Polyhedral Modeling and Analysis of Memory Access Profiles

Philippe Clauss and Bénédicte Kenmei
ICPS/LSIIT, Université Louis Pasteur, Strasbourg
Pole API, Bd Sébastien Brant
67400 lllkirch - France
{clauss, kenméi@icps.u-strasbg.fr

Abstract Each loop is associated to a program phase where memory
accesses match access patterns linked by a function over
In this paper, we propose to model memory access pro-the loop indices. From this representation of the program
file information as loop nests exhibiting useful characteri memory behavior, much analysis information can be com-
tics on the memory behavior, such as periodicity, linearly puted and graphically represented by using the well-known
linked memory access patterns and repetitions. It is shownPolytope Modelof nested loops [6]. Hence the polytope
that static analysis methods as the polytope model approachmodel, classically used for static analysis of “Fortrdeli
can then apply onto the generated nested-loop representaloop nests in programs, is used here for the analysis of the
tions. Moreover, the modeling loop nests can themselvesamemory access profile of a program. It allows some repre-
be instrumented and run in order to generate further useful sentative visualizations and computations of some memory
information that can also be modeled and analyzed. behavior characteristics. Graphic representations ate bu
using multi-dimensional polyhedra and thus facilitating t
understanding of a program memory behavior.
1 Introduction At our knowledge, the closest previous related work is
the FORAY-GEN approach presented in [7]. Pointer access
Managing the memory behavior of a program is crucial profiles are used as input tq generate loops ac_cessing arrays
in reaching good performance, real-time constraints com-through affine access functions. However, their approach is

pliance, low system cost, or low energy consumption. But less general than ours due to three main reasons. First, only
with the ever growing complexity of computer architec- affine access functions are generated, and memory accesses

tures, it is getting more and more difficult to ensure a de- not following such abehavior_are evicted. S_econd, t_he depth

terministic execution behavior. Also developers use com-©f the generated loop nest is predetermined by inserting

plex data and control structures, dynamic memory alloca- some che_ckpomts between I(_)op |_nstruct|ons_|n the source

tion, that make static analysis of the source code inade-C0de. Third, we are able to identify successive phases of

quate. Dynamic analysis approaches have been proposeacce.ssed memory locations each being modeled differently

in recent works that try to extract general behavior proper- by different loops of the same depth. The FORAY-GEN

ties of a program either by analyzing the program during a@PProach does nothandle suchamodeling.

its execution, or by analyzing traces resulting from code in 1 NiS paper is organized as follows. The periodic-linear

strumentation. Most of the proposed approaches focus orf"odel already presented in [4], is recalled in the next sec-

the computation of statistical quantities or coarse grain h 10N Itis shown in section 3 how this model can be advan-

spots detections [8]. tageousl_y used to analyze.the memory p_roflle of a program.
In this work, we use a behavior modeling approach basedcondUSlonS and perspectives are given in section 4.

on a linear and periodic interpolation of a program exe-

cution trace presented in [4]. It considers traces as lists2 Periodic-linear interpolation

of memory addresses accessed during some program runs.

Such lists can then be considered as time-series whose con- Periodic interpolation consists in interpolating a se-

tained values are associated to a chronological time in-quence of values by a periodic polynomial function. In

dex. Our modeling approach allows to represent succes-this work, we only consider periodic-linear functions. A

sive memory accesses as iterations of a sequence of looperiodic-linear functiory is a function of the formy (z) =

nests whose indices define a multi-dimensional time-spaceax + b wherea andb are periodic numbers. A periodic

number is a finite list o numerical valueu , as, ..., a,)y forty1 =0top: — 1

where the rank of the selected value at a given time to eval- forty =1(t1) tops — 1
uatef is given byy mod n,y € Z: for ts = I(t1,t2) tops — 1
f(lC) =azr+b= [a17a27...7an]y$+b fortd:l(tl,tg,...,td_l) topg — 1
f(tl,tg, ...,td) X

a1z +0b, ifymodn=0
asx +b, ifymodn=1 Figure 1. Loop nest representing the multi-
dimensional time model

anx +0b, fymodn=n-—1

Notice that sincé is also a periodic number of: values
b1,ba,...om, f is also defined depending @nmod m. The haraware _~_ [Tranformations
number of values of a periodic number is called plegiod simulators

A periodic-linear interpolation of time-series links non-
overlapping successive sub-sequences of values, or pat-
terns, such that any element in pattérat positionj, e;;, PolyLib
is linearly dependent of; 1 ;: e;; = e;—1,; + aj, where barvino
a; is constant. The number of elements in each pattern is
the lowest common multiple of both periods of the periodic
coefficientsa andb in the interpolation functiorf.

