
ESODYP: An Entirely Software and Dynamic

Data Prefetcher based on a Markov Model

Philippe Clauss1 and Jean Christophe Beyler1

Université de Strasbourg, LSIIT/ICPS,
Pôle API, Bd Sébastien Brant, 67400 Illkirch-Graffenstaden, France

Abstract. Many works have shown that data prefetching can be an effi-
cient answer to the well-known memory bottleneck. Although several ap-
proaches ranging from dynamic hardware to static software mechanisms
have been proposed, no pure and stand-alone dynamic software data
prefetching solution has yet been proposed. However such a portable
approach can be quite worthy regarding the number of data-intensive
applications having a dynamically changing memory behavior and re-
garding the ever growing variety of processor and memory architectures.
In this paper, we propose an Entirely SOftware and DYnamic data
Prefetcher (ESODYP) based on a memory strides Markov model. It runs
in two main phases: a short training phase where a graph coding se-
quences of occurring memory strides is constructed, and an optimizing
phase where predicted addresses are prefetched while some information
in the graph is updated by continuously monitoring the program.
Significant speed-ups are obtained on an Itanium-2 processor using ES-
ODYP for several benchmark programs that could not have been op-
timized statically. It is particularly shown that the induced software
overhead can represent a minor execution time regarding performance
improvements, due to a careful lowering of the optimizer computations
and memory accesses.

1 Introduction

It is quite well-known that memory causes a serious performance bottleneck in
spite of the use of caches, since the implemented loading and replacement strate-
gies are unable to suit all possible program memory behavior. Many works have
shown that software controlled policy of hardware mechanisms can significantly
improve their efficiency. A compiler can be able from a static analysis of the
source code to generate some instruction hints [6]. However, such an approach
is only exploitable for static control and data structures as for-loops accessing
multi-dimensional arrays through affine reference functions. When considering
more general control structures accessing data through pointers, static optimiza-
tion can generally not apply since the essential information are not known at
compile-time and can only be observed during execution. Hence dynamic anal-
ysis and optimization have become an important area of research.

Works focusing on a dynamic approach can be distinguished by the presence
of an off-line phase, and by the hardware or software portion of the proposed

system. An off-line phase allows to avoid the overhead induced by a necessary
training step of the implemented optimization strategy. However, such a phase
can be demanding from multiple execution profilings and program-specific anal-
ysis. For example in [19, 16], cache-miss detection is done off-line in order to
create threads for data prefetching on an hyperthreaded processor [12].

A fully on-line system is more challenging, since the whole overhead has to
be more severely reduced. But no initial profilings are necessary and the system
is transparent to the user.

Also pure hardware solutions allow to avoid the overhead of a software sys-
tem [15, 9, 17, 21, 20, 4, 3]. However, those cannot have the flexibility of software
to implement sophisticated strategies and are obviously not portable. Hybrid
systems can provide nice solutions but are also not portable to any processor ar-
chitectures [19, 18, 16]. The usage of operating system specific tools also reduces
the range of possible target platforms. For example in [8], the presented software
optimizer uses the software tool VULCAN only available on Windows platforms.

Most hardware models [15, 17] rely uniquely on addresses yielding cache
misses. To achieve this, they rely on an on-chip buffer added to the proces-
sor used to calculate what is prefetched. A pure software solution does not use
an on-chip buffer. Most pure software approaches [5, 8, 11, 7, 18] consider a large
memory block shared by the original process and the optimizer. Moreover in a
pure software system, it is not easily known whether a data access induces a
cache miss or a cache hit. For example, the system ADORE [18] detects cache
misses using the Itanium hardware counters, thus it can be considered as hybrid.

In this paper, we propose a pure software and fully on-line system based on a
memory strides Markov model. Classically, a Markov predictor uses a history of
accessed data to predict the next data that is going to be accessed by a program
[15, 17]. Using statistical information on past memory behavior, it tries to load
the data before the program effectively needs it. If done correctly, this can result
in a significant speedup.

In our model, we do not consider the accessed data memory addresses but
the strides occurring between successive accesses. Unlike other approaches, a
large amount of accessed memory can therefore be considered while modeling
a relatively constant memory behavior of the program. Hence in many cases a
moderatly small amount of memory is needed to contain all the information used
to achieve prefetching. Moreover, our model can consider prediction from any
number of past occurring values unlike other Markov models only considering
a unique past value [15, 17, 21]. Our experiments show significant speedups for
several benchmark programs using our dynamic optimizer.

