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Stéphane Genaud and Choopan Rattanapoka

ICPS-LSIIT - UMR CNRS-ULP 7005
Université Louis Pasteur, Strasbourg

{genaud, rattanapoka}@icps.u-strasbg.fr

Abstract. This paper presents P2P-MPI, a middleware aimed at com-
putational grids. From the programmer point of view, P2P-MPI provides
a message-passing programming model which enables the development
of MPI applications for grids. Its originality lies in its adaptation to un-
stable environments. First, the peer-to-peer design of P2P-MPI allows
for a dynamic discovery of collaborating resources. Second, it gives the
user the possibility to adjust the robustness of an execution thanks to
an internal process replication mechanism. Finally, we measure the mid-
dleware performances on two NAS benchmarks.
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1 Introduction

Grid computing offers the perspective of solving massive computational problems
using a large number of computers. It involves sharing heterogeneous resources
located in different places, belonging to different administrative domains over a
network. When speaking of computational grids, we must distinguish between
grids involving stable resources (e.g. a supercomputer) and grids built upon
versatile resources, that is computers whose configuration or state changes fre-
quently. The latter are often referred to as desktop grids and may in general
involve any unused connected computer whose owner agrees to share its CPU.
Thus, provided some magic middleware glue, a desktop grid may be seen as
a large-scale computer cluster allowing to run parallel application traditionally
executed on parallel computers. However, the question of how we may program
such an heterogeneous cluster remains unclear. Most of the numerous difficulties
that people are trying to overcome today fall in two categories.

– Middleware. The middleware management of tens or hundreds grid nodes
is a tedious task that should be alleviated by mechanisms integrated to the
middleware itself. These can be fault diagnostics, auto-repair mechanisms,
remote update, resource scheduling, data management, etc.

– Programming model. Many projects propose a client/server (or RPC)
programming style for grid applications (e.g. JNGI [17], DIET [4] or XtremWeb
[8]). However, the message passing and data parallel programming model are
the two models traditionally used by parallel programmers.
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MPI [13] is the de-facto standard for message passing programs. Most MPI
implementations are designed for the development of highly efficient programs,
preferably on dedicated, homogeneous and stable hardware such as supercom-
puters. Some projects have developed improved algorithms for communications
in grids (MPICH-G2 [10], PACX-MPI [9], MagPIe [11] for instance) but still,
assume hardware stability. This assumption allows for a simple execution model
where the number of processes is static from the beginning to the end of the
application run1. This design means no overhead in process management but
makes fault handling difficult: one process failure causes the whole application
to fail. This constraint makes traditional MPI applications unadapted to run on
grids. Moreover, MPI applications are OS-dependent binaries which complicates
execution in highly heterogeneous environments.

If we put these constraints altogether, we believe a middleware should provide
the following features: a) self-configuration (system maintenance autonomy, dis-
covery), b) data management, c) robustness of hosted processes (fault detection
and replication), and d) abstract computing capability. The rest of the paper
shows how P2P-MPI fulfills these requirements. We first describe (section 2) the
P2P-MPI middleware through its modules, so as to understand the protocols de-
fined to gather collaborating nodes in order to form a platform suitable for a job
request. In section 3 we explain the fault-detection and replication mechanisms in
the context of message-passing programs. We finally discuss P2P-MPI behavior
in section 4, at the light of experiments carried out on two NAS benchmarks.

2 The P2P-MPI Middleware

2.1 Modules Organization

Fig. 1 depicts how P2P-MPI modules are organized in a running environment.
P2P-MPI proper parts are grayed on the figure. On top of diagram, a message-
passing parallel program uses the MPI API (a subset of the MPJ specification
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Fig. 1. P2P-MPI structure

1 Except dynamic spawning of process defined in MPI-2.
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[5]). The core behind the API implements appropriate message handling, and
relies on three other modules. The Message Passing Daemon (MPD) is respon-
sible for self-configuration, as its role is either to search for participating nodes
or to act as a gate-keeper of the local resource. The File Transfer Service (FT)
module handles the data management by transferring executable code, input and
output files between nodes. The Fault Detection Service (FD) module is neces-
sary for robustness as the application needs to be notified when nodes become
unreachable during execution.

In addition, we also rely on external pieces of software. The abstract com-
puting capability is provided by a Java Virtual Machine and the MPD module
uses JXTA [1] for self-configuration.

2.2 Discovery for An Execution Platform

In the case of desktop grids, the task of maintaining an up-to-date directory of
participating nodes is a so tedious task that it must be automated. We believe
one of the best options for this task is discovery, which has proved to work well
in the many peer-to-peer systems developed over the last years for file shar-
ing. P2P-MPI uses the discovery service of JXTA. The discovery is depicted in
JXTA as an advertisement publication mechanism. A peer looking for a partic-
ular resource posts some public advertisement (to a set of decentralized peers
called rendez-vous) and then waits for answers. The peers which discover the
advertisement directly contact the requester peer.

In P2P-MPI, we use the discovery service to find the required number of
participating nodes at each application execution request. Peers in P2P-MPI are
the MPD processes. When a user starts up the middleware it launches a MPD
process which publishes its pipe advertisement. This pipe can be seen as an open
communication channel that will be used to transmit boot-strap information.

