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Abstract

In this paper, we propose to model memory access pro-
file information as loop nests exhibiting useful characteris-
tics on the memory behavior, such as periodicity, linearly
linked memory access patterns and repetitions. It is shown
that static analysis methods as the polytope model approach
can then apply onto the generated nested-loop representa-
tions. Moreover, the modeling loop nests can themselves
be instrumented and run in order to generate further useful
information that can also be modeled and analyzed.

1 Introduction

Managing the memory behavior of a program is crucial
in reaching good performance, real-time constraints com-
pliance, low system cost, or low energy consumption. But
with the ever growing complexity of computer architec-
tures, it is getting more and more difficult to ensure a de-
terministic execution behavior. Also developers use com-
plex data and control structures, dynamic memory alloca-
tion, that make static analysis of the source code inade-
quate. Dynamic analysis approaches have been proposed
in recent works that try to extract general behavior proper-
ties of a program either by analyzing the program during
its execution, or by analyzing traces resulting from code in-
strumentation. Most of the proposed approaches focus on
the computation of statistical quantities or coarse grain hot
spots detections [8].

In this work, we use a behavior modeling approach based
on a linear and periodic interpolation of a program exe-
cution trace presented in [4]. It considers traces as lists
of memory addresses accessed during some program runs.
Such lists can then be considered as time-series whose con-
tained values are associated to a chronological time in-
dex. Our modeling approach allows to represent succes-
sive memory accesses as iterations of a sequence of loop
nests whose indices define a multi-dimensional time-space.

Each loop is associated to a program phase where memory
accesses match access patterns linked by a function over
the loop indices. From this representation of the program
memory behavior, much analysis information can be com-
puted and graphically represented by using the well-known
Polytope Modelof nested loops [6]. Hence the polytope
model, classically used for static analysis of “Fortran-like”
loop nests in programs, is used here for the analysis of the
memory access profile of a program. It allows some repre-
sentative visualizations and computations of some memory
behavior characteristics. Graphic representations are built
using multi-dimensional polyhedra and thus facilitating the
understanding of a program memory behavior.

At our knowledge, the closest previous related work is
the FORAY-GEN approach presented in [7]. Pointer access
profiles are used as input to generate loops accessing arrays
through affine access functions. However, their approach is
less general than ours due to three main reasons. First, only
affine access functions are generated, and memory accesses
not following such a behavior are evicted. Second, the depth
of the generated loop nest is predetermined by inserting
some checkpoints between loop instructions in the source
code. Third, we are able to identify successive phases of
accessed memory locations each being modeled differently
by different loops of the same depth. The FORAY-GEN
approach does not handle such a modeling.

This paper is organized as follows. The periodic-linear
model, already presented in [4], is recalled in the next sec-
tion. It is shown in section 3 how this model can be advan-
tageously used to analyze the memory profile of a program.
Conclusions and perspectives are given in section 4.

2 Periodic-linear interpolation

Periodic interpolation consists in interpolating a se-
quence of values by a periodic polynomial function. In
this work, we only consider periodic-linear functions. A
periodic-linear functionf is a function of the formf(x) =
ax + b wherea and b are periodic numbers. A periodic



number is a finite list ofn numerical values[a1, a2, ..., an]y
where the rank of the selected value at a given time to eval-
uatef is given byy mod n, y ∈ Z:

f(x) = ax + b = [a1, a2, ..., an]yx + b

=















a1x + b, if y mod n = 0
a2x + b, if y mod n = 1
... ...

anx + b, if y mod n = n − 1

Notice that sinceb is also a periodic number ofm values
b1,b2,...,bm, f is also defined depending ony mod m. The
number of values of a periodic number is called theperiod.

A periodic-linear interpolation of time-series links non-
overlapping successive sub-sequences of values, or pat-
terns, such that any element in patterni at positionj, eij ,
is linearly dependent ofei−1,j : eij = ei−1,j + aj , where
aj is constant. The number of elements in each pattern is
the lowest common multiple of both periods of the periodic
coefficientsa andb in the interpolation functionf .

With each pattern is associated a datet defining the time
space of the model. All patterns are modeled by a periodic
linear functionf(t) = at + b wherea andb are periodic
numbers. These periodic numbers can have a large period
p and therefore constitute by themselves new time-series.
Hence we recursively apply our periodic-linear model to
these new traces, i.e., to both periodic numbers, yielding
an additional time dimension. Finally the whole applica-
tion of the model yields a multi-dimensional time space
(t1, t2, ..., td).

This multi-dimensional time model can be fully repre-
sented as a loop nest of depthd of the general form shown in
figure 1, where the instruction of the innermost loop serves
to output the element value associated to a time instant
(t1, t2, ..., td). Functionf(t1, t2, ..., td) is linear relatively
to each variableti and globally non-linear. In this work, we
only consider such functions as being linear functions of
the loop indices. Ifd is maximum, i.e., the model has been
applied as far as possible, then the function is no longer pe-
riodic, since any period associated to a time dimensionti is
now expressed as a loop index.

