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Abstract. Over the last couple of years, various dedicated grid platforms
have been developped, among which the french Grid’5000 project. The ob-
jective of this paper is to analyze the behavior on Grid’5000 of a geophysical
application which performs a seismic ray tracing in a 3D mesh of the Earth.
The application is computation intensive but requires an all-to-all commu-
nication phase during which processors exchange their results. We analyze
various runs and show that this application scales well up to about 500
processors on such a grid.

1 Introduction

Grid computing [8] aims at taking advantage of the many disparate computers inter-
connected through networks such as the Internet. The idea is to use these machines
as a virtual computer architecture and offer distributed resources (processors, mem-
ory, disk storage, or even remote instruments) to solve large-scale applications. Grid
computing is therefore becoming a very attractive alternative to parallel machines
for many scientific applications.
However, the behavior of applications on grids is difficult to predict because of the
heterogeneity of resources. In order to better assess applications performances on
grids, large dedicated grids have been build to serve as scientific instruments, such as
DAS-3 [1] in the Netherlands, TeraGrid [2] in the US or Grid’5000 [7] in France. The
experiments conducted in this paper have been realized on the Grid’5000 platform.
It is currently composed of 9 french campus sites gathering about 2000 CPUs (and
growing towards 5000) interconnected with the national education and research
network Renater.
In this work we analyze the behavior on Grid’5000 of a scientific code, namely
a geophysical application which performs a seismic ray tracing in a 3D mesh of
the Earth. The application is computation intensive as millions of seismic rays
(extracted from seismicity recorded since 1965) have to be traced in the cells of a
3D mesh of the Earth. This application exhibits two main phases: an embarrassingly
parallel phase in which all rays can be independently computed, followed by an all-
to-all communication phase during which processes exchange their results.
We show that this type of application scales well up to about 500 processors on such
a grid. We put forward the impact of the network and we show that the network
performance has increased by an order of magnitude at the light of experiments
conducted 3 years before.
The paper is structured as follows. Section 2 browses the contexts in which message-
passing applications may be deployed today and discusses current issues related to
deployment on grids as well as perspectives introduced by experiments on dedicated
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grids. Section 3 presents the seismology application used in the experiments. The
Grid’5000 platform is described in section 4 while section 5 analyzes the various
benchmarks conducted on this platform. Finally concluding remarks and future
works are presented in section 6.

2 Parallel message-passing applications on Grids

Many scientific codes are parallel programs that follow the message passing paradigm
and most of them use an implementation of the MPI [3] standard. When consider-
ing which platform would be best suited to exploit a scientific code using MPI, one
should consider their respective benefits and constraints.

Dedicated parallel computers or clusters This is the privileged hardware for running
MPI programs for two main reasons. First, MPI does not include built-in fault tol-
erance features and with almost all MPI implementations the failure of one process
during the execution leads to the crash of the whole application. Hence, a dedicated
reliable execution platform is highly desirable. Moreover, such platforms are gener-
ally characterized by the homogeneity of the resources (e.g. processors), and by the
quality of the network interconnecting processors and its I/O performances. These
parameters deeply impact the performance of MPI programs since they may involve
numerous communications between any pair of processors, and frequent global syn-
chronizations between processors. Of course, the drawback is the economic cost
(hardware, staff operating the equipment) which makes numerous users share the
equipment. As a consequence, the processors are often a scarce resource and obtain-
ing in the order of hundreds of processors for a single program may require to wait
for long. For instance, when we were regularly running the application described in
this paper, we got a maximum of 256 out of the 768 processors of an SGI Origin
3800 in a french national computing center.

