
1

An Efficient Data Structure for
an Adaptive Vlasov Solver

Olivier Hoenen and Éric Violard
ICPS - LSIIT (CNRS UMR-7005)

Université Louis Pasteur, Strasbourg
Email:

�
hoenen,violard � @icps.u-strasbg.fr

Abstract— Solving the Vlasov equation represents a great
challenge due to the huge size of the problem. A specific
numerical adaptive method is used to reduce the amount of
computations. This method uses a structured dyadic mesh. In this
paper, we focus on the design of an appropriate data-structure
for minimizing memory usage and time access. After having
modeled the data accesses, we propose two data-structures and
several optimizations. One data structure is based on hash tables
and the other one on 2-level arrays. Experimental results show
the performance of these structures for serial and distributed
memory parallel machines.

I. INTRODUCTION

The Vlasov equation (see [2] for its mathematical expres-
sion) is a partial differential equation (PDE) that can describe
the evolution in time of charged particles under the effects of
electro-magnetic fields. It is used to model and simulate some
important phenomena in plasma physics such as controlled
thermonuclear fusion. This equation is defined in the phase
space, i.e., the position and velocity space �������
	���
��������� ������� . Its solution �����������
	�����	 represents the distribution of
particles in phase space.

The numerical resolution of this equation is usually per-
formed by particle-in-cell (PIC) methods [3] which approxi-
mate the plasma by a finite number of particles. These methods
yields satisfying results with a relatively small number of
particles and low computational cost. But, it is well known that
the numerical noise inherent to particular methods becomes,
in some cases, too important to get an accurate description
of the solution. To remedy this problem, methods discretizing
the Vlasov equation on a phase space mesh have been pro-
posed [4], [5]. In this paper, we are interested in designing an
efficient solver that use such non-particular methods.

Due to the high number of dimensions of the equation do-
main (� for real cases), solving it with a non-particular method
yields a very large computational problem. Indeed, considering
a uniform discretizing grid, 512 points in each dimension are
generally needed to achieve an accurate approximation. If we
restrict ourselves to the study of particles in the 4D phase
space (�����), then for each time step more than 68 billions
unknowns have to be computed and a minimum of 512GB
of memory are needed to store them. Moreover, the particle
study is usually performed on a long period (several hundred
of time steps).

This work is a part of the french INRIA project CALVI [1] devoted to the
numerical simulation of problems in Plasma Physics and beams propagation.

Using an adaptive mesh is a well known issue for improving
the efficiency of PDE solvers. Adaptive mesh refinement
(AMR) [6] is a generic technique for transforming a uniform
solver into an adaptive one. It divides the adaptive mesh
into a collection of independent uniform ones, called patches.
Besides the mathematical foundations of this technique, it
yields very complex systems. Writing and maintaining code
that implements these complex system is a difficult task. A
lot of work has been done in this domain to simplify the task
of programmer by introducing a hierarchy of abstractions [7].
A central issue in this context is designing an efficient data-
structure to represent and handle the adaptive mesh [8].
Particularly in the case of the Vlasov resolution, given the
huge amount of data and operations on these data, the choice
of the data-structure is of great impact on performance. It is
crucial that the used data-structure minimize memory usage
and time access. In AMR methods, patches overlap each other
and the time is refined differently for each patch. This can
result in memory and computational overheads especially for
high dimensional problems.

On the contrary to the classical AMR approach, our work
is based on a specific adaptive numerical scheme for solving
the Vlasov equation [9]. This scheme takes advantage of a
property of this equation stating that the solution ������� ���!	"����	
is constant along the characteristics of the equation. Numerical
methods which use this property are referred to as semi-
Lagrangian methods [10]. With this scheme, time step is
constant whatever the part of the phase space. Therefore, in
comparison with AMR technique, time refinement overheads
are avoided and several optimizations can be applied especially
to the data-structure. Based on this semi-Lagrangian numerical
scheme, we developed an adaptive 4D Vlasov solver [11]
called YODA (for Yet anOther aDaptive Algorithm). In this
paper, we discuss the design of an underlying data-structure for
YODA. We have developed two data-structures: one is based
on hash table and the other is based on multilevel arrays [12].
They are well suited to distributed memory parallel machines.

