm, we will assume that memory only escapes from a
method as a result of returning a reference to the memory to the calling method
and that no method is called recursively. The required memory size of the region
associated to a given method m, memRqm, is then the amount of memory captured by
the method, capm, plus the maximum of the memory sizes of the regions associated
to all methods called by m, i.e.,

memRqm = capm + max
p called by m

memRqp.

Note that both capm and memRqm will depend on the values of the parameters of
m and so the maximum in the formula above needs to be taken over all invocations
of all methods called by m. If a method is called from within a loop nest with
affine loop bounds, then the maximum (or at least an upper bound) of the sizes of
all invocations of that method in the loop nest can be computed using Bernstein
expansion as explained in Section 3.1. The remaining maximum expression can be
simplified in the same way as redundant Bernstein coefficients are eliminated in the
same section.

Consider, for example, the code in Figure 7 and assume for simplicity that all
objects are of size 1. We will use retm to denote the size of the memory returned from

1An object escapes a method m when its lifetime is longer that the lifetime of m. An object is
captured by the method m when it can be safely collected at the end of the execution of m.

ACM Journal Name, Vol. V, No. N, Month 20YY.

22 · Ph. Clauss et al.

a method m. Method m2 does not call any other methods, captures all allocations
assigned to b and returns arrB. We therefore have

capm2(n) =
∑

1≤j≤n

1 = n

retm2(n) = n

memRqm2(n) = capm2(n) = n.

Note that we assume here that n is nonnegative. Method m1 does call another
method, namely m2, and it captures all the memory it allocates itself as well as the
memory that escaped (and was returned) from m2. We have

capm1(k) =
∑

1≤i≤k

(1 + retm2(i)) =
∑

1≤i≤k

(1 + i) =
k(k + 3)

2

memRqm1(k) = capm1(k) + max
1≤i≤k

memRqm2(i) =
k(k + 3)

2
+ k =

k2 + 5k

2
,

where Bernstein expansion is used to compute max1≤i≤k memRqm2(i) and we again
assume that k ≥ 0. Finally, for method m0, we have

capm0(m) =
X

0≤c≤m−1

retm2(2m − c) =
3m2 + m

2

memRqm0(m) = capm0(m) + max

�
max

0≤c≤m−1
memRqm1(c), max

0≤c≤m−1
memRqm2(2m − c)

�
= capm0(m) + max

�
max

0≤c≤m−1

c2 + 5c

2
, max
0≤c≤m−1

(2m − c)

�
=

3m2 + m

2
+ max

�
m2 + 3m − 4

2
, 2m

�
=

3m2 + m

2
+

m2 + 3m − 4

2

= 2m
2 + 2m − 2,

where we now assume that m ≥ 1. The general solution is

memRqm0(m) =

{

2m2 + 2m − 2 if m ≥ 1

0 if m ≤ 0.

Note that in general, the solution may still contain maximum expressions over
a finite set of polynomials, which will need to be evaluated at run-time when the
values of the parameters are known. This computation can be performed fairly
efficiently using the techniques of, e.g., Hosangadi et al. [2006]. Also note that our
simplified algorithm works bottom-up, starting from the leaves in the call graph
(which is assumed to be acyclic) and working its way up to the root. This process
may lead to loss of precision. The actual algorithm therefore proceeds in a top-
down fashion, computing the size required for an (indirectly) called method for
each path in the call graph leading to that method. For more information we refer
to Fernández [2006].

ACM Journal Name, Vol. V, No. N, Month 20YY.

Symbolic Polynomial Maximization over Convex Sets... · 23

6. RELATED WORK

6.1 Handling Polynomials in Program Analysis

Maslov and Pugh [1994] present a technique to simplify polynomial constraints.
It is based on a decomposition of any polynomial constraint into a conjunction of
affine constraints and 2-variable hyperbolic and elliptical inequalities and equalities
that can later be linearized. Hence their approach is not general and can only
handle those polynomials that can be decomposed in this way.