Grids Ideally, we could overcome this limit with Grids since Grids are generally
depicted as virtual supercomputers composed of a potentially unlimited number
of computers (mostly individual PCs) offering their resources to others. In reality,
Grids only support loosely synchronized applications, and require software enhance-
ments (in middleware or applications) to provide some fault-tolerance mechanisms.
In our opinion, today’s grids would not enable to smoothly run an MPI application
with hundreds of processors. One reason lies in the lack of operating system abstrac-
tion that existing middleware currently provide to applications, and this makes MPI
applications deployments prone to failures. The second reason lies in the inherent
heterogeneity of resources and the probable presence of some resources with limited
capability. Hence, performance of highly synchronous applications may drop dras-
tically on a grid as opposed to a dedicated computer. Thus, we know of very few
experiments involving message-passing applications deployed at large-scale.
Furthermore, the reported Grid experiments generally involve several super-computers
rather than numerous individual computers. For instance [4] reports the behavior of
an application in astrophysics using 1500 processors, taken on four super-computers
at SDSC San-Diego and NSCA Urbana-Champaign. Some other similar experiments
have been reported with PACX-MPI [10] (for instance experiments over a Euro-
pean and an intercontinental testbed [9]) but they are mostly “proof-of-concept”
demonstrations, set up once, and not permanent infrastructures. Studies that aim
to evaluate the underlying grid software or hardware depending on the sites and on
the number of processors used, report more technical details affecting performance
(e.g. [5]) but are generally less spectacular because of the smaller number of hosts
involved.
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However, given the ever increasing performance of “off-the-shelf” hardware and
networks, and provided grid middleware becomes more sophisticated, one can expect
grids to become competitive infrastructures in a near future. In the meantime, the
Grid’5000 testbed which uses high performance equipments can prefigure how MPI
applications may behave on Grids at large scale.

3 The seismic ray-tracing application

The geophysical application used in this paper consists in building a seismic to-
mography model for the Earth, in which the seismic wave velocities in the Earth
interior are determined, according to the geological nature of the different parts of
the Earth. The application and its parallelization have been described in [12] and
we quickly recall here its main characteristics.

3.1 Application Description

In order to build such a tomography model, we use seismic events information as
they are recorded in international databases. These seismic events are captured by
the many stations located all around the world. After such an event, the seismogram
data are analyzed in order to localize the earthquake hypocenter. Each earthquake
is recorded in the databases by its location, the waves arrival time at the different
stations and the characteristics - also called signature - of the wave front propa-
gation. Hence, each time the front reaches a geological interface (such as the one
between the mantle and the core) is can be either transmitted or reflected and its
propagation mode may change from compression to shear (or vice-versa). The ray
signature records these changes.
A seismic wave is modeled by a set of rays, where each ray represents the wavefront
propagation from the hypocenter to one station. The first phase of the application,
which is the one used in these experiments, consists in tracing these seismic rays in
a regular mesh of the Earth, according to their signature. The ray tracing algorithm
is an iterative process that builds the ray path as a set of discretized points in the
3D space defining the Earth interior. The number of such points can go from several
hundred to several thousands depending on the length and nature of the ray. Notice
that since international databases contain several millions of rays, the ray tracing
algorithm consists in computing billions of discretization points. A parallel method
is therefore necessary to tackle such huge quantities of data. In the experiments
presented in this paper we trace 1,17 billion rays.
The computed ray information is stored into the 3D mesh, in each of the cells it
intersects. This mesh is decomposed into layers from the surface to the center of the
Earth, each layer is then decomposed into regular angular sectors (in latitude and
longitude) issued at the center of the Earth. Each elementary volume thus obtained
defines a cell that can be approximated by a hexahedron. Each cell of the 3D mesh
will contains all information related to the rays it contains, that is at least the
number of rays, and for each ray the length of the ray in the cell, the input and
output impact points, the input and output incidence angles.

3.2 Application Parallelization

Due to such amounts of memory, the application has been parallelized. The parallel
approach we have used consists in replicating the mesh structure on different pro-
cessors. A master process then decomposes the set of rays to be traced in equal-size
blocks1 and distribute a block to each slave process which then proceeds to the
1 The default block size is N/10p where N is the number of rays and p the number of