The paper is organized as follows: section II briefly recalls
the numerical method. Section III gives an illuminating analy-
sis of data accesses. Our two data-structures are detailed in
section IV. Section V presents some optimizations of data
accesses. Section VI outlines the use of our data-structures
for obtaining good performance onto parallel machines. Ex-
perimental results are given in section VII and they show the
performance of our structures.

2

II. YODA ALGORITHM

The solver YODA [9], [13] is based on a semi-Lagrangian
numerical method whose mathematical definition can be found
in [2]. We give the algorithm below, but first we introduce a
few notions. For sake of simplicity, the notions relative to the
adaptive mesh are given for the case ��� �

. These definitions
easily generalize to higher dimensions.

This method principle lies on an advection operator, de-
noted #%$, which depends on the electric field, denoted as & .
This operator identifies a characteristics curve of the equation
and describes the move of particles in phase space going
forward through one time step. The method uses the property
stating that solution � is conserved along characteristics ,i.e.,���'# $ �'�����
	����)(+* ,-	.�/������� ���!	"���)(�	 , for all position �������
	 in
phase space and any time step 0 . The operator # $ is one-
to-one. It is so called forward advection operator whereas
its converse #.1 ,$ describes the move of particles going back
through one time step and is called backward advection
operator (see [10] for more details about characteristics and
advection operators).

The solver YODA uses a dyadic structured adaptive
mesh. The dyadic property can be expressed as follows.
The mesh forms a partition of the computational
domain and considering the unit square 2 34�65�798:2 34�6567
as the computational domain, each cell identifies a
square 2 ; , � 1=< �-��; ,?> 5-	 � 1=< 798@2 ;BA � 1=< �C�';BA > 5D	 � 1=< 7 , where��; , ��;EAF�HG
	I�KJ . Figure 1 shows a dyadic mesh.

Fig. 1. A dyadic mesh (for L�MON)
This definition induces an implicit hierarchy of cells. For

example, if � cells form a square, then they are considered
as daughter cells of the cell they form which itself is called
their mother cell. We sometimes called sister cells, some cells
having the same mother. The integer G defines the cell size
and identifies its level in the hierarchy. Higher levels in the
hierarchy have smaller mesh cells than levels lower. In the rest,
we consider only mesh with a fixed highest level, denoted P .
We have thus 34Q?G�QRP . Considering the levels of detail of the
adaptive mesh, level 3 is the coarsest level and level P is the
finest level.

Nodes of the mesh are located at the center, at the edge of
each cell, and at the middle of each side. Therefore each cell
has S equally spaced nodes as shown on Fig. 2.

More generally, for any dimension � , a mother cell has
exactly

� � daughters and each cell has T
� nodes. Now, let us
present the resolution algorithm.

Fig. 2. Nodes of one cell (for L�MKN)
The algorithm falls into four successive steps for each time

step (��(OUV�)(+* ,). Fig. shows this algorithm. We will denoteW (and
W (+* , , the mesh at time �)(and �)(+* , respectively.

The electric field computation step (1.) computes the values
of charge density, denoted as X , at each position � of position
space by summing the contribution of every cell of mesh

W (
(by definition, XY���Y	��[Z\���'�����!)�]�). Then the electric field & ,
is computed from X using Poisson equation (^!_F&`�aX) and
the advection operator # $ is then determined.

The prediction step (2.) builds a superset of
W (F* , from

scratch. Let us note bW (+* , , this intermediate mesh. It is build
as follows. For every cell, say c , of

W (, its center point dCe is
computed and advected forward using advection operator # $.
The reached point, say f , (f:�g# $ �hd6e4) determines an unique
cell, say i having the same level as c and containing d e . Then
all daughters of i are inserted to bW (+* , . This insertion implies
several operations to maintain the global mesh consistency.
The insertion of one cell in a dyadic mesh is illustrated
on Fig.3.

Fig. 3. Cell insertion in a dyadic mesh (for L�MON)
The evaluation step (3.) computes the approximate solution

at every node of mesh bW (F* , . For every node, say j , ofbW (+* , , the node point is advected backward using advection
operator # 1 ,$. The reached point, say f , (by definition, fk�# 1 ,$ �'j!) determines an unique cell, say c , of

W (containingf . Then the approximate solution at point f is computed from
the approximate solution at nodes of cell c by using Lagrange
interpolating polynomials. By the property of conservation of
the unknown along characteristics, the approximate solution
at node j of bW (+* , is the approximate solution at point f
of
W (.