In the next section, we present our Markovian model and show how it fits
in a dynamic approach. Section 3 details ESODYPS’s two main phases: the
training phase consisting in the construction of a graph and the prediction phase
consisting in prefetching the predicted memory accesses. ESODYP’s usage and
several experiments are presented in section 4. Finally, conclusions are given in
section 5.

2 The Markov predictor

Our Markovian predictor remembers sequences of strides between successive
data accesses. When the predictor is given a new address, it tries to map the new
stride computed from the previous access and the previously occurring strides to
a particular sequence. If successful, it is able to predict the next access. Accuracy
of the prediction depends on the amount of information stored by the predictor
and on the relative redundant behavior of the program memory strides.

The maximum number of past values stored by the predictor is called the
depth. Most models [15, 21] use only a one-depth predictor. Our model can con-
sider any depth with a low complexity and hence can give better predictions as
shown in our experiments.

Considering memory strides instead of actual addresses can give the predictor
a better chance to keep all the information retrievable by the program with the
least memory necessary. Of course, this strategy is not universally the best. If
the number of different strides is too high, our model uses a lot of memory.
But it is able to capture many regular memory behaviors often occurring in
programs, unlike methods based on actual adresses whose applicability is limited
to behaviors characterized by a lot of temporal data reuses.

We call prefetching distance the number of strides we attempt to predict in
advance. Suppose we know that after a stride sequence S the predicted strides are
A, B and C. Then it is possible to prefetch addresses b+

∑
S+A, b+

∑
S+A+B

or b +
∑

S + A + B + C, where b denotes the base address of the accessed data
and

∑
S denotes the sum of all strides in the sequence S. Since prefetching takes

a certain amount of time, if address b+
∑

S +A is prefetched, it is possible that
the program arrives at the point where the concerned data is needed before the
prefetch has been completed. The program would then stall. In such a case, it
would be wrong to prefetch address b +

∑
S + A and it would be preferable

instead to prefetch addresses b +
∑

S + A + B or b +
∑

S + A + B + C as it is
done in [18].

When the predictor gets the current accessed address, it must decide what
to predict. In the most favourable case, there is only one possible choice. In the
case of several choices, the most naive answer is to do the prefetch from each
possibility. But since we are going to predict two or three strides in advance,
we obviously cannot predict every possible address. Moreover most processors
support a limited amount of simutaneous prefetches (16 on the Itanium-2 [14], 8
on the AMD64 processors [2]). Because of both factors, we restrain the number
of prefetches at each step by prioritizing all the possibilities, thus predicting only
the most probable access as it is explained while presenting the model creation
process in the next section.

The predictor depth influences considerably the prediction accuracy. Each
program can be characterized by the necessary depth yielding a significant
speedup. Obviously, a higher depth gives a better chance for accurate predic-
tions but needs more memory to store the information. Therefore we need to
determine what is more essential in each situation between depth and memory
in order to get the best speedup. As an illustration of this fact, our experiments

in subsection 3.2 point out that our test program requires a depth of 3 for an
actual speedup to be observed.

Like other dynamic optimizers [5, 11, 18], our model does not try to compete
with static optimizations of compilers. Its purpose is to reduce memory con-
tention for data accesses that could not have been optimized at compile-time.
For example, we do not consider statically allocated array accesses through affine
reference functions in for-loops, since such memory references can be efficiently
considered statically giving evidently better results than any dynamic process
could do.

One main challenge of a dynamic optimizer is to keep its overhead low enough
so that the gain makes the overall program run faster.

There are different ways for implementing a dynamic optimizer:

– If available, a second processor can calculate all the information needed for
the predictions.

– The optimizer can be implemented as a second thread giving the chance to
mask the processing time as in the previous case. Such an approach can be
efficient using a hyperthreaded processor [16, 12] or a dual-core processor
[13, 1].

– All the code can be left in one unique thread executing either our optimizer
or the original program.

Notice that a second thread would require synchronizing mechanisms likely
raising the overhead. Our implementation uses the third approach not relying
on a particular processor architecture.

Our model is not yet totally transparent at this time since it still needs some
help from the programmer. A function links the original program to the opti-
mizer. This function feeds our model with accessed addresses and automatically
prefetches the predicted data. A more detailed description of this API is given
in the next section.