When a user requests n processors for its application, the local MPD begins
to search for some published pipe advertisements from other MPDs. Once at
least n peers have reported their availability, it connects to the remote MPDs
via the pipe to ask for their FT and FD services ports. The remote MPD acts
as a gate-keeper in this situation and it may not return these service ports if the
resource had changed its status to unavailable in the meantime. Once enough
hosts have sent their service ports, we have a set of hosts ready to execute a
program. We call this set an execution platform since the platform lifetime is
not longer than the application execution duration.

2.3 Job Submission Scenario

We now describe the steps following a user’s job submission to a P2P-MPI grid.
The steps listed below are illustrated on Figure 2.

(1) The user must first join the grid. By invoking mpiboot, it spawns the MPD
process which makes the local node join the P2P-MPI group if it exists, or
creates it otherwise.
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Fig. 2. A submission where the submitter finds one collaborating peer

(2) The job is then submitted by invoking a run command which starts the
process rank 0 of the MPI application on local host.

(3) Discovery: the local MPD issues a search request to find other MPDs pipe
advertisements. When enough advertisements have been found, the local
MPD sends into each discovered pipe, the socket where the MPI program
can be contacted.

(4) Hand-shake: the remote peer sends its FT and FD ports directly to the
submitter’s MPI process.

(5) File transfer: program and data are downloaded from the submitter host via
the FT service.

(6) Execution Notification: once transfer is complete the FT service on remote
host notifies its MPD to execute the downloaded program.

(7) Remote executable launch: MPD executes the downloaded program to join
the execution platform.

(8) Execution preamble: all processes in the execution platform exchange their
IP addresses to construct their local communication table.

(9) Fault detection: MPI processes register in their local FD service and starts.
Then FD will exchange their heart-beat message and will notify MPI pro-
cesses if they become aware of a node failure.

3 Replication for Robustness

3.1 Replication

Though absolutely transparent for the programmer, P2P-MPI implements a
replication mechanism to increase the robustness of an execution platform. When
specifying a desired number of processors, the user can request that the system
run for each process2 an arbitrary number of copies called replicas. In practice,
it is shorter to request the same number of replicas per process, and we call this
2 Except for rank 0 process. We assume a failure on the submitter host is critical since

the user would lose the control on the application.
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Fig. 3. A message sent from logical process P0 to P1

constant the replication degree. In the following we name a “usual” MPI process
a logical process, noted Pi when it has rank i in the application. A logical process
Pi is thus implemented by one or several replicas, noted P 0

i , . . . , Pn
i . The replicas

are run in parallel on different hosts since the goal is to allow the continuation
of the execution even if one host fails.

Of course, replicas behavior must be coordinated to insure that the communi-
cation scheme is kept coherent with the semantics of the original MPI program.
Ad hoc protocols have been proposed, and our solution follows the active repli-
cation [6] strategy in which all replicas of the destination group receive the sent
message except that we impose coordination on the sender side to limit the
number of sent messages.

In each logical process, one replica is elected as master of the group for
sending. Fig. 3 illustrates a send instruction from P0 to P1 where replica P 0

0 is
assigned the master’s role. When a replica reaches a send instruction, two cases
arise depending on the replica’s status:

– if it is the master, it sends the message to all processes in the destination
logical process. Once the message is sent, it notifies the other replicas in its
logical process to indicate that the message has been correctly transmitted.

– if the replica is not the master, it first looks up a journal containing the
identifiers of messages sent so far (log on Fig. 3) to know if the message has
already been sent by the master. If it has already been sent, the replica just
goes on with subsequent instructions. If not, the message to be sent is stored
into a backup table and the execution continues. (Execution only stops in a
waiting state on a receive instruction.) When a replica receives a commit, it
writes the message identifier in its log and if the message has been stored,
removes it from its backup table.

3.2 Fault Detection and Recovery

To become effective the replication mechanism needs to be notified of processes
failures. The problem of failure detection has received much attention in the
literature and we have adopted the gossip-style protocol described by [14] for
its scalability. In this model, failure detectors are distributed and reside at each
host on the network. Each detector maintains a table with one entry per detec-
tor known to it. This entry includes a counter called heartbeat counter. During
execution, each detector randomly picks a distant detector and sends it its ta-
ble after incrementing its heartbeat counter. The receiving failure detector will
merge its local table with the received table and adopts the maximum heartbeat
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counter for each entry. If the heartbeat counter for some entry has not increased
after a certain time-out, the corresponding host is suspected to be down.

When the local instance of the MPI program is notified of a node failure by
its FD service, it marks the node as faulty and no more messages will be sent to
it. If the faulty node hosts a master process then a new master is elected in the
logical process. Once elected, it sends all messages left in its backup table.