Such a periodic-linear interpolation does not generally
occur on the whole trace. A program behavior is gener-
ally characterized by successive program phases of differ-
ent behaviors. In our model, we definephasesas the largest
adjacent slices of the trace allowing periodic-linear interpo-
lations of their elements. Hence successive phases can oc-
cur at different depth levels yielding a hierarchy of phases.
These can be represented as successive loops whose loop in-
dices range from the first to the last element of each phase,
and where each loop contains itself successive loops asso-
ciated to inner level phases and so on.

We implemented our approach as a software taking as
input a list of integer values and generating as output a se-

for t1 = 0 to p1 − 1
for t2 = l(t1) to p2 − 1
for t3 = l(t1, t2) to p3 − 1

...
for td = l(t1, t2, ..., td−1) to pd − 1
f(t1, t2, ..., td) ;

Figure 1. Loop nest representing the multi-
dimensional time model

Figure 2. the analysis software environment.

quence of loop nests modeling the input.

3 Visualizing and computing memory behav-
ior characteristics

We use three main software tools that are all freely
available :PLI: our periodic-linear interpolation program;
Polylib [3]: a library implementing many functions for
polyhedra computations into the space of rational num-
bers; barvinok [1]: a program for computing the number
of integer points in a parametrized polyhedron which is the
Ehrhart polynomial of the parametrized polyhedron [5].

The visualizations and computations based on the poly-
tope model and presented in the next subsections take part
of a general analysis software environment that is currently
under development and schematized on figure 2.

3.1 Memory access phases

In the generated loops, the indices define a multi-
dimensional time-space in which the lexicographic order
defines the access order of the memory addresses. This
representation exhibits explicitly the memory access be-
havior of the analyzed memory profile while making ap-
parent the following characteristics: the nested repetitions
of linearly linked and nested memory access patterns and
the number of such repetitions ; the periodicity of the oc-
curring memory accesses that are linearly linked, which
is given by the ranges of the loop indices ; the linear
relations between memory addresses whose accesses are
equally spaced, which is given by the functions of the inner-
most loops ; the sequence of nested phases characterized by
the above properties with is given by the consecutive loop
nests. All the generated loop nests can be represented as



for (k = 0 ; k < IMAGEDIM ; k++) {
for (f = 0 ; f < IMAGEDIM ; f++) {
pcoeff = &coefficients[0];
parray = &array[k*ARRAYDIM + f];
parray2 = parray+ARRAYDIM;
parray3 = parray+ARRAYDIM+ARRAYDIM;

*poutput = 0 ;
for (i = 0 ; i < 3 ; i++)

*poutput += *pcoeff++ * *parray++;
for (i = 0 ; i < 3 ; i++)

*poutput += *pcoeff++ * *parray2++;
for (i = 0 ; i < 3 ; i++) {

*poutput += *pcoeff++ * *parray3++;
poutput++; } }

Figure 3. Main loop of program fir2dim.

offset = 530832 ;
for t1 = 0 to 99
for t2 = 0 to 49{
for t3 = 0 to 2{
for t4 = 0 to 1
accessedblock =51t1 + t2 + 51t3 + offset ;

for t4 = 2 to 2
accessedblock =51t1 + t2 + 51t3 + 1 + offset ; }

for t3 = 3 to 5{
for t4 = 0 to 1
accessedblock =51t1 + t2 + 51t3 − 153 + offset ;

for t4 = 2 to 2
accessedblock =51t1 + t2 + 51t3 − 152 + offset ; }}

Figure 4. Loop nests representing accesses
to memory blocks.

polytopes. Each polytope is then associated to a phase of
the memory access behavior. In each phase, linearly depen-
dent memory address patterns are accessed.

Example 1 Consider the benchmark programfir2dim
from the DSPStone suite [10], which performs a finite im-
pulse response filter on a 2D image. The main loop of
the program is shown on figure 3. We instrument the
code withIMAGEDIM = ARRAYDIM - 2 = 100 and get
all the values taken by the pointersparray, parray2
andparray3. Since the accessed objects are 4-bytes in-
tegers, we divide each value by 8 to get references to 32-
bytes memory blocks. We finally consider as input a trace
of 90000 successive accesses to memory blocks.

Our periodic-linear model yields the loop nests shown
on figure 4 and representing exactly the whole input trace.
This loop nest program exhibits one main phase of 100 lin-
early linked patterns of 900 memory addresses (loop index
t1). Each of these patterns embeds one phase of 50 linked
patterns of 18 values (loop indext2), embedding themselves
two phases each of 3 linked patterns of 3 values (loop index
t3). Finally these latter patterns embeds two phases, one of
two linked values and one of one unique value (loop index
t4).