Blume and Eigenmann [1994] present an algorithm for determining the sign of
a symbolic expression. It is assumed that each variable has a (symbolic) lower
and upper bound and these ranges are repeatedly substituted in the expression
until a non-negative constant lower bound or a non-positive constant upper bound
is found on the expression. In each iteration, the expression is simplified using a
set of rewrite rules. If a variable occurs multiple times in the same expression,
then overly conservative bounds can be generated. However, if they can determine,
by recursively applying their algorithm to the first order forward difference of the
polynomial, that the expression is monotonically non-increasing or non-decreasing
in a given variable, then they can safely substitute the lower and upper bounds
of the variable simultaneously in the whole expression, leading to a tighter bound.
Although this technique was only intended for determining the sign of a symbolic
expression, it can also be used to find a symbolic bound by simply not substituting
some of the variables. The main disadvantages of this technique are that it only
works over “boxes” and that the accuracy can be very low for non-monotonic ex-
pressions. Applying the basic substitution technique to the example polynomial (7)
from Section 3.1 over the box [2n : 3n − 1] × [0 : n − 1] yields an upper bound of
3n2−n−1. Exploiting the monotonicity of the example polynomial (over the edges
of the box; the polynomial is not monotonic over the edges of the polytope D (8))
results in the upper bound n2 + n − 1. This should be compared with the upper
bound n2 + 1 (11) obtained through Bernstein expansion.

Van Engelen et al. [2003] apply the same monotonicity test of Blume and Eigen-
mann [1994] in the specific context of bounding a polynomial over the parameterized
box [0, n − 1]. They may not have been aware of this earlier result since in their
related work they refer to the corresponding conference paper [Blume and Eigen-
mann 1995] which lacks a description of the monotonicity test. They compute the
forward difference in a slightly different way, though. In particular, they use the
Newton series representation of a polynomial, which expresses the polynomial in
the “falling factorial” basis. Although this representation is very useful for comput-
ing sums of polynomials, as shown in the same paper, it is not immediately obvious
why it would be advantageous to use for computing the forward difference.

Fahringer [1998] describes an extension of the technique of Blume and Eigenmann
[1994] for determining the sign of a symbolic expression to handle multiple lower
and upper bounds on a variable. The semantics of his intermediate expressions are
not clearly defined, however. It is therefore not clear whether his technique can
also be used to find symbolic bounds on expressions.

Bernstein expansion for arbitrary intervals and multivariate polynomials was
used in a previous work dealing with symbolic Bernstein expansion [Clauss and
Tchoupaeva 2004]. However, this technique has some drawbacks that are described

ACM Journal Name, Vol. V, No. N, Month 20YY.

24 · Ph. Clauss et al.

in the introduction of this paper and that are entirely removed with the method
presented in this paper.

6.2 Memory Requirement Estimation

6.2.1 Static Memory. The problem of finding (an approximation) of the min-
imal amount of memory required to run a program given a schedule has been
studied before [Verbauwhede et al. 1994; Grun et al. 1998; Zhao and Malik 2000;
Ramanujam et al. 2001; Zhu et al. 2006]. However, most authors make simplifying
assumptions, such as uniformly generated references [Ramanujam et al. 2001], or
the assumption that the number of live elements is an affine expression of the it-
erators [Zhao and Malik 2000], rather than the more general case of a polynomial.
The techniques of other authors [Zhu et al. 2006] only work for non-parametric
programs. Kjeldsberg et al. [2004] estimate the memory requirements when the
execution order is only partially known. Many authors have also considered the
problem of finding good memory mappings. We refer to Darte et al. [2005] for an
overview and a mathematical framework for handling this problem.

6.2.2 Dynamic Memory. The problem of dynamic memory estimation has been
studied for functional languages by Hofmann and Jost [2003], Hughes and Pareto
[1999] and Unnikrishnan et al. [2003]. The work of Hofmann and Jost [2003] stat-
ically infers, by type derivation and linear programming, linear expressions that
depend on function parameters. The technique is stated for functional programs
running under a special memory mechanism (free list of cells and explicit dealloca-
tion in pattern matching). The computed expressions are linear constraints on the
sizes of various parts of data. Hughes and Pareto [1999] propose a variant of ML
together with a type system based on the notion of sized types [Hughes et al. 1996],
such that well typed programs are proven to execute within the given memory
bounds. The technique proposed by Unnikrishnan et al. [2003] consists in, given a
function, constructing a new function that symbolically mimics the memory allo-
cations of the former. The computed function has to be executed over a valuation
of parameters to obtain a memory bound for that assignment. The evaluation of
the bound function might not terminate, even if the original program does.