Since the actual accessed addresses are known, it is possible to monitor the
number of correct predictions by comparing them with the prefetched addresses.
The optimizer could be stopped whether this number exceeds a certain threshold.
Doing this, the slow-down that would most likely occur would be reduced.

3 Implementation

3.1 General view

In models that only need the previous address for prediction, the use of a history
table seems natural. Some models [15, 17] use such tables storing more than one
prediction giving the possibility to prefetch more than one address.

Since we use sequences of strides with different depths, our model does not
use a table. However our data structure has to allow the prediction process to
be as fast as possible. We use a graph to represent the different sequences that
have already been monitored. Each time a new stride is caught, the next ones
can be predicted with a complexity not related to the depth used.

To illustrate the graph creation phase, let us consider the following example
of a sequence of strides that a running program could have given our model:
1, 2, 16, 2, 32, 2, 16, 2, 32.

Previous strides Next stride

2 32, 16

1 2 16
2 16 2
16 2 32
2 32 2
32 2 16

Table 1. A prediction table

Table 1 shows what would be stored if the sequence was coded in a table
with a maximum depth of 2. The left column represents the last strides made
by the program memory accesses and the right column the next stride that is
probably going to occur, with the assumption that what occurred previously is
likely to be repeated.

We notice that after a stride of 2, the next stride is uncertain as it is not
known what stride occurred before. In our case, the probabilities that a stride of
16 or 32 occurs are the same. However it is likely that sometimes a certain stride
follows more often a certain sequence. It is this most probable stride which is
selected for prediction.

1 2

2

1 2

16

16

2

1 2

2 16

16 32

2

32
2

1 1 1

1

1

1

2

2

2
2 1

1
2

c)b)a)

1

Fig. 1. The Markovian graph (with a depth of 2) after two strides (a), three strides
(b) and the full sequence (c) has been passed to the model

To explain how the graph works, let us see what happens as the two first
strides are processed (Figure 1 (a)). Similarly to the table, we restrict ourselves
to a depth of 2. The meaning of the single edge is that after a stride of 1, to our
knowledge, a stride of 2 will occur. In the case of nodes without successor, it is
not known what could happen next. For example, the connex group (1,2) is not
attached to anything since we do not have any information on the next stride.

The node 2 alone symbolizes that, if all we know is that there was a stride of
2, nothing can be predicted. The edge label 1 means that this edge has been
followed once. Such labels are used to select the most followed edges.

We can see how the graph construction evolves on figure 1 (b) when another
stride is added to our model. Two more nodes have been added to the graph.
The first node 16 is attached to both nodes 2. This symbolizes that after a 2,
and after the sequence (1,2) as well, a 16 occurs. The second node 16 tells that,
knowing only that the last stride was a 16, what happens next is not known.

Eight nodes are used in the graph when the whole sequence has been pro-
cessed on figure 1 (c). Now some edge labels have value 2 meaning that those
edges were followed twice. If we did not use the strides but instead the actual
adresses, the same training sequence would give us 17 nodes. This is especially
true because the sequence does not access the same memory address twice. This
is generally the case when the program performs a classical data structure traver-
sal.

Our graph has many similarities with suffix trees or suffix automata con-
structed for pattern recognition algorithms in strings [10]. But since we have
quite different usage requirements, our graph can be seen as a mix between a
suffix tree and a suffix automaton.

This graph construction process has to stop after a while as the graph starts
to be used in the prediction phase. As the construction is stopped, the optimizer
points to the last created node and starts prediction. When receiving a new
stride, it checks whether there is an edge from the current node leading to that
stride. If so, the pointer to the current node is updated. Otherwise two strategies
are considered:

– If a root node for the received stride exists, that node becomes the current
node as no information about the past occurring strides is known and a
prediction can be made.

– If no root node for the received stride exists, nothing is done until receiving
the next stride that hopefully will allow prediction.

Searching for a root node associated to a given stride is a frequent operation
that therefore has to be fast. That is why a binary search tree is added to our
graph.

Notice that like other optimizers using the concept that programs act in dif-
ferent phases [5, 11, 18], it is possible to construct an associated graph at each
phase beginning. This approach reduces the memory consumption of the opti-
mizer and therefore also reduces its overhead. In our optimizer, phase detection
is done by monitoring the number of consecutive miss predictions. When a given
threshold is reached, the graph is flushed and the construction is restarted.