With each pattern is associated a datiefining the time
space of the model. All patterns are modeled by a periodic . . .
linear functionf(t) = at + b wherea andb are periodic 3 _Vlsuallzmg a_nd_ computing memory behav-
numbers. These periodic numbers can have a large period 10r characteristics
p and therefore constitute by themselves new time-series.

Hence we recursively apply our periodic-linear model to ~ We use three main software tools that are all freely
these new traces, i.e., to both periodic numbers, yieldingavailable :PLI: our periodic-linear interpolation program;,
an additional time dimension. Finally the whole applica- Polylib [3]: a library implementing many functions for
tion of the model yields a multi-dimensional time space polyhedra computations into the space of rational num-
(t1,t2, ..., ta)- bers;barvinok[1]: a program for computing the number

This multi-dimensional time model can be fully repre- of integer points in a parametrized polyhedron which is the
sented as a loop nest of depltbf the general form shownin Ehrhart polynomial of the parametrized polyhedron [5].
figure 1, where the instruction of the innermost loop serves The visualizations and computations based on the poly-
to output the element value associated to a time instanttope model and presented in the next subsections take part
(t1,t2,...,tq). Functionf(ty,ta,...,tq) is linear relatively of a general analysis software environment that is curyentl
to each variable; and globally non-linear. In this work, we under development and schematized on figure 2.
only consider such functions as being linear functions of
the loop indices. I is maximum, i.e., the model has been 3.1 Memory access phases
applied as far as possible, then the function is no longer pe-
riodic, since any period associated to a time dimensjas In the generated loops, the indices define a multi-
now expressed as a loop index. dimensional time-space in which the lexicographic order

Such a periodic-linear interpolation does not generally defines the access order of the memory addresses. This
occur on the whole trace. A program behavior is gener- representation exhibits explicitly the memory access be-
ally characterized by successive program phases of differ-havior of the analyzed memory profile while making ap-
ent behaviors. In our model, we defipeasess the largest parent the following characteristics: the nested repetiti
adjacent slices of the trace allowing periodic-linearipte of linearly linked and nested memory access patterns and
lations of their elements. Hence successive phases can oche number of such repetitions ; the periodicity of the oc-
cur at different depth levels yielding a hierarchy of phases curring memory accesses that are linearly linked, which
These can be represented as successive loops whose loop iis given by the ranges of the loop indices ; the linear
dices range from the first to the last element of each phaserelations between memory addresses whose accesses are
and where each loop contains itself successive loops assoequally spaced, which is given by the functions of the inner-
ciated to inner level phases and so on. most loops ; the sequence of nested phases characterized by

We implemented our approach as a software taking asthe above properties with is given by the consecutive loop
input a list of integer values and generating as output a se-nests. All the generated loop nests can be represented as

[Accessed memory addresses]

/ simulators

PLI > ’ Loop nests / polyhedra models‘

k:>’ Analysis / Graphic visualizations‘

Figure 2. the analysis software environment.

guence of loop nests modeling the input.

for (k =0 ; k < IMGEDIM; k++) {
for (f =0; f < IMAGEDIM; f++) {
pcoeff = &coefficients[0];
parray = &array[k*ARRAYDIM + f];
parray2 = parray+ARRAYDI M
parray3 = parray+ARRAYDI MrARRAYDI M
*poutput =0 ;

for (i =0 ; i <3 ; i++)

*pout put += xpcoeff++ = xparray++;

for (i =0 ; i <3 ; i++)