Fig. 4. Cell compression (for LlMKN)
The compression step (4.) deletes useless elements from

mesh bW (+* , . It builds
W (+* , from bW (+* , . The procedure

3

1. Electric field computation
for each cell mKn\oqp :

add contribution of m to r
compute s from r

2. Prediction (o pRtvuo pDwYx)
for each cell mKn\oqp :

compute center of m (tzy|{)
advect y { forward (tz})
find cell containing } (ta~ n\o p-w�x)
insert daughters of ~ to o p-w�x

3. Evaluation
for each node �%n uo pDwYx

advect � backward (ta})
find cell containing } (ta~ n\o p)
interpolate value at } from values of ~
store value at node � of uo�p-w�x

4. Compression (uo p-w�x t o p-w�x)
for each group of sister cell

for each node � of the group
interpolate value at � from values of ~
compute difference between stored and interpo-
lated values

if (norm of the differences ���)
replace daughter cells with mother

Fig. 5. Time marching resolution algorithm

is the following. While there exists a group of sisters inbW (+* , that has not yet been considered, compute the norm
of the differences between values at each node and values
interpolated from mother nodes. If this error norm is lower
than a certain threshold � , then replace the group of sisters
with their mother in bW (+* , and delete daughter nodes and
values. Cell compression is illustrated on Fig.4.

III. DATA ACCESSES

Here we report a study on how the algorithm access data.
We wish to determine how much and in what way the
algorithm access to the data structure. Such a preliminary
study is of great importance to determine what structure will
store data the most efficiently.

A. Analysis of data accesses

Our analysis lies on a classification of data accesses accord-
ing to three criteria: read or write (Re/Wr) access, access to a
cell or a node (C/N), and random or serial access (R/S). Let
us precise our meaning for random and serial access. Serial
access in our sense is an access which only depends on a
reference to data previously accessed and random access is
the opposite of serial access. Random accesses arise when the
advection operator is used (steps (2.) and (3.)).

For each step of the algorithm, the approximate number
of data accesses is reported and characterized with these
criteria. We note �"��(�� and �)�g(�� the number of cells and
nodes of

W (, respectively. We also note ���� (� and ���� (� ,
the number of cells and nodes of bW (, respectively.

Step (1.) (electric field computation), the cells of meshW (are scanned in an arbitrary order. Therefore �9� (�� serial
accesses are performed. For each cell, all nodes are read once
in an arbitrary order. We formulated this as:� �"� (�6�����B� � >

� �9� (�!8lT � �Y���B�:� (1)

Step (2.) (prediction), the cells of mesh
W (are scanned

in an arbitrary order again. For each cell, all daughters of the
unique cell containing the advected center, are inserted in meshbW (+* , . These insertions entails some read and write accesses
for maintaining mesh consistency. For sake of simplicity, we
neglect these accesses in our formula.� �9� (� �����)� � > � �9� (�!8 � � ���\�|��� (2)

Step (3.) (evaluation), the nodes of mesh bW (+* , are scanned
in an arbitrary order. To find the unique cell containing the
backward advected node, the presence in the mesh of at most P
cells is tested. Then the T�� node values are read for the pre-
viously determined cell in order to perform the interpolation.
Last, the interpolated value is added to mesh bW (+* , .� ����g(+* ,F���Y���B�:� >

� ����g(F* ,+�=8�P������B� � >� � ��g(+*�,+��8KT]� �����B��� > � � ��g(+*�,+� ���\�|�:� (3)

Step (4.) (compression), the cells of mesh bW (+* , are
scanned in an arbitrary order. Then for each groups of sis-
ter cells, a compression test is performed. The number of
groups of sister cells depends on the form of the mesh. A
limit superior of this number is �C����C�
� �A9 1 , �¡� ���(+* ,+�C¢ � � >��� ���(+* ,��-¢ � �-	�¢ � � >¤£C£6£ . In order to perform the compression
test, the ¥]� node of each of these groups are scanned with an
arbitrary order. The compression test succeeds for a proportion
of these groups. This proportion depends on threshold � . Let us
note ¦-§I�¨2 3=�6567 , this ratio. Every group of sister cells for which
the compression test succeeds, is replaced with their mother in
mesh bW (F* , . This implies approximatively �6����-��� �A9 1 , 8\¦ § write
accesses using the same order as for scanning cell groups.
Moreover, we assume that �9��(+* ,+� is approximatively equal
to �9��(�� , i.e., the number of mesh cells is conserved through
time steps. Under this assumption, we find an expression for¦ § . This yields the following formula:� �4���(+* ,��6�Y���B� � >