processes.
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tracing of these rays in its private copy on the mesh, storing the corresponding in-
formation in the impacted cells. When a process has traced its current block of rays,
it calls the master process for another block. Once all the rays have been traced,
the copies of the 3D mesh held by the different processes must be merged together
in order to construct the final mesh in which each cell sums up all the information
related to all the rays that intersect with its volume.
This merging phase is realized as follows. The 3D mesh is decomposed into disjoint
geographic subsets, called submeshes. Each process holds one submesh and has
to merge all the information related to the cells of its submesh. This requires an
all-to-all communication step since each process has first to send the data it has
computed to the appropriate processes (according to the mesh decomposition) and
then to receive data computed by others and related to its submesh. This step is
obviously expensive as each process has to exchange data with all the other ones.
In the experiments presented in this paper, the total amount of data exchanged
(called in-transit traffic) is in the order of tens of gigabytes.
The ray tracing algorithm can be decomposed into three main steps : (1) ray tracing
and mesh update by each process with blocks of rays successively fetched from the
master process, (2) all-to all communications to exchange submesh information
between the processes, (3) merging of cell information of the submesh associated
with each process.
Since each ray can be traced independently from any other ray, the first step is
highly parallel and can be implemented efficiently on a grid. As millions of rays
have to be traced, this step can benefit from the many processors available on
Grid’5000. Moreover we will show in section 5 that, despite the cost of the all-
to-all communication step, it can be done efficiently thanks to the quality of the
interconnection network between the different sites of the Grid.

4 The Grid’5000 testbed

4.1 Grid’5000 architecture

The Grid’5000 testbed is a federation of dedicated computers hosted across 9 cam-
pus sites in France, and organized in a VPN (Virtual Private Network) over Renater,
the national education and research network. Each site has currently about 100 to
700 processors arranged in one to several clusters at each site. The total number of
processors is currently around 2500 and will be funded to grow up to 5000 proces-
sors. The testbed is partly heterogeneous concerning the processors since 75% are
AMD Opteron (2, 2.2 or 2.4 GHz), and Itanium2, Xeon and G5 for the remainder.
The Renater network is now in its 4th version whose deployment was completed
in November 2005. Left part of Figure 1 shows the classical leased lines (yellow)
between sites which all have been upgraded to 2.5 Gbps (Gigabit per second) since
Renater-3. The novelty of Renater-4 lies in the introduction of DWDM (Dense Wave
Division Multiplexing) equipments. This technology used on optical networks, is a
promising candidate for Internet next-generation. Thanks to optical cross-connects
interconnected by fiber links, an all-optical (without opto-electronic conversion)
point-to-point connection, referred to as a lightpath, can be established between end
users. A lightpath uses a single given wavelength (usually called a lambda) most of
the time2.
In Renater-4, the DWDM equipments are dedicated to (currently three) specific
projects among which is Grid’5000. The black links on Figure 1 (left) represent the
“dark fibers” segments that are progressively exploited to set up DWDM links, and

2 Changing the wavelength in the path requires expensive optical cross-connects able to
convert the wavelength of the incoming signal.
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nancy orsay rennes toulouse nice lyon
nancy – 5.06/0.03 7.64/0.03 9.74/0.03 11.92/0.02 6.49/0.02
orsay 3.28/0.03 – 3.54/0.03 5.44/0.03 9.07/0.02 2.49/0.02
rennes 7.80/0.02 5.39/0.02 – 6.36/0.01 9.14/0.01 8.17/0.01
toulouse 8.13/0.02 5.34/0.02 4.40/0.01 – 2.85/0.01 2.53/0.01
nice 12.23/0.02 10.95/ 9.11/0.01 4.77/0.01 – 5.78/0.01
lyon 6.51/0.02 5.25/0.02 7.93/0.02 4.21/0.01 5.48/0.02 –

Table 1. Typical latencies between Renater-4 sites (delay/jitter in ms).

the map on the right of Figure shows the current lightpaths. When connected to
this infrastructure, a Grid’5000 site is able to see other sites in the same VLAN and
benefits from a connection with a throughput of 10 Gbps.
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Fig. 1. The Renater-4 network underlying Grid’5000

At the time of writing, three sites can benefit from a 10 Gbps VLAN, namely
Nancy, Rennes and Nice (Sophia-Antipolis campus), and three others are connected
at 1 Gbps (Grenoble, Lille, Toulouse). The remaining sites Orsay (near Paris) and
Bordeaux are still using the initial interconnection system based on Ethernet Over
MPLS (Multi-Protocol Label Switching), which offers in practice 1 Gbps VLANs.
Not that the new network infrastructure hardly improve latencies: the distance
between sites (1500 and 2000 kms of fiber length for the more distant sites) yields
an incompressible delay due the the speed of light in fiber. Table 1 shows typical
latencies3 observed at the time of experiments. Latencies inside a same site are
unsignificant in comparison (inner cluster latency). Rather, we expect an improved
throughput and almost no congestion because the VPN only carries data from
Grid’5000 users on its WDM links. On the contrary, the leased lines used in Renater-
3 mix Grid’5000 proper traffic with an heavy cross traffic.