*pout put += xpcoef f++ * *parray2++; ©
for (i =0; i <3; i++) {

*pout put += xpcoef f++ * *parray3++
poutput++ } }

Figure 3. Main loop of program fi r2di m

of fset = 530832;
AR Figure 5. Polytopes representing two access
s et , phases to memory blocks and cutting planes
o g Ot 2 Sty ol focti of accesses to memory block 534332.
accessetblock =51ty + tg + 51t3 + 1 + of fset; }
f =3to5 . .
ot 24 ~ot01 by the lexicographic order af , ¢, andts.
accessetblock=51t1 + to + 51t3 — 153 + of fset; ’
foregza02 Lo ' As other examples, it is shown in table 1 some nested
ecblock =5 5 — 15 of fset;
accesselion Ol tp £ 01 108 4 offecti)) loop models that were generated for the three Spec2000
Figure 4. Loop nests representing accesses benchmark programstf , equake andamp using the
to memory blocks. ref.in input files. The loop nests represent the mem-

ory addresses successively accessed through pointers in
the most time-consuming functions. Only the program

fir2di mwill be considered in the following analysis ex-
polytopes. Each polytope is then associated to a phase ofmpleso

the memory access behavior. In each phase, linearly depen-

dent memory address patterns are accessed. 3.2 Identifying accesses and access fre-

Example 1 Consider the benchmark prograi r 2di m quency

from the DSPStone suite [10], which performs a finite im- . , .)
pulse response filter on a 2D image. The main loop of Integer_pomts assquated Wlt.h accesses _toaglven address
the program is shown on figure 3. We instrument the A are defined as pomtg contained in the intersections be-
code with] MAGEDI M = ARRAYDI M- 2 = 100 and get twe_en each of the previous pqutopes and_the hyperplanes
all the values taken by the pointepgr r ay, parr ay2 defined t_)y the equations stating that the innermost loops
andpar r ay3. Since the accessed objects are 4-bytes in- polynomials are _equal td. These sets are represented as
tegers, we divide each value by 8 to get references to 32-NYPerplanes cutting the polytopes.
bytes memory blocks. We finally consider as input a trace Example 2 Let us identify all accesses to the memory
of 90000 successive accesses to memory blocks. block 534332. Those are integer points belonging to cutting
Our periodic-linear model yields the loop nests shown planes defined by the equatidiig; +t>+51t3+of fset =
on figure 4 and representing exactly the whole input trace. 534332 and51t; +to +51t3+1+of fset = 534332. They
This loop nest program exhibits one main phase of 100 lin- are represented on figurerb.
early linked patterns of 900 memory addresses (loop index The access frequency to any addréssan be defined
t1). Each of these patterns embeds one phase of 50 linkedhs the number of integer points associated with accesses to
patterns of 18 values (loop indéy), embedding themselves any addressi. It is also the number of integer points in
two phases each of 3 linked patterns of 3 values (loop indexthe parametrized union of polytopes defined by intersecting
t3). Finally these latter patterns embeds two phases, one othe previous polytopes and the parametrized hyperplanes
two linked values and one of one unique value (loop index defined by the equations stating that the innermost loops
t4). polynomials are equal to any addredéswhere A is now
The iterations of dimensionsg, t> andtz are represented considered as an unknown parameter. This number is ex-
as the integer points contained in two polytopes shown onpressed as several Ehrhart polynomials defined on disjoint
figure 5. Each polytope represents a different block-accesdntervals of A values. Those Ehrhart polynomials are com-
phase following our periodic-linear classification. Each puted using the prograbarvinokand the polyhedral library
phase is associated to a different loop indexedsoyFol- Polylib. This symbolic expression of the access frequency
lowing the chosen representation granularity, any integerto any addressi can then be used for symbolic analysis
point represents 3 accesses to memory blocks, correspondsr for the generation through instantiation of several aisu
ing to 3 iterations of they,-loops. The access order is given representations or computed information.