� �C�� �C�
� �A 1 , 8K¥]�6�Y���B�:� >� �C����C�
� �A 1 , 8©��5:ª � ��� ��C�� �C�
� � � �\�|� �
(4)

«
These formulae show that the number of random accesses

is far greater than the number of sequential accesses for
any dimension � : assuming that the number of mesh cells
is conserved through time steps, i.e., �9� (+* ,+�¬�­�9��(�� and� �� (+*�, ���®� �� (� , and considering that for any given mesh,
the ratio of the number of nodes to the number of cells is

4

at least
� � (in case of an uniform mesh), i.e., � ��g(+*�,+�¯�� ���(+* ,��=8 � � , formulae express that the number of random

accesses is greater than twice the number of serial ones for��� �
, and more than ten times greater for ���°� .

Thus although a tree structure appears to be a natural re-
presentation of a dyadic mesh, our algorithm exhibits random
accesses and we have to design a more appropriate data-
structure.

In YODA algorithm only elements at leaves of the tree are
examined and the traversal of all the levels of the cell hierarchy
is too slow for achieving good performances. On the contrary,
ND-tree structure [6] are commonly used in AMR algorithms
because these methods put interest in elements at all levels of
hierarchy.

Therefore our data-structure should be based on tables in
which elements are accessed by an index. We first define the
indexing of elements.

B. Indexing

Elements of our data-structure are nodes and cells.
A node refers to a position in phase space (and a value

of the solution). Therefore we define a node index from the
position. For sake of optimization, the index of a node is an
integer. The binary representation of this integer is obtained
by concatenating � strings of P > 5 bits. Each string is the
binary representation on P > 5 bits of a coordinate of the
corresponding point in the finest uniform grid as illustrated
on Fig.6.

0011

0101
00110101

0 1 2 4 5 6 7 83
0

1

2

3

4

5

6

7

8

Fig. 6. node indexing for L�MON and ±�MON
Identifying the mother cell given one of its daughter or find-

ing one sister of a given cell are some elementary operations
in our algorithm. The indexing of cells must thus be defined
so that these operations are performed very quickly. Therefore
a cell index reflects the hierarchy of cells. As for node index,
the index of a cell is an integer. The binary representation
of the index of a cell is obtained recursively from the binary
representation of its mother by adding � bits to the right, as
illustrated on Fig.7.

IV. DATA STRUCTURE

Section III has shown that the underlying data-structure of
our solver should provide fast random accesses, so the struc-
ture should use some kind of table. Moreover, adjacent cells

011100011110

011111011101

00 10

11

0100 0110

0101

Fig. 7. cell indexing for L�MKN and ±RMO²
have nodes in common. It is very important that these nodes
do not be duplicated in the data-structure for avoiding memory
and computational overheads. This node sharing implies that
nodes and cells are stored in their own structure. Therefore
the dyadic mesh should be represented by two tables: the cell
table and the node table. We decided to use hash table and
multilevel array to implements these tables.

A. Hash table

A hash table is a very classical structure [14].

1) Cell table implementation: A cell is represented in the
hash table by an element whose key is the pair level-index and
whose value is not significant. In order to avoid collisions, we
define a perfect hash function. Moreover, in order to improve
locality, our hash function tends to associate similar hashes
with cells that are close in the computational domain. This
hash function is defined as follows:³ j!´ ³ �'c�	��°c £ ;E0��]µ-�·¶6¶¹¸|�BPKª©c £ º µ-��µ º 	�8K��» (5)

where ¶6¶ is the left shift operator. Different keys may have
the same hash, but it is always for cells that cannot be in
mesh simultaneously, one being systematically an ancestor of
the other.

2) Node table implementation: A node is represented in
the hash table by an element whose key is the node index and
whose value is the value of the solution � at the corresponding
point in phase space. Again, we define a perfect hash function
as follows: ³ j
´ ³ �'j!	l�gj £ ;E0��]µ-� (6)

B. Multilevel arrays

A multilevel array is an array where each element is a value
or a multilevel array itself. In order to access to an element at
a given level in such an array, we need to traverse all previous
levels. Therefore, in order to enhance access time, we restrict
ourselves to 2-level arrays. Moreover, we only consider 1D-
arrays.