Another solution would be to simply restart the construction without flushing
the graph. Eventhough in some cases it might seem opportune to do so, we think
that in general a phase change yields a quite different memory behavior. Some
edge labels would include the previous phase and so would have higher counts
than the recently added edges. It would take a certain amount of time before
these latter edges would be followed, yielding a lot of misspredictions. If the

construction is started over, the counters are reset and the number of nodes
does not grow unnecessarily.

As said in section 2, a choice between different possible predictions has to be
made and prediction of a few strides ahead of time can be necessary. But since
we cannot afford to figure out what stride is to be made at each step, this stride
is precalculated. Hence the sum of all strides to be made is directly known when
arriving at each node.

The full stride has also to be updated as the prediction changes. Suppose
we are on the root node 2 in Figure 1 (c), 32 is the best prediction and only
two strides ahead are prefetched. Consequently the node 2 has a variable saying
“prefetch 32+2”. If 16 becomes the best prediction then this variable must be
changed to “prefetch 16+2”. Considering that the number of changes is not too
important, the precalculation overhead can be quite small. In the worst case
scenario, the optimizer would have to calculate the stride at every access, which
would have been the case without any precalculation.

Each node owns a list of its successors, that is to say the strides that have
followed the current sequence. To reduce the overhead, a pointer to the most
probable node is used. To reduce it even more, a LRU management strategy of
the last two nodes accessed after the current node has been implemented. The
objective is to minimize the number of times the list of successors of a node has
to be scanned.

A global data structure holds all the information needed by the model: the
predictor depth, the prefetching distance, the graph, the threshold of consecutive
misspredictions, the function pointer fct,...

Our dynamic optimizer is composed of a few functions. It will automatically
prefetch the data once it has a graph completely constructed during the training
phase. The different functions are shown in Table 2. Function fct is not really
a function but a pointer accessed through the Markov structure. If different
sequences in the same program have to be monitored, then it is possible for each
sequence to have different parameters.

Function name Description

initialize Initializes the Markov structure

set param Set the parameters: construction depth, prefetching distance...

set address Update the base address, since the model uses strides

fct Function that is the link between the program and our model

clear Clears the structure
Table 2. The functions used by the programmer

It is through fct that three functions are called depending in which of the
phases the model is in. At the beginning, fct points to a small function that
is only there to set the base address. Since strides are considered, the offset
has to be known before creating the graph. After the first call, fct points to

the construction procedure. Once the construction is finished, it points to the
prediction procedure: prediction, followed edge labels incrementation and full
stride variable update if necessary.

The construction procedure has a life duration variable set by the program-
mer that defines the number of times it has to be run. The pointer fct is changed
as soon as this variable reaches zero.

Another important factor is the usefulness of the function set address. Sup-
pose we have the stride sequence example used at the beginning of this section,
and suppose it represents the strides occurring from a certain base address. If this
address changes all the time, for example from successive calls to the same func-
tion, and the stride sequence does not, we would have many different sequences
in our graph. Being able to set the base address, before the model considers the
strides, significantly reduces the number of needed nodes.

3.2 Second example

In this subsection, we will present another simple example to show the behavior
of the model. This is the memory access sequence: 32, 64, 128, 64, 128, 64, 32, 64, 32, 64, 64, 128.
We set the model to construct the graph on the hundred first accesses and we
prefetch 4 memory strides in advance.

If we suppose that the memory behavior repeats this pattern, table 3 shows
the different characteristics of a Markovian model following different factors.

We notice that with a depth of 1, we never get a good prediction since we
want to prefetch four data accesses in advance. This example shows that, in some
cases, a higher depth can be needed to correctly handle memory patterns.

Information Original Code Depth 1 Depth 3 Depth 4

Correct predictions N/A 0 16 99

Execution time 15.89 15.1 16.1 6.5

Number of nodes N/A 3 19 31

Speedup 1 1.05 0.99 2.44
Table 3. Impact on the depth used for the Markovian model on a simple sequence.
The correct predictions are given in percentages and the execution time is given in
seconds.

3.3 Special considerations

In this subsection, we explain in greater depth certain implementation consider-
ations.

Since we can have multiple loads that we wish to optimize, we can have
multiple graphs, each having a certain number of nodes. The allocation scheme

then becomes an important factor in the success of such an optimizer. For each
model, we allocate a block of memory at the beginning of the program run.