The iterations of dimensionst1, t2 andt3 are represented
as the integer points contained in two polytopes shown on
figure 5. Each polytope represents a different block-access
phase following our periodic-linear classification. Each
phase is associated to a different loop indexed byt3. Fol-
lowing the chosen representation granularity, any integer
point represents 3 accesses to memory blocks, correspond-
ing to 3 iterations of thet4-loops. The access order is given
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Figure 5. Polytopes representing two access
phases to memory blocks and cutting planes
of accesses to memory block 534332.

by the lexicographic order oft1, t2 andt3.
As other examples, it is shown in table 1 some nested

loop models that were generated for the three Spec2000
benchmark programsmcf, equake andammp using the
ref.in input files. The loop nests represent the mem-
ory addresses successively accessed through pointers in
the most time-consuming functions. Only the program
fir2dim will be considered in the following analysis ex-
amples.

3.2 Identifying accesses and access fre-
quency

Integer points associated with accesses to a given address
A are defined as points contained in the intersections be-
tween each of the previous polytopes and the hyperplanes
defined by the equations stating that the innermost loops
polynomials are equal toA. These sets are represented as
hyperplanes cutting the polytopes.

Example 2 Let us identify all accesses to the memory
block 534332. Those are integer points belonging to cutting
planes defined by the equations51t1+t2+51t3+offset =
534332 and51t1 + t2 +51t3+1+offset = 534332. They
are represented on figure 5.

The access frequency to any addressA can be defined
as the number of integer points associated with accesses to
any addressA. It is also the number of integer points in
the parametrized union of polytopes defined by intersecting
the previous polytopes and the parametrized hyperplanes
defined by the equations stating that the innermost loops
polynomials are equal to any addressA, whereA is now
considered as an unknown parameter. This number is ex-
pressed as several Ehrhart polynomials defined on disjoint
intervals ofA values. Those Ehrhart polynomials are com-
puted using the programbarvinokand the polyhedral library
Polylib. This symbolic expression of the access frequency
to any addressA can then be used for symbolic analysis
or for the generation through instantiation of several visual
representations or computed information.



Program Function Model

mcf price out impl

for t1 = 0 to M

for t2 = 0 to N

for t3 = 0 to t2
120t2 − 120t3 + offset ;

equake smvp

for t1 = 0 to timesteps − 1

for t2 = 0 to N − 1

for t3 = 0 to 2

128t2 + 32t3 + offset ;

ammp a number

for t1 = 0 to 3598

for t2 = 0 to t1 + 1

2224t2 + offset ;
for t1 = 3599 to N

for t2 = 0 to nb of atoms − 1

2224t2 + offset ;

Table 1. Nested loop models for three
Spec2000 programs.

Example 3 The number of accesses to any memory block
B is given by the counting of the number of integer points
in a union of polytopes parametrized byB. The answer
is given as a list of 16 Ehrhart polynomials defined on 16
adjacent intervals of B values. For example, all blocksB

between 530935 and 530983 are accessed 18 times, except-
ing blocksB such thatB mod 51 = 23 which are accessed
6 times and blocksB such thatB mod 51 = 24 which
are accessed 12 times. These polynomials allow to generate
different graphic visualizations as an histogram of the block
access frequencies for any value range ofB.

3.3 Analyzing the cache behavior

Accessed memory addresses are just one possible infor-
mation characterizing memory accesses. Other information
are relevant to memory accesses as the cache misses gen-
erated while accessing memory. Hence instead of consid-
ering a trace of successively accessed memory addresses,
a trace of the number of cache misses measured after each
memory access can also be interestingly considered. More-
over, the models generated through our periodic-linear ap-
proach can be used in a collaborative fashion in order to
associate memory addresses to cache misses. Since the to-
tal number of values in both input traces are equal, both
generated sequences of loop nests represent the same num-
ber of iterations, and theith memory access corresponds to
ith number of cache misses. Evaluations from one model
to the other can be done through a loop indices conversion
between both. Some further analysis can also be achieved
by instrumenting the generated loop nests and running them
in order to generate new traces. Those new traces are then
also modeled to allow the computation of additional analy-
sis information.