5

1) Cell table implementation: A cell is represented in
the 2-level array by a value, which is a pair level-index.
The implementation of the cell table is defined for a givenG6¼��¹½]5]� £¾£¿£ ��P¨ª¤5+À . Cells of level from 3 to GC¼ are stored
in the array at first level. We then call this array the coarse
array. Cells of level from G-¼ > 5 to P are stored in arrays at
second level. We then call these arrays the fine arrays. The
position of a cell in the 2-level array is computed from the
cell index.

2) Node table implementation: A node is represented in the
2-level array by a value, which is the value of the solution � at
the corresponding point in phase space. The implementation
of the node table is defined by the same GD¼ as for cell table.
The position of a node in the 2-level array is computed from
the node index. The coarse array stores all the nodes of cells
at level G ¼ . All other nodes are stored in fine arrays.

V. OPTIMIZATIONS

The main lines of the data structures are established, we are
now presenting some optimizations that relies on data access
performances.

A. Direct access

Section III shown that evaluation step (3) is the most
data access demanding part of the program. This is due to
interpolation for which all the values at nodes of a cell must
be accessed. In order to improve accesses, we add T!� pointers
to each element of the cell table. Each element represents a cell
and the pointers points to the values of the solution at nodes
of the cell. So, the values at nodes of a cell are not accessed
via the node table but directly by address. However, this
optimization entails an overhead due to pointers assignment.

B. Storage remapping

This optimization aims to make cache effective by achieving
good data locality. Amongst the different approaches that
had been developed to improve data locality, let us cite loop
restructuring [15], [16], where execution order of iterations is
changed, and array restructuring [17], [18], where the storage
order of an array is modified. In our case, loops on elements of
the adaptive mesh are too complex to allow loop restructuring.
Our optimization is based on array restructuring principle.

We focus again on step (3.) of our algorithm. Our optimiza-
tion aims to enhance locality of the values at nodes of cells for
avoiding cache miss during interpolations. These values must
be contiguous in memory as much as possible. To achieve this
goal we use a kind of storage remapping [19], [18], [20]. It is
illustrated on Fig.8: values are stored in dynamically allocated
arrays called remapped arrays and the node table do not stores
values but pointers to values in a remapped array.

A simple and efficient heuristics consists in keeping the
same order for the stored values than the one obtained from the
scan of nodes during the evaluation step. As said previously
nodes are shared between different cells, therefore it is not
possible to achieve exact locality. However locality can be
greatly improved by using this optimization.

cell table node table

α0

α1

remapped
 array

Fig. 8. Direct access and storage remapping

VI. PARALLELIZATION OVERVIEW

Here we show that our data structures are well-suited for
memory distributed parallel architectures. Our algorithm is
implicitly data-parallel since the adaptive mesh can be viewed
as a data-parallel structure. Therefore the parallelization of our
solver mainly relies on the distribution of the data-structure
among processors.

A. Data distribution

The computational domain is virtually subdivided into re-
gions. A region is a surface of the computational domain
which is defined by an union of cells of the mesh. Regions are
allocated to processors so that a processor owns and computes
the mesh cells and nodes which are included in its region.

Each processor owns a local view of the distributed mesh.
This local view is the union of the cells of the local region
plus a minimum of other cells for covering the whole domain.
Each processor thus owns in its local memory one cell table
representing the local view and one node table storing all
values at local nodes. Moreover, one field is added to each
element of the cell table. This field is used to store the
owner processor rank. Therefore any processor can obtain
the rank of the processor which owns any required data
and can communicate data with it. This field is also used
for implementing load balancing by switching two owner
processor ranks in the local cell table.

Fig. 9. Mesh distribution among 4 processors

6

B. Load balancing

As the mesh adapts to the evolution in time of the physics,
the number of cells within a region changes. It is therefore
necessary to integrate a load balancing mechanism into our
solver. This mechanism then consists in redefining regions for
each processor when a load imbalance is detected.

Newly updated regions must represent the same amount of
workload and be compact in order to reduce communication
volume. Assuming that the cell is the unit of load, each
region must approximately contains the same number of cells,
and these cells must be connex. Since connexity is hard to
maintain as the dimensionality increases, we choose to restrict
the neighborhood by by using the Hilbert’s space filling curve
(SFC) [21]. This curve is extensible in dimension and can fill
a � -dimensional dyadic mesh as shown on Fig. 10.