4 Experiments

4.1 Experimental Context

Experiment Setup. Though we claim P2P-MPI is designed for heterogeneous
environments, a precise assessment of its behavior in terms of performance is
difficult because we would have to define representative configurations for which
we can reproduce the experiments. Before that, we measure the gap between
P2P-MPI and some reference MPI implementations in an homogeneous envi-
ronment so as to identify potential weaknesses. The hardware platform used is
a student computers room (24 Intel P4 3GHz, 512MB RAM, 100 Mbps Eth-
ernet, Linux kernel 2.6.10). We compare P2P-MPI using java J2SE-5.0, JXTA
2.3.3 to MPICH-1.2.6 (p4 device) and LAM/MPI-7.1.1 (both compiled with
gcc/g77-3.4.3). We have chosen two test programs with opposite characteristics
from the NAS benchmarks [2] (NPB3.2)3. The first one is IS (Integer Sorting)
which involves a lot of communications since a sequence of one MPI Allreduce,
MPI Alltoall and MPI Alltoallv occurs at each iteration. The second program
is EP (Embarrassingly Parallel). It does independent computations with a final
collective communication. Thus, this problem is closer to the class of applications
usually deployed on computational grids.

Expected Behavior. It is expected that our prototype achieves its goals at the
expenses of an overhead incurred by several factors. First the robustness requires
extra-communications: regular heart-beats are exchanged, and the number of
message copies increase linearly with the replication degree as can be seen on Fig.
3. Secondly, compared to fine-tuned optimizations of communications of MPI
implementation (e.g. in MPICH-1.2.6 [16]), P2P-MPI has simpler optimizations
(e.g. binomial trees). Last, the use of a virtual machine (java) instead of processor
native code leads to slower computations.

4.2 Performances

Benchmarks. Fig. 4 plots results for benchmarks IS (left) and EP (right) with
replication degree 1. We have kept the same timers as in the original benchmarks.
Values plotted are the average total execution time. For each benchmark, we
have chosen two problem sizes (called class A and B) with a varying number of
processors. Note that IS requires that the number of processors be a power of
two and we could not go beyond 16 PCs.
3 We have translated IS and EP in java for P2P-MPI from C and Fortran respectively.
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Fig. 4. Comparison of MPI implementations performance for IS (left) and EP (right)

For IS, P2P-MPI shows an almost as good performance as LAM/MPI up to
16 processors. The heart-beat messages seem to have a negligible effect on overall
communication times. Surprisingly, MPICH-1.2.6 is significantly slower on this
platform despite the sophisticated optimization of collective communications
(e.g. uses four different algorithms depending on message size for MPI Alltoall).
It appears that the MPI Alltoallv instruction is responsible for most of the
communication time because it has not been optimized as well as the other
collective operations.

The EP benchmark clearly shows that P2P-MPI is slower for computations
because it uses Java. In this test, we are always twice as slow as EP programs
using Fortran. EP does independent computations with a final set of three
MPI Allreduce communications to exchange results in short messages of con-
stant size. When the number of processors increases, the share of computations
assigned to each processor decreases, which makes the P2P-MPI performance
curve tends to approach LAM and MPICH ones.

Replication Overhead. Since replication multiplies communications, the EP test
shows very little difference with or without replication, and we only report mea-
sures for IS. Figure 5 shows the performances of P2P-MPI for IS when each
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logical process has one to four replicas. For example, for curve “Class B, 8
processors”, 3 replicas per logical process means 24 processors were involved.
We have limited the number of logical processes so that we have at most one
replica per processor to avoid load-imbalance or communications bottlenecks. As
expected, the figure shows a linear increase of execution time with the replica-
tion degree, with a slope depending on the number of processors and messages
sizes.

5 Related Work

Since the deployment of message passing applications in unstable environments is
challenging, fault-tolerance of MPI has been well studied. Most works are devoted
to check-point and restart methods (e.g. [3, 7, 12]) in which the application is
restarted from a given recorded state. The replication approach is an alternative
which does not require any specific reliable resource to store system states.

The work closest to ours is the P3 project [15], which share common charac-
teristics with P2P-MPI. First, JXTA discovery is also used for self-configuration:
hosts entities automatically register in a peer group of workers and accept work
requests according to the resource owner policy. Secondly, both a master-worker
and message passing paradigm are proposed. Unlike P2P-MPI, P3 also uses
JXTA for its communications. This allows to communicate without consider-
ation of the underlying network constraints (e.g. firewalls) but incurs perfor-
mance overhead when the logical route established goes through several peers.
In addition, P3 has no integrated fault-tolerance mechanism for message passing
programs.

6 Conclusion and Future Work

We have described in this paper the design of a grid middleware offering a
message-passing programming model. The middleware integrates fault-detection
and replication mechanisms in order to increase robustness of applications execu-
tion. Two NAS parallel benchmarks with opposite behavior have been run on a
small configuration and compared with performances obtained with LAM/MPI
and MPICH. The results show good performance and are encouraging for exper-
iments at large scale on the opening Grid5000 testbed4 to study the scalability
of the system. In-depth study of replication and robustness is also under work.
Next developments should also concern strategies for mapping processes onto re-
sources. Though the peer-to-peer model abstracts the network topology, we could
use some network metrics (e.g. ping time) to choose among available resources.
Also, the mapping of replicas could be based on information about resources
capability and reliability.

4 http://www.grid5000.org

http://www.grid5000.org
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