3 measured on June 12, 2006 by agents installed on routers doing active probing.
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4.2 Mode of operation

Grid’5000 has the fantastic capability of deploying an environment on almost any
of its nodes. This means that a user can reserve any node for a given period of time,
re-format one disk partition and install a full system of his choice and finally reboot
the node with that system4. This mode of operation avoids uncertainties related to
different OS or software layers encountered in most experimental environments.
In our case, we deployed a system image based on a linux 2.6.13 kernel, and LAM
[6] ver. 7.1.1 as the MPI implementation. To minimize the hardware influence we
choose to deploy our image on nodes as homogeneous as possible. On all selected
sites, we use bi-Opteron nodes with 2GB RAM, and only CPU frequencies vary
(Nancy, Rennes, Nice 2.0 GHz, Toulouse 2.2 GHz, and Orsay 2.4 GHz).

5 Benchmarks on Grid’5000

5.1 Objectives and Metrics

The objective is to understand how the behavior of an MPI application such as the
one described in section 3, is influenced by: (a) the number of processors used (from
32 to several hundreds), and (b) the number of geographical sites involved (from
one to five, distant from 400 to 1500 kms).
We expected the latencies incurred by long-distance communications to be the main
source of load-imbalance and hence speedup limitations. The metrics we choose
in order to describe imbalance is the mean time spent by processors in the two
main phases of the application, together with the standard deviation to measure
dispersion around the mean.
– In the computation phase, a high dispersion may indicate either heterogeneity

in the computation power of CPUs (this does not apply with our homogeneous
configurations), or latencies in work requests to the master process, leading
to idle period for some processors. The average number of rays computed by
a processor and its correlated standard deviation are also good indicators of
workload imbalance.

– In the all-to-all communication phase, a large dispersion would denote highly
variable durations in sendings or receptions of submeshes.

Finally, in order to better understand a potential saturation of the network during
the all-to-all communication phase, we measure the total amount of data in-transit,
i.e. the sum of individual transfers for all processors.

5.2 Results

Table 2 summarizes the experimental results. The first and second columns re-
spectively define the number of sites and the total number of processors involved.
Column 3 indicates the distribution of processors at each site. Columns 4, 5 and 6
respectively report the times for the ray computation phase, the all-to-all commu-
nication phase and the total time. The number of computed rays is given in column
7 and the total amount of data in-transit is in column 8.
These results are a real surprise. Figure 2 shows the measured times on the left
hand side, and their respective speedups on the right hand side. Note that the
strict definition of speedup (ratio of the best sequential time to the time of parallel
program with p processors) does not make sense in our case since the sequential
execution on the dataset used in these experiments requires to activate intermediate
results files writing to bypass memory limitations. The smallest configuration known
to achieve this dataset computation without out-of-core mechanism invocation is a
4 In practice, any hardware problem may prevent some of the reserve node to reboot

properly, hence the number of nodes participating in the experiments is often less than
requested.
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sites procs site(procs) ray comp. all-to-all total nb rays in transit

1

32 nice?(32) 2651.62/86.79 344.85/61.94 3164.19 35351.60/1265.52 7.29 GB
62 nancy?(62) 1316.91/44.94 93.13/11.92 1496.71 17965.60/992.46 9.02 GB
62 nice?(62) 1349.09/45.48 98.78/12.65 1536.36 17965.60/1099.80 8.88 GB
138 nice?(138) 647.12/21.72 37.39/3.32 729.54 8629.14/547.12 15.47 GB

2 64 nancy?(62) toulouse(2) 1271.91/43.17 90.89/11.45 1445.46 17395.30/972.66 9.26 GB
128 nancy?(62) toulouse(66) 610.91/20.40 34.68/3.08 688.28 8629.14/573.01 15.29 GB