Fig. 10. Hilbert’s space filling curve for L�MÁN
Each cell possess two neighbors: the previous one and

the next one along the Hilbert’s curve and a connex region
corresponds to a portion of the Hilbert’s curve.

Region updating consists then in determining the number of
cells to receive from or send to neighbors at each ending of
the local portion of curve. We define this number as the sum
of differences between the local (region) load and the ideal
load.

Load balancing is performed between step (2.) and (3.) so
that the evaluation step is well balanced. Moreover, at this
stage of the algorithm, the values at nodes have not been
computed yet and communication overheads are thus reduced
to the minimum.

Last, a processor performs compression step only within the
limits of its region. Doing this, step (4.) of the algorithm do
not require any communication. This is an approximation of
the method since less cells are deleted, but it does not hazard
convergence.

VII. EXPERIMENTAL RESULTS

The code YODA was implemented in C++/MPI and We
developed 2 versions: one with hash tables (code 1) by using
standard template library (STL), and one with 2-level arrays
(code 2) with remapped arrays of 5C3 � � elements each.

Experiments have been performed on a HP cluster with 30
Itanium bi-processors nodes running at 5 £ T Ghz and intercon-
nected through a

�
Gbits/s network.

The test case is a rotating Gaussian in 4D phase space. The
finest level of the mesh is PÂ�`¥ which is equivalent to a
uniform grid of �+�]Ã discretizing points. The simulation is 5C3]3
time steps long.

We have measured the execution time and memory usage of:
1) code 1 without optimization and with both direct access

and storage remapping.
2) code 2 without optimization, with direct access, with

both direct access and storage remapping, and for several
values of G ¼ .

The results are reported on Table I and II. In table I, we
notice that the optimized code is three times faster than the
code without optimization. But the optimized code uses two
times more memory. This overhead can be partly explained
by the big amount of pointers, which has to be allocated. The
number of pointers in the node table is at least equal to the
number of nodes, whereas in the cell table, each element storesT+ÃÄ�°Å=5 pointers to remapped arrays.

TABLE I
RUNTIME AND MEMORY USAGE OF CODE 1

hash table without direct access and
optimization storage remapping

runtime (s) 1506.3 453.79
memory use (KB) 1002240 2033600

Table I shows that the data structure based on 2-level arrays
is more efficient than with hash table. Even with the same
optimizations, it appears that code 1 is slower than code
2. This can have different causes: the cost of accessing an
element (cell or node) or allocating new elements, the number
of elementary operations to scan all elements of the structure.

We notice that the results obtained with code 2 and direct
access only are the best. This shows that the overhead of
the remapping optimization is bigger than its gain. As the
remapping optimization aims to improve data locality, it shows
that the 2-level array structure present a good data locality.

For our test case, we obtain the best performance for GD¼Ä�ÆT .
For lower values of G-¼ , fine arrays are larger which badly
affects data locality. On the opposite, for higher values of G�¼ ,
fine arrays are smaller and this implies much more allocation
and deallocation.

TABLE II
RUNTIME AND MEMORY USAGE OF CODE 2

2-level array Ç|È without direct access and direct access
optimization storage remapping

runtime 2 411.15 372.44 328.9
(s) 3 403.15 314.18 262.97

4 426.76 334.74 290.05
memory use 2 334560 502320 362624

(KB) 3 248000 1060784 921088
4 580688 1474784 1335088

Fig.11 shows the performance of each code for different
number of processors. We notice that the optimizations do not
affect the speed-up.

7

 1000

 100

 8 4 2 1

el
ap

se
d

tim
e

(s
)

processors (#)

hash table
hash table with direct access and storage remapping

2-level array
2-level array with direct access and remapping

2-level array with direct access

Fig. 11. Performance of our parallel codes

VIII. CONCLUSION

We proposed two data-structures for an adaptive numerical
solver of the Vlasov equation. We based our design on a quan-
titative and qualitative analysis of data accesses. Experiments
show the performance of our structures and the advantages of
the proposed optimizations. The proposed data-structures are
well-suited to load balancing on a distributed memory parallel
architecture.

The structure with 2-level arrays and direct access exhibits
the best performances for the considered test case. Perfor-
mance of this structure depends on the value of parameter G ¼ .
Further experiments have to be performed to determine how
to find the best value of GC¼ .