For imperative object-oriented languages, solutions have been proposed by Gheo-
rghioiu [2002] and Chin et al. [2005]. The technique of Gheorghioiu [2002] manipu-
lates symbolic arithmetic expressions on unknowns that are not necessarily program
variables, but added by the analysis to represent, for instance, loop iterations. The
resulting formula has to be evaluated on an instantiation of the remaining unknowns
to obtain the upper-bound. No benchmarking is available to assess the impact of
this technique in practice. Nevertheless, two points may be made. Since the un-
knowns may not be program inputs, it is not clear how instances are produced.
Second, it seems to be quite over-pessimistic for programs with dynamically cre-
ated arrays whose size depends on loop variables. The method proposed by Chin
et al. [2005] relies on a type system and type annotations, similar to Hughes and
Pareto [1999]. It does not actually synthesize memory bounds, but statically checks
whether size annotations (Presburger formulas) are verified. It is therefore up to
the programmer to state the size constraints, which are moreover required to be
linear.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Symbolic Polynomial Maximization over Convex Sets... · 25

7. CONCLUSION

Memory requirement evaluation of applications is a major issue in the design of
computer systems, and specifically in the case of embedded systems. We have
shown for several application examples that this problem can often consist in max-
imizing a parametrized and multivariate polynomial defined over a parametrized
convex domain. We proposed an original approach based on Bernstein expansion
to compute accurate bounds for such polynomials, and even exact bounds in some
cases. It has been implemented and is freely available.

We have also shown that static analysis of programs can provide high quality
results for complicated and critical issues as soon as efficient mathematical tools
are well used and adapted. Static analysis is superior to dynamic and experimental
approaches, such as profiling or iterative compilation, since it can directly provide
accurate and correct results. Moreover, these results, when parametrized, can cover
all possible execution configurations from only one unique program analysis process.

In this paper, Bernstein expansion is used to analyze polynomials resulting from
previous program analysis steps. However, Bernstein polynomials can also be used
to perform polynomial interpolation. We are currently investigating the use of
Bernstein interpolation to model data that is too difficult or too complex to be
handled directly, enabling some new interesting program transformations.

REFERENCES

Barvinok, A. and Pommersheim, J. 1999. An algorithmic theory of lattice points in polyhedra.
New Perspectives in Algebraic Combinatorics 38, 91–147.

Bastoul, C. 2004. Code generation in the polyhedral model is easier than you think. In PACT ’04:
Proceedings of the 13th International Conference on Parallel Architectures and Compilation
Techniques. IEEE Computer Society, Washington, DC, USA, 7–16.

Bauer, C., Frink, A., and Kreckel, R. 2002. Introduction to the GiNaC framework for symbolic
computation within the C++ programming language. J. Symb. Comput. 33, 1, 1–12.

Berchtold, J. and Bowyer, A. 2000. Robust arithmetic for multivariate bernstein-form poly-
nomials. Computer-aided Design 32, 681–689.

Bernstein, S. 1952. Collected Works. Vol. 1. USSR Academy of Sciences.

Bernstein, S. 1954. Collected Works. Vol. 2. USSR Academy of Sciences.

Beyls, K. and D’Hollander, E. 2005. Generating cache hints for improved program efficiency.
Journal of Systems Architecture 51, 4 (4), 223–250.

Blanchet, B. 1999. Escape analysis for object-oriented languages: application to Java. In OOP-
SLA ’99: Proceedings of the 14th ACM SIGPLAN conference on Object-oriented programming,
systems, languages, and applications. ACM Press, 20–34.

Blume, W. and Eigenmann, R. 1994. Symbolic range propagation. Tech. Rep. 1381, Univ of
Illinois at Urbana-Champaign, Cntr for Supercomputing Res & Dev. Oct.

Blume, W. and Eigenmann, R. 1995. Symbolic range propagation. In IPPS ’95: Proceedings of
the 9th International Symposium on Parallel Processing. IEEE Computer Society, Washington,
DC, USA, 357–363.

Braberman, V., Garbervetsky, D., and Yovine, S. 2006. A static analysis for synthesizing
parametric specifications of dynamic memory consumption. Journal of Object Technology 5, 5
(jun), 31–58. http://www.jot.fm/issues/issue 2006 06/article2.pdf.

Cherem, S. and Rugina, R. 2004. Region analysis and transformation for java programs. In
ISMM ’04: Proceedings of the 4th international symposium on Memory management. ACM
Press, New York, NY, USA, 85–96.

Chin, W.-N., Nguyen, H. H., Qin, S., and Rinard, M. C. 2005. Memory usage verification for

ACM Journal Name, Vol. V, No. N, Month 20YY.

26 · Ph. Clauss et al.

OO programs. In Static Analysis, 12th International Symposium, SAS 2005, C. Hankin and

I. Siveroni, Eds. Lecture Notes in Computer Science, vol. 3672. Springer, 70–86.

Clauss, P. and Loechner, V. 1998. Parametric analysis of polyhedral iteration spaces. Journal
of VLSI Signal Processing 19, 2, Kluwer Academic.