Example 4 We simulate a 32KB direct mapped cache of
1024 lines with the LRU policy and ask the cache simulator
DineroIV [2] to output the total number of cache misses af-
ter each memory access. The resulting trace of cache misses
is modeled by our tool as the loops shown on figure 6, rep-

memory access indices loop indices values
of cache misses

3600t1 + 72t2 − 943200

3600t1 + 72t2 − 943174

263 ≤ t1 ≤ 286

0 ≤ t2 ≤ 12

3600t1 + 72t2 − 943200

3600t1 + 72t2 − 943192

263 ≤ t1 ≤ 286

13 ≤ t2 ≤ 24

3600t1 − 941400

3600t1 − 941394

3600t1 − 941338

263 ≤ t1 ≤ 286

3600t1 + 72t2 − 948312

3600t1 + 72t2 − 948250

263 ≤ t1 ≤ 286

97 ≤ t2 ≤ 107

3600t1 + 72t2 − 948312

3600t1 + 72t2 − 948268

263 ≤ t1 ≤ 286

108 ≤ t2 ≤ 120

Table 2. Memory accesses generating cache
misses.

resenting the largest phase which englobes 96% of all mem-
ory accesses. The cache miss behavior can be represented
graphically as polytopes whose integer points are associ-
ated to successive memory accesses, and where surfaces in
gray color represent accesses generating cache misses (see
figure 7). It can also be precisely computed from this loop
nest what accesses are generating cache misses (see table 2).
The distances between two consecutive accesses generating
cache misses can also be deduced. The block addresses
whose accesses are generating cache misses can also be
known by transforming the memory access indices of table
2 as indices of the loops in figure 4: letI be any memory
access index, the corresponding indices(t1, t2, t3) for the
loops representing the addresses of the accessed memory
blocks can be computed in the following way:

I −→















t1 =
⌊

I

900

⌋

t2 =
⌊

I mod 900
18

⌋

t3 =
⌊

(I mod 900) mod 18
3

⌋

t4 = ((I mod 900) mod 18) mod 3

For example, the29186th memory access, which is gen-
erating a cache miss following table 2, is an access to the
memory block whose access indices in the loops of figure 4
are(32, 21, 2, 2). Hence it corresponds to an access to the
block whose address is51×32+21+51×2+1+530832 =
532588.

To know how many cache misses are generated by ac-
cessing a given memory blockB, a direct analysis of the
above loops and the use of conversion formulas yields too
complex computations and answers, mainly due to their
non-linearity. Another way is to instrument the loop nests
of figure 6 to build a simulator and to run it, in order to
generate a trace of all block addresses that generate cache
misses. Then the modeling of this latter trace as loop nests
allows to compute the number of cache misses generated
by accessing any memory blockB. For the simulator, we
implement a conversion function that computes from a cur-
rent value of the indices(t1, t2, t3) the corresponding block
address. This function uses table 2, the formulas giving
the corresponding indices for the loops on figure 4 and the
address functions of the innermost loops on the same fig-
ure. The generated trace is finally modeled as a loop nests.



for t1 = 263 to 286{
for t2 = 0 to 12{
for t3 = 0 to 25
#cachemisses =51t1 + t2 − 13336 ;

for t3 = 26 to 71
#cachemisses =51t1 + t2 − 13335 ; }

for t2 = 13 to 24{
for t3 = 0 to 7
#cachemisses =51t1 + t2 − 13336 ;

for t3 = 8 to 71
#cachemisses =51t1 + t2 − 13335 ; }

for t2 = 25 to 30
#cachemisses =51t1 − 13311 ;

for t2 = 31 to 86
#cachemisses =51t1 − 13310 ;

for t2 = 87 to 96
#cachemisses =51t1 − 13309 ;

for t2 = 97 to 107{
for t3 = 0 to 61
#cachemisses =51t1 + t2 − 13406 ;

for t3 = 62 to 71
#cachemisses =51t1 + t2 − 13405 ; }

for t2 = 108 to 120{
for t3 = 0 to 43
#cachemisses =51t1 + t2 − 13406 ;

for t3 = 44 to 71
#cachemisses =51t1 + t2 − 13405 ; } }

Figure 6. Loop nests representing the in-
crease of the number of cache misses after
each memory access between the 3601th and
the last.

The number of cache misses generated by accessing a given
memory blockB is given by the Ehrhart polynomials of the
union of polytopes defined by the loop nests reduced to the
case where the accessed block is the parameterB. The his-
togram of cache miss frequencies per block addresses be-
tween 531036 and 532000 is generated from these polyno-
mials and is shown on figure 8.

4 Conclusion

In this paper, it was shown that static analysis methods
can be used for the analysis of execution-time information
whether those are modeled themselves as programs. Gener-
ally, control and data structures in programming languages
offer a wide range of expressive objects that can be used to
model behavior information. Moreover the complexity of
the analyzed behavior can be correlated with the complexity
of the modeling program, as it is stated in the Kolmogorov
complexity theory [9]. Those modeling programs can also
be instrumented and executed to simulate certain execution
environment or to generate deductible execution-time infor-
mation. Our future objectives are to handle non-linear func-
tions in the analysis framework and also to extend our mod-
eling approach to non-linear periodic functions and a wider
range of control structures that can be statically analyzed.
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