Experiments show that the proposed optimizations signif-
icantly reduce the execution time but also increase memory
usage. This work then gives some clues as to which structure
is the best for real case (���°�) for which a tradeoff has to be
made between memory usage and access time.

REFERENCES

[1] CALVI: french INRIA project, http://www.inria.fr/recherche/equipes
/calvi.en.html.

[2] E. Sonnendrücker, J. Roche, P. Bertand, and A. Ghizzo, “The semi-
lagrangian method for the numerical resolution of Vlasov equations,” J.
Comput. Phys., vol. 149, pp. 201–220, 1999.

[3] C. K. Birdshall and A. Langdon, Plasmaphysics via computer simula-
tion. McGraw-Hill, 1985.

[4] F. Filbet, E. Sonnendrücker, and P. Bertrand, “Conservative numerical
schemes for the Vlasov equation,” J. Comput. Phys., vol. 172, pp. 166–
187, 2000.

[5] F. Filbet, E. Sonnendrücker, and J. Lemaire, “Direct axisymmetric
vlasov simulations of space charged dominated beams,” in International
Conference on Computational Science, ICCS 2002, ser. Lecture Notes
in Computer Science, 2002, pp. 305–314.

[6] M. Berger and J. Oliger, “Adaptive mesh refinement for hyperbolic
partial differential equations,” J. Comput. Phys., vol. 53, pp. 484–512,
1984.

[7] A. M. Wissink, R. D. Hornung, S. R. Kohn, S. S. Smith, and N. Elliott,
“Large scale parallel structured amr calculations using the samrai
framework,” in Supercomputing, 2001.

[8] M. Parashar, J. C. Browne, C. Edwards, and K. Klimkowski, “A
common data management infrastructure for adaptive algorithms for
PDE solutions,” in Supercomputing, 1997.

[9] M. Campos-Pinto and M. Mehrenberger, “Adaptive numerical resolution
of the Vlasov equation,” in Numerical Methods for Hyperbolic and
Kinetic Problems, CEMRACS’03, 2003.

[10] N. Besse and E. Sonnendrücker, “Semi-lagrangian schemes for the
Vlasov equation on an unstructured mesh of phase space,” J. Comput.
Phys., vol. 191, pp. 341–376, 2003.

[11] O. Hoenen, M. Mehrenberger, and E. Violard, “Parallelization of an
adaptive vlasov solver,” in 11th European PVM/MPI Users’ Group
Conference (EuroPVM/MPI ’04), ParSim Session, ser. Lecture Notes
in Computer Science, vol. 3241. Springer-Verlag, September 2004, pp.
430–435.

[12] J. W. T. A. L. Rosenberg, “What is a multilevel array?” IBM J. Res.
Develop., vol. 19, no. 2, pp. 163–169, 1975.

[13] M. Mehrenberger, E. Violard, O. Hoenen, M. C. Pinto, and E. Son-
nendrücker, “A parallel adaptive vlasov solver based on hierarchical
finite element interpolation,” in ICAP’04, 2004.

[14] D. Knuth, The Art of Computer Programming: Sorting and Searching.
Addison-Wesley, 1973, vol. 3.

[15] S. Carr, K. S. McKinley, and C. W. Tseng, “Compiler optimizations
for improving data locality,” in Proceedings of the Sixth International
Conference on Architectural Support for Programming Languages and
Operating Systems, San Jose, California, 1994, pp. 252–262.

[16] K. Kennedy and K. S. McKinley, “Optimizing for parallelism and data
locality,” in Proceedings of the 1992 ACM International Conference on
Supercomputing, Washington, DC, 1992.

[17] S. A. Leung, “Array restructuring for cache locality,” Department of
computer science, University of Washington, Tech. Rep. TR-96-08-01,
1996.

[18] M. T. Kandemir, A. N. Choudhary, J. Ramanujam, N. Shenoy, and
P. Banerjee, “Enhancing spatial locality via data layout optimizations,”
in European Conference on Parallel Processing (EuroPar ’98), 1998,
pp. 422–434.

[19] M. Cierniak and W. Li, “Interprocedural array remapping,” in Interna-
tional Conference on Parallel Architectures and Compilation Techniques
(PACT ’97), November 1997.

[20] N. Mitchell, L. Carter, and J. Ferrante, “Localizing non-affine array
references,” in IEEE PACT, 1999, pp. 192–202.

[21] H. Sagan, Space-Filling Curves. Springer, 1994.