One major advantage to such an allocation scheme is the complexity involved
in the creation and destruction of the graph. Instead of using the functions malloc

and free, a simple pointer is used to give us the next free memory space. When
a flush is needed, the value of the pointer is set back to the initial address and
the construction can start over.

The disadvantage is a relative waste of memory since we must allocate a
block big enough to handle the graph maximum size, meaning that if this size
is only used for 10% of the execution time, there is a memory waste for the rest
of the execution.

This being true, we could propose an evolved solution that allocates small
blocks at a time and then just frees the blocks when not needed. We currently
allocate only 4kB for each model (which is enough for our tests) in the program
which is low enough to be considered as not being significant in current com-
puter systems.

Construction duration: this is the number of memory accesses used to create
the graph. Even though it is set at the beginning of the program, this param-
eter is modified depending on the behavior of the memory accesses. If we stop
creating nodes for the graph (thus having already a stable state), we end the
construction and start the prediction. In our experiments, this helps keeping the
overhead low and lessens the impact of this parameter;

Depth of prefetching: Through testing and benchmarking, we have noticed
that generally a prefetch distance of between 3 and 9 in general data-structure
traversals is a good approximation of the best distance. Of course, this really
depends of the time between memory loads and its latency. We could use the
construction phase to give us an approximation of the time between each mem-
ory access, this would give us an indication of the lapse between two accesses,
thus helping the optimizer in evaluating what prefetching distance would be
near-optimal;

Error threshold: this has been empirically set to 40 which means that if there
are 40 consecutive errors, we flush the graph. Another solution is to check peri-
odically the percentage of failed predictions and if it is above the threshold, we
reset the graph.

Multiple models: As any optimization, the importance of being able to apply
it on different sections of the program is critical. That is why each model has its
own parameters, structure and graph location in memory. This separation helps
keeping the different models independent, one model can be in its construction
phase while another can be predicting. The separation of the memory manage-
ment helps simplify the flush mechanism. A centralized version would have a
higher complexity but would lower the potential waste of unused free space.

4 Experiments

To implement a prefetch mechanism, a way must be found to load before-hand
the data into the cache. A simple solution is to insert a load into the assembly
code before the data is actually needed. The drawback of such a solution is that
the address must necessarily be valid. We are not allowed to load an address not
situated in the memory space of the current program. Therefore we would have
to check whether our strides do not let the prediction exit the possible address
range. It is in general unconceivable for a low overhead to put up these tests
and still get a speedup. The simplest solution is to use the prefetch instructions
existing on most modern architectures.

On Itanium, the prefetch instruction is lfetch. However if there are too many
outstanding prefetches, or if it provokes a page miss, then the prefetch is not
executed.

All the programs presented here have been compiled with the optimization
level “-O3” and run on an Itanium-2 processor. We used both compilers GNU gcc

and Intel icc.

The instrumented programs come from the different benchmarks Spec2000,
Pointer Intensive and Olden.

4.1 mcf from the Spec2000 benchmarks

m1 = initialize();

set(m1,&stop,M_ARRCONS);

set(m1,&j,M_PROF);

set(m1,&k,M_ERRMAX);

Fig. 2. Initialization code of the strucutre

In what follows, we detail the instrumentation of the mcf program. This pro-
gram can be accelerated at least at two distinct locations, so two data structures
are used to monitor both stride sequences. Figure 2 shows the code used to ini-
tialize a structure. First, we call the initialize procedure that puts all the
parameters to default values. Then it is possible to specify the parameters: the
number of calls for the construction phase, the depth of the constructed graph,
the number of consecutive misspredictions before a flush occurs, ...

In figure 3, we can see that only a few added function calls (in this case three)
is necessary to monitor a certain sequence. For the sequence monitored by the
structure m2, two calls are necessary since the pointer it is monitoring is updated
at two different locations. Notice how the right function is called by using the
pointer fct situated in the different Markov structures. The functions have two
parameters:

...

while(arcin) {

tail = arcin->tail;

m1->fct(m1, arcin->tail);

if(tail->time + arcin->org_cost > latest) {

m2->fct(m2, (void *)tail->mark);

arcin = (arc_t *)tail->mark;

continue; }

...

m2->fct(m2, (void *)tail->mark);

arcin = (arc_t *)tail->mark; }

...