Clauss, P. and Tchoupaeva, I. 2004. A symbolic approach to bernstein expansion for program
analysis and optimization. In 13th International Conference on Compiler Construction, CC
2004, E. Duesterwald, Ed. LNCS, vol. 2985. Springer, 120–133.

Darte, A., Schreiber, R., and Villard, G. 2005. Lattice-based memory allocation. IEEE
Trans. Comput. 54, 10, 1242–1257.

De Loera, J. A., Hemmecke, R., Köppe, M., and Weismantel, R. 2006. Integer polynomial
optimization in fixed dimension. Math. Oper. Res. 31, 1 (Feb.), 147–153.

Fahringer, T. 1998. Efficient symbolic analysis for parallelizing compilers and performance
estimators. J. Supercomput. 12, 3, 227–252.

Farin, G. 1993. Curves and Surfaces in Computer Aided Geometric Design. Academic Press,
San Diego.

Farouki, R. and Rajan, V. 1987. On the numerical condition of polynomials in bernstein form.
Computer Aided Geometric Design 4, 3, 191–216.

Feautrier, P. 1991. Dataflow analysis of array and scalar references. Int. J. Parallel Pro-
gram. 20, 1, 23–53.

Feautrier, P. 1996. The Data Parallel Programming Model. LNCS, vol. 1132. Springer-Verlag,
Chapter Automatic Parallelization in the Polytope Model, 79–100.

Fernández, F. J. 2006. Obtaining memory bounds of the required memory to run a method in
the memory scoped model with bernstein basis. M.S. thesis, Departamento de Computación.
FCEyN. Universidad de Buenos Aires.

Garbervetsky, D., Nakhli, C., Yovine, S., and Zorgati, H. 2004. Program instrumentation
and run-time analysis of scoped memory in java. In RV 2004: International Workshop on
Runtime Verification. ENTCS, vol. 113. ETAPS, Elsevier, Barcelona, Spain, 105–121.

Garloff, J. 1999. Application of bernstein expansion to the solution of control problems. In
Proceedings of MISC’99 - Workshop on Applications of Interval Analysis to Systems and Con-
trol, J. Vehi and M. A. Sainz, Eds. University of Girona, Girona (Spain), Springer Netherlands,
421–430.

Garloff, J. and Graf, B. 1999. The Use of Symbolic Methods in Control System Analysis and
Design. Institution of Electrical Engineers (IEE), London, Chapter Solving Strict Polynomial
Inequalities by Bernstein Expansion, 339–352.

Gheorghioiu, O. 2002. Statically determining memory consumption of real-time java threads.
M.S. thesis, Massachusetts Institute of Technology.

GMP. The GNU MP bignum library. http://www.swox.com/gmp/.

Grun, P., Balasa, F., and Dutt, N. 1998. Memory size estimation for multimedia applications.
In CODES/CASHE ’98: Proceedings of the 6th international workshop on Hardware/software
codesign. IEEE Computer Society, Washington, DC, USA, 145–149.

Haible, B. 2006. CLN : Class library for numbers. Available at http://www.ginac.de/CLN/ .

Hofmann, M. and Jost, S. 2003. Static prediction of heap usage for first-order functional
programs. In POPL ’03: Proceedings of the 30th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages. ACM Press, 185–197.

Hosangadi, A., Fallah, F., and Kastner, R. 2006. Optimizing polynomial expressions by alge-
braic factorization and common subexpression elimination. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 25, 10 (Oct.), 2012–2022.

Hughes, J. and Pareto, L. 1999. Recursion and dynamic data-structures in bounded space:
towards embedded ml programming. In ICFP ’99. ACM, 70–81.

Hughes, J., Pareto, L., and Sabry, A. 1996. Proving the correctness of reactive systems using
sized types. In POPL ’96. ACM, 410–423.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Symbolic Polynomial Maximization over Convex Sets... · 27

Kjeldsberg, P. G., Catthoor, F., and Aas, E. J. 2004. Storage requirement estimation for

optimized design of data intensive applications. ACM Trans. Des. Autom. Electron. Syst. 9, 2,
133–158.

Loechner, V. 1999. Polylib: A library for manipulating parameterized polyhedra. Tech. rep.,
ICPS, Université Louis Pasteur de Strasbourg, France. Mar.

Martin, R., Shou, H., Voiculescu, I., Bowyer, A., and Wang, G. 2002. Comparison of interval
methods for plotting algebraic curves. Computer Aided Geometric Design 19, 553–587.

Maslov, V. and Pugh, W. 1994. Simplifying polynomial constraints over integers to make
dependence analysis more precise. In CONPAR 94 - VAPP VI, Int. Conf. on Parallel and
Vector Processing.