[Program |

Function

Model

mcf

priceoutimpl

fort; = O0to M
fortg = Oto N
fortz = Ototy
120t9 — 120t3 + of fset;

equake

smvp

fort] = Ototimesteps — 1
fortg = 0OtoN — 1

fort3 = 0to2

128to + 32t3 + of fset;

memory access indices
of cache misses

loop indices values

3600t1] + 72to — 943200
3600t7 4 72t9 — 943174

263 < t; < 286
0<ty <12

3600t + 72ty — 943200
3600t) + 72ty — 943192

263 < t; < 286
13 <ty < 24

3600t7 — 941400
3600t7 — 941394
3600t7 — 941338

263 < t; < 286

3600t + 72to — 948312

263 < t; < 286

fort; = 0t03598

fortg = Ototy; 4+ 1
2224t5 + of fset;

fort; = 3599t0 N

fortg = Otonb.of-.atoms — 1
2224t + of fset;

3600t] + 72ty — 948250
3600t; | 72ty — 048312
3600t] + 72ty — 948268

97 < tg < 107
263 < t; < 286
108 < to < 120

ammp anumber

Table 2. Memory accesses generating cache
misses.

Table 1. Nested loop models for three
Spec2000 programs.

resenting the largest phase which englobes 96% of all mem-
ory accesses. The cache miss behavior can be represented
Example 3 The number of accesses to any memory block graphically as polytopes whose integer points are associ-
B is given by the counting of the number of integer points ated to successive memory accesses, and where surfaces in
in a union of polytopes parametrized #y. The answer gray color represent accesses generating cache misses (see
is given as a list of 16 Ehrhart polynomials defined on 16 figure 7). It can also be precisely computed from this loop
adjacent intervals of B values. For example, all bloéks nestwhat accesses are generating cache misses (see table 2)
between 530935 and 530983 are accessed 18 times, excepfhe distances between two consecutive accesses generating
ing blocksB such thatB mod 51 = 23 which are accessed cache misses can also be deduced. The block addresses
6 times and blocks3 such thatB mod 51 = 24 which whose accesses are generating cache misses can also be
are accessed 12 times. These polynomials allow to generat&nown by transforming the memory access indices of table
different graphic visualizations as an histogram of th&klo 2 as indices of the loops in figure 4: |&tbe any memory
access frequencies for any value rangéot access index, the corresponding indi¢est,, t3) for the
loops representing the addresses of the accessed memory
blocks can be computed in the following way:
t1 = | 555]
Accessed memory addresses are just one possible infor-) =[P
mation characterizing memory accesses. Other information tg = | (Lmod 900) mod 18
are relevant to memory accesses as the cache misses gen- ta = ((I mod 900) mod 18) mod 3
erated while accessing memory. Hence instead of consid- h L
ering a trace of successively accessed memory addresses, ' °" €xample, th@9g186™ memory access, which is gen-
a trace of the number of cache misses measured after eacf2ting @ cache miss following table 2, is an access to the
memory access can also be interestingly considered. MoreMemory block whose access indices in the loops of figure 4

over, the models generated through our periodic-linear ap-'€ (32; 21, 2,2). Hence it corresponds to an access to the

proach can be used in a collaborative fashion in order to PlOCkWhose addressid x 32-+21 451 x2+1+530832 =
associate memory addresses to cache misses. Since the {832588. _
To know how many cache misses are generated by ac-

tal number of values in both input traces are equal, both 8 ; :)
generated sequences of loop nests represent the same nufESSINg @ given memory blodk, a direct analysis of the

ber of iterations, and th&" memory access corresponds to above loops and the use of conversion for_mulas yields to_o
i*" number of cache misses. Evaluations from one model COMPIex computations and answers, mainly due to their
to the other can be done through a loop indices conversion0n-linearity. Another way is to instrument the loop nests
between both. Some further analysis can also be achieve®' figureé 6 to build a simulator and to run it, in order to

by instrumenting the generated loop nests and running then@€nerate a trace of all block addresses that generate cache
in order to generate new traces. Those new traces are thef1iSSes. Then the modeling of this latter trace as loop nests

also modeled to allow the computation of additional analy- &/l0Ws to compute the number of cache misses generated
sis information. by accessing any memory blodk For the simulator, we

implement a conversion function that computes from a cur-
Example 4 We simulate a 32KB direct mapped cache of rentvalue of the indice@,, t2, t3) the corresponding block
1024 lines with the LRU policy and ask the cache simulator address. This function uses table 2, the formulas giving
DinerolV [2] to output the total number of cache misses af- the corresponding indices for the loops on figure 4 and the
ter each memory access. The resulting trace of cache misseaddress functions of the innermost loops on the same fig-
is modeled by our tool as the loops shown on figure 6, rep-ure. The generated trace is finally modeled as a loop nests.