Fig. 3. Inserting the fct function in the mcf program (in the function price out impl)

1. The pointer to the Markov structure, where the graph and the pointer func-
tion can be found ;

2. The pointer to the data to be monitored. Our functions transform the address
sequence into a stride sequence.

Once the program is finished, we add a call to the clear function to free
the memory used by our model. Figure 4 shows the acceleration of the program
depending on the compiler used. As we can see, using a different compiler has a
different impact on the speedup obtained. In the case of mcf, it has been acceler-
ated by 124% using the icc compiler. Only the single function price out impl,
taking 31% of the whole execution time, has been optimized. Hence this function
has actually been accelerated by 266%.

4.2 The benchmarks

Program File involved Function involved Input

treeadd node.c Treeadd 20 nodes and 1 processor

ft graph.c PickVertex The reference input

mcf implicit.c price out impl The reference input

equake quake.c smvp The reference input

art scanner.c match The reference input
Table 4. The functions yielding a lot of cache misses

We present four other program experimentations: treeadd from the Olden

benchmarks, equake and art from the Spec2000 benchmarks and ft from the

 1

 1.2

 1.4

 1.6

 1.8

 2

artmcfequakefttreeadd

Sp
ee

du
p

icc
gcc

Fig. 4. Speedup achieved with the ESODYP model depending on the icc compiler or
the gcc compiler.

Pointer Intensive benchmarks for which one of the most costly functions of each
program has been optimized (See table 4).

Program Distances

treeadd 4/6/9

ft 2/4/7

equake 3/5/10

mcf 2/4/9

art 1/4/9
Table 5. Different prefetching distances used for the histogram in figure 5

The speedups achieved on these different programs can be seen in figure 4.
Notice that the given measures are resulting from the whole execution time of
each program and not uniquely from the time of the optimized function. We
were interested in optimizing most time consuming function and we looked for
the delinquent load that heavilly stalled the program. Only mcf was optimized in
two different places since the loads were in the same while loop. We also present
in this figure a comparaison between the Intel compiler icc and the GNU compiler
gcc. As we can see, the difference between both compilers is noticeable, especially
for the ft program where we have a difference of more than 2 points.

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

artmcfequakefttreeadd

Sp
ee

du
p

Optimized 1
Optimized 2
Optimized 3

(a) Program Optimization

 1

 1.5

 2

 2.5

artmcfequakefttreeadd

Sp
ee

du
p

Optimized 3

Optimized 1
Optimized 2

(b) Function Optimization

Fig. 5. Speedup of the benchmarks

Figure 5 and table 5 show the impact of different prefetching distance that
the model can use. The direct impact is the resulting execution time. The given
measures are calculated from the execution time of each program and not only
from the time of the optimized function. They were obtained with different pa-
rameters shown in the table. For example, if we look at the treeadd histograms,
from left to right, they represent a prefetching distance of 4, 6 and 9.

A comparaison between figures 5(a) and 5(b) can be made by stating that the
programs ft and treeadd do not have a significant change between the program
speedup and the function speedup since the functions that are optimized use
99% of the execution time. However, mcf has a major change since the function
optimized only uses 31% of the original time. Therefore, when we look at the
function speedup, we notice a significant boost (from 1.27 to 2.85). equake also
gains a few points when we look at the function speedups.

5 Conclusion and future work

We have shown that a pure software dynamic optimizer is a realistic way of
improving program behavior. Using some standard hardware mechanisms, it is
possible to define a generic dynamic process whose overhead stays sufficently low
regarding the resulting speedup.

The presented memory strides Markov model provides significant improve-
ments for data-intensive applications as shown in our experiments. Moreover
it can easily be used for monitoring inter-procedural memory accesses. But it
obviously cannot be an universal solution. It could also still be extended, for
example by deleting the paths in the graph that are not followed very often, and
so reducing the overhead induced by too many nodes in the Markov graph. How-
ever, since the room for manoeuvre is quite reduced, a smart balance between
the optimization strategy and the induced overhead must be found.

The way we implemented our optimizer could also be advantageously changed
for example by trying to avoid the necessary overhead of a function call with
parameters.

We plan to explore other optimization strategies for prefetching, but also for
other goals as dynamic data locality optimization or dynamic generation of cache
hints. The overall objective is to build a global dynamic optimization framework
where several strategies can be selected depending on the kind of monitored
memory accesses.

Hence another challenging objective is to render as transparent as possi-
ble the usage of such a framework, by including program phase detection and
classification processes guiding efficiently the locations and natures of the opti-
mizations.