Meister, B. 2004. Stating and manipulating periodicity in the polytope model. applications to
program analysis and optimization. Ph.D. thesis, ICPS, Université Louis Pasteur de Strasbourg,
France.

Rabl, T. 2006. Volume calculation and estimation of parameterized integer polytopes. M.S.
thesis, Universität Passau.

Ramanujam, J., Hong, J., Kandemir, M. T., and Narayan, A. 2001. Reducing memory re-
quirements of nested loops for embedded systems. In Design Automation Conference. 359–364.

Salcianu, A. and Rinard, M. 2001. Pointer and escape analysis for multithreaded programs. In
PPoPP ’01: Proceedings of the eighth ACM SIGPLAN symposium on Principles and practices
of parallel programming. ACM Press, 12–23.

Seghir, R. and Loechner, V. 2006. Memory optimization by counting points in integer transfor-
mations of parametric polytopes. In Proceedings of the International Conference on Compilers,
Architectures, and Synthesis for Embedded Systems, CASES 2006, Seoul, Korea.

Stahl, V. 1995. Interval methods for bounding the range of polynomials and solving systems of
nonlinear equations. Ph.D. thesis, Johannes Kepler University Linz, Austria.

Turjan, A., Kienhuis, B., and Deprettere, E. 2004. Translating affine nested-loop programs
to process networks. In Proc. International Conference on Compilers, Architectures, and Syn-
thesis for Embedded Systems (CASES’04). Washington D.C., USA, 220–229.

Unnikrishnan, L., Stoller, S., and Liu, Y. 2003. Optimized live heap bound analysis. In
VMCAI 03. LNCS, vol. 2575. 70–85.

Van Engelen, R., Gallivan, K., and Walsh, B. 2003. Tight timing estimation with the Newton-
Gregory formulae. In 10th Workshop on Compilers for Parallel Computers, CPC 2003.

Verbauwhede, I. M., Scheers, C. J., and Rabaey, J. M. 1994. Memory estimation for high
level synthesis. In DAC ’94: Proceedings of the 31st annual conference on Design automation.
ACM Press, New York, NY, USA, 143–148.

Verdoolaege, S. 2005. Incremental loop transformations and enumeration of parametric sets.
Ph.D. thesis, Department of Computer Science, K.U.Leuven, Leuven, Belgium.

Verdoolaege, S. 2006. barvinok, a library for counting the number of integer points in
parametrized and non-parametrized polytopes.
Available at http://freshmeat.net/projects/barvinok.

Verdoolaege, S., Beyls, K., Bruynooghe, M., and Catthoor, F. 2005. Experiences with
enumeration of integer projections of parametric polytopes. In Proceedings of 14th International
Conference on Compiler Construction, Edinburgh, Scotland, R. Bod́ık, Ed. Lecture Notes in
Computer Science, vol. 3443. Springer, Berlin / Heidelberg, 91–105.

Verdoolaege, S., Bruynooghe, M., Janssens, G., and Catthoor, F. 2003. Multi-dimensional
incremental loop fusion for data locality. In IEEE 14th International Conference on
Application-specific Systems, Architectures and Processors, D. Martin, Ed. The Hague, The
Netherlands, 17–27.

Verdoolaege, S., Nikolov, H., and Stefanov, T. 2006. Improved derivation of process net-
works. In 4th Workshop on Optimization for DSP and Embedded Systems, ODES-4.

Verdoolaege, S., Seghir, R., Beyls, K., Loechner, V., and Bruynooghe, M. 2007. Count-
ing integer points in parametric polytopes using barvinok’s rational functions. Algorithmica.
accepted for publication.

ACM Journal Name, Vol. V, No. N, Month 20YY.

28 · Ph. Clauss et al.

Zettler, M. and Garloff, J. 1998. Robustness analysis of polynomials with polynomial param-

eter dependency using bernstein expansion. IEEE Transactions on Automatic Control 43, 3,
425–431.

Zhao, Y. and Malik, S. 2000. Exact memory size estimation for array computations. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems 8, 5 (Oct.), 517–521.

Zhu, H. 2006. Computation of memory requirements for multi-dimensional signal processing
applications. Ph.D. thesis, University of Illinois at Chicago. Preliminary Doctoral Thesis.

Zhu, H., Luican, I. I., and Balasa, F. 2006. Memory size computation for multimedia processing
applications. In ASP-DAC ’06: Proceedings of the 2006 conference on Asia South Pacific design
automation. ACM Press, New York, NY, USA, 802–807.

Received Month Year; revised Month Year; accepted Month Year

ACM Journal Name, Vol. V, No. N, Month 20YY.