3.3 Analyzing the cache behavior

fort] = 26310286{
fortg = 0to12{
fortz3 = 0t025
#cachemisses =51t + to — 13336 ;
forty3 = 26t071
#cachemisses 51t7 + t9 — 13335 }
fortg = 13t024{
fort3 = 0to7
#cachemisses =51t + to — 13336 ;
fortg = 8to71

fortg = 251030
#cachemisses 51t — 13311 ;
fortg = 311086
#cachemisses 51¢t7 — 13310 ;
fortg = 871096
#cachemisses -51t7 — 13309 ;
forto = 971t0107{
fortg = 0to61
#cachemisses 51t + to — 13406 ;
fort3 = 62t071 H H
Hcaghemisses 5141 + tg — 13405 } Figure 7. Polytopes representing the cache
fortg = 108t0 120 H H
o ot miss behavior.
#cachemisses 51t + to — 13406 ;
forty = 44t071
#cachemisses 51t7 + t9 — 13405;} }

Figure 6. Loop nests representing the in-
crease of the number of cache misses after
each memory access between the 3601 and
the last.

number of cache misses

The number of cache misses generated by accessing a given
memory blockB is given by the Ehrhart polynomials of the
union of polytopes defined by the loop nests reduced to the o s s sanaeios sk 53uis
case where the accessed block is the paranit@he his- _——

togram of cache miss frequencies per block addresses be- Figure 8. Cache miss frequencies for blocks
tween 531036 and 532000 is generated from these polyno- petween 531036 and 532000.

mials and is shown on figure 8.

4 Conclusion [3] The polyhedral librarypolylib.
http://icps.u-strasbg.fr/PolyLib.
In this paper, it was shown that static analysis methods [4] P- Clauss, B. Kenmei, and J. C. Beyler. The periodicdme
can be used for the analysis of execution-time information model of program behavior capture. ACM/IEEE Euro-
Par 2005 volume 3648 oL NCS pages 325-335. Springer,
whether those are modeled themselves as programs. Gener- 2005
ally, control and data structures in programming languages :

.) : 5] P. Clauss and V. Loechner. Parametric analysis of pelyhe
offer a wide range of expressive objects that can be used to dral iteration spaces.Journal of VLS| Signal Processing

model behavior information. Moreover the complexity of 19(2):Kluwer Academic, 1998.

the analyzed behavior can be correlated with the complexity [6] P. Feautrier. The Data Parallel Programming Modelol-
of the modeling program, as it is stated in the Kolmogorov ume 1132 o£ NCS chapter Automatic Parallelization in the
complexity theory [9]. Those modeling programs can also Polytope Model, pages 79-100. Springer-Verlag, 1996.

be instrumented and executed to simulate certain execution [7] I 1ssenin and N. Dutt. Foray-gen: Automatic generatisn
environment or to generate deductible execution-timerinfo l‘iﬁ'”e ﬂf"lﬁt'ons ffor m%mo'_ry O%T'Za“?”s' m(f‘TTE t0'5. .
mation. Our future objectives are to handle non-linearfunc roc. of the coni. on Lesign, Automation and Jest in =u-

. . . rope, pages 808-813, Washington, DC, USA, 2005. IEEE
tions in the analysis framework and also to extend our mod- Computer Society.

eling approach to non-linear periodic functions and a wider [8] J. Lau, S. Schoenmackers, and B. Calder. Transitionghas

range of control structures that can be statically analyzed classification and prediction. Ihith Int. Symp. on High
Performance Computer Architectyriéebruary 2005.

[9] M. Li and P. Vitanyi. An Introduction to Kolmogorov Com-

References plexity and Its Applications Springer-Verlag, New York,
1993.

[1] Barvinok a library for counting the number of integer points [10] V. Zivojnovic, J. M. Velarde, and C. Schlager. DspstoAe

in parametrized and non-parametrized polytopes. dsp-oriented benchmarking methodology.lnh Conf. Sig-

http://freshmeat.net/projects/barvinok. nal Processing Applications and Technolpggtober 1994.

[2] Dinero iv trace-driven uniprocessor cache simulator.
http://www.cs.wisc.edu/ markhill/Dinerol V.