3 128 rennes(42) nancy?(44) toulouse(42) 620.27/21.21 33.56/2.98 699.57 8629.14/648.83 15.47 GB
192 rennes(64) nancy?(64) toulouse(64) 412.16/13.70 30.84/2.23 474.65 5737.70/410.90 16.77 GB

5 458 rennes(152) nancy?(32) orsay(184)
nice(58) toulouse(32)

177.07/5.69 31.43/1.47 227.53 2398.03/221.91 20.82 GB

Table 2. Experiments results. Columns 4-7 report average/standard deviation val-
ues per process. Columns 4-6 are times in seconds. The ? symbol indicates the
location of input dataset owned by master node.

quadri-processor Xeon 3.2 Ghz, 8 GB RAM on which it took 9 hours. The speedup
is thus evaluated from the times obtained with the 32 processors configuration.
We observe a quasi-linear speedup of the total execution time for various configu-
rations, with up to 458 processors. Such a good speedup would obviously be lost
when using significantly more processors as the ratio of communication time to ray
computation time would increase.
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Fig. 2. Execution times and speedups for various configurations

Slave responsiveness A first necessary condition met by the application throughout
the tests to reach a linear speedup is load-balance. The figures clearly show that
the standard deviation related to durations of computations is small: 3% of mean
duration in all configurations, except for 458 processors where it reaches 9%. This
is correlated with the average number of rays computed that is nearly the same
on all processors. This means that the messages sent by slaves to request work to
the master do not suffer idle time, or in other words, the slave responsiveness is
perfect. In a previous study [11] we showed that distant processors on Renater-2,
were in a state of starvation, i.e. were not receiving work as quickly as they could
compute, even in small configurations with 16 processors. This clearly shows that
the network improvement between Renater-2 and Renater-4 impacts drastically this
type of application.

Network performance Apparently, the performances do not suffer from long distance
communications, even when several distant sites are involved with many processors.
When the number of processors increases the number of messages in the all-to-all
communication phase increases quadratically, but the total amount of computed
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data in the submeshes stays constant as it corresponds to the same set of traced
rays. However each cell has a constant header and as more cells have to be trans-
mitted when the number of processors increases, it results in an increase of the
in-transit data, as can be seen in table 2. In addition to the increasing overall vol-
ume to communicate, more numerous but smaller messages have to be transmitted.
Consequently, more latency overhead is paid on the whole communication phase.
For instance in the test with 192 processors, a processor located in Rennes sends 64
messages of 457 KB on average towards Nancy, 64 other messages towards Toulouse,
and 63 to neighbour processors.
In the tests, the all-to-all communication time decreases linearly up to 128 proces-
sors, whatever the number of sites (1, 2 or 3). From 128 processors, the communi-
cation time nearly stops decreasing to reach a floor of about 30 seconds. Although
we expected these 30 seconds to be an inflexion point and to see an increase in the
communication time due to the multiplication of messages as well as the increasing
data volume exchanged, it appears to stay nearly stable at 458 processors and 5
sites. Of course, this is the limiting factor for the speedup of this parallel applica-
tion but given the mass of computations to perform, the communication overhead
does not preclude the benefits that can be drawn from using hundreds of processors
scattered over distant sites.

6 Conclusion

In this paper, we have reported the behavior of a scientific code in the field of geo-
physics. The application belongs to the class of parallel applications made of an em-
barrassingly computation phase followed by an all-to-all communication phase. Our
experiments are conducted on Grid’5000. We show the application performances
on large-scale configurations on this testbed. The conclusion is that this kind of
application is today perfectly suited to the modern equipments Grid’5000 offers.
The new network Renater-4 equipments (in particular WDM equipments) have la-
tencies next to the physical limit induced by long distances, and enough bandwidth
to transfer the gigabytes of results computed in this application, with an inter-
esting ratio of computations to communications up to 458 processors taken on 5
geographical sites. In practice, as geophysicists would be interested in running this
application with more than 10 millions rays (as opposed to the 1 million used in
this experiment) we are confident that the application would keep a good speedup
when using significantly more processors.
Similar performances evaluations should now address the class of message-passing
applications with regular global synchronizations between computing phases. Many
scientific codes such as numerical simulations follow this scheme. Until now, they
have not shown to perform well on wide area grids because of their sensitivity to
communication latencies.
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