Dynamic optimization can never be as efficient as static optimization while
handling static control and data structures. That is why we exclusively focus on
variable-dependent control and memory accesses where dynamic optimization is
undoubtedly a convenient answer.

ESODYP is available by request to the authors.

References

1. AMD. Opteron processor.
http://www.amd.com/us-en/Processors/ProductInformation/.

2. AMD. Software optimization guide for amd64 processors. Technical report.

3. M. Annavaram, J. M. Patel, and E. S. Davidson. Data prefetching by dependence
graph precomputation. In Proceedings of the 28th annual international symposium
on Computer architecture, pages 52–61. ACM Press, 2001.

4. J.-L. Baer and T.-F. Chen. Effective hardware-based data prefetching for high-
performance processors. IEEE Trans. Comput., 44(5):609–623, 1995.

5. V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: a transparent dynamic opti-
mization system. ACM SIGPLAN Notices, 35(5):1–12, 2000.

6. K. Beyls and E. D’Hollander. Compile-time cache hint generation for EPIC ar-
chitectures. In Proceedings of the 2nd workshop on Explicitly Parallel Instruction
Computing Architectures and Compiler Techniques, 2002.

7. D. Bruening, T. Garnett, and S. Amarasinghe. An infrastructure for adaptive
dynamic optimization. In 1st International Symposium on Code Generation and
Optimization, pages 265–276, 2003.

8. T. M. Chilimbi and M. Hirzel. Dynamic hot data stream prefetching for general-
purpose programs. In Proceedings of the ACM SIGPLAN 2002 Conference on
Programming language design and implementation, pages 199–209. ACM Press,
2002.

9. J. Collins, S. Sair, B. Calder, and D. M. Tullsen. Pointer cache assisted prefetch-
ing. In Proceedings of the 35th annual ACM/IEEE international symposium on
Microarchitecture, pages 62–73. IEEE Computer Society Press, 2002.

10. M. Crochemore and M.-F. Sagot. Handbook of Computational Chemistry, chapter
Motifs in sequences: localization and extraction. Marcel Dekker Inc., 2004.

11. G. Desoli, N. Mateev, E. Duesterwald, P. Faraboschi, and J. A. Fisher. Deli: a new
run-time control point. In 35th Annual ACM/IEEE International Symposium on
Microarchitecture, pages 257–268, December 2002.

12. Intel. Hyper-threading technology.
http://www.intel.com/technology/hyperthread/.

13. Intel. Xeon processor.
http://www.intel.com/products/processor/xeon/.

14. Intel(R). Itanium(R) 2 Processor Reference Manual for Software Development and
Optimization, chapter Optimal use of lfetch, pages 71–72.

15. D. Joseph and D. Grunwald. Prefetching using markov predictors. In IEEE Trans-
actions on Computers, Vol. 48, NO. 2, pages 121– 133, Febuary 1999.

16. D. Kim, S. Liao, P. Wang, J. del Cuvillo, X. Tian, X. Zou, D. Yeung, M. Girkar,
and J. Shen. Physical experimentation with prefetching helper threads on intel’s
hyper-threaded processors. In 2nd IEEE / ACM International Symposium on Code
Generation and Optimization, pages 27–38, 2004.

17. J. Kim, K. V. Palem, and W.-F. Wong. A framework for data prefetching using
off-line training of markovian predictors. In 20th International Conference on
Computer Design (ICCD 2002), pages 340–347, 2002.

18. J. Lu, H. Chen, R. Fu, W. Hsu, B. Othmer, P. Yew, and D. Chen. The performance
of runtime data cache prefetching in a dynamic optimization system. In 36th
Annual IEEE/ACM International Symposium on Microarchitecture, pages 180–
190, December 2003.

19. C.-K. Luk. Tolerating memory latency through software-controlled pre-execution
in simultaneous multithreading processors. In 28th annual international symposium
on Computer architecture, pages 40–51, 2001.

20. A. Roth, A. Moshovos, and G. S. Sohi. Dependence based prefetching for linked
data structures. In Proceedings of the eighth international conference on Archi-
tectural support for programming languages and operating systems, pages 115–126.
ACM Press, 1998.

21. H. Zhou, J. Flanagan, and T. Conte. Detecting global stride locality in value
streams. In Proceedings of the 30th annual international symposium on Computer
architecture, pages 324–335. ACM Press, 2003.

