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Introduction

Dynamic optimization is an emerging field because there is only so much static
optimizations can do. Already, profiling schemes or programmer directives are used
to help the compiler because, as programs get bigger and more complex, the compiler
is having more and more trouble understanding how to optimize the code.

In the word dynamic, we will note a sense of Just-in-time compilation [2, 10].
The idea is to wait for the execution of the program, try to understand where the
bottlenecks are and optimize them. The optimization can be done by modifying
the instruction code, the data layout or any other element that is involved in the
execution of a program.

Other Dynamic optimizers have already been implemented [11, 4, 6, 9, 8, 12,
3, 14], but none, to our knowledge, have really tried to tackle the problem of re-
allocating memory. It is true that our methods will use more memory but, as all
optimization schemes, we are trying to reduce one aspect of a program, even if this
means reducing the performance of another aspect. Thus, we might be using more
memory, but since we are looking for a speed-up, it is not always a problem. Once we
have a speed-up, we can then decide if the cost in terms of memory use is acceptable
for a certain acceleration or not.

The idea, that we will be working with, is that many data accesses sequences
cause data-cache misses because the stride incurred is too great compared to the size
of a line of cache. One possible solution is to extract the load(s) that cause the cache-
misses and store the data in a data-buffer. Then when the data is accessed, we will
use our own data-buffer where the data has been reorganized. In a certain sense, we
will be creating a new kind of buffer. A data-cache for data-caches, something that
we could call a L0 cache (eventhough, our solution is entirely software). We will be
working with the Itanium-2 processor [7] because of it’s EPIC infrastructure. The
use of bundles is a practical low-level parallelism that we will try to use to achieve
an even greater speed-up.

One of the challenges when working in the dynamic field is to be able to find
the function that we want to modify. This is done by using the ELF Format [1].
Once the function is found, we will probably have to optimize the code. This means
editing the text-segment of a program while it is writing. We will present how this
is done.

This technical report will start by explaining those two points before handling
two simple examples with two different versions of our model. For the moment, this
model is still very simple and not yet totally functionnal but the early results make
us feel that there is a good chance that, in the end, we will have a general model
able to optimize a lot of different kinds of applications.
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Chapter 1

Related work

1.1 Dynamic optimizers

1.1.1 Dynamo

Hewlett-Packard presented in 2000 an optimizer called Dynamo (Dynamic Optimi-
sation) [4]. Its principal trait was that it was transparent to the user. The meaning
of transparent lies in the fact that the programmer did not have to modify his/her
code to use Dynamo. The user only had to specify an option while compiling the
program to include the optimizer.

To briefly explain what this system does, we will just say that it interprets the
code during execution and, when it notices a hot-trace, it will extract the trace,
optimize it by creating a new block of code, and use the new version to achieve a
speed-up. The new code is put into a shared-memory block.

A technique was put up to flush the memory to reduce the total memory needed
for the optimizer. The authors based their model on the assumption that a program
is divided into a number of phases and, each phase, has it’s own behaviour. If
Dynamo is creating a lot of new versions of code, it concludes that it is entering
a new phase. Therefore, the old blocks of code that were created previously will
probably not be used anymore. A flush is then made to reduce the memory use.

1.1.2 Deli

In 2002, another team from Hewlett-Packard presented a project named DELI (Dy-
namic Execution Layer Interface) [6].

This system had two execution versions:

• A transparent version that makes this model look a lot like Dynamo.

• A second version that is actually an API (less than 20 functions) that enables
the user to define and modify the basic behaviour of the model.

The API version transforms the optimizer into a more powerful system. It is
capable of running on a PocketPc by optimizing directly the Operating System,
but also by modifying dynamically the code. Suppose the processor can execute an
assembly instruction faster using a specific one that the compiler does not generate.
Using the DELI model, we can change the instruction using a just-in-time technique.
The model will check the instructions sent to the processor and switch the instruction
that can be optimized. This is only one example of the capabilities of the DELI
system.
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1.1.3 Adore

Though the Dynamo and DELI systems are very good models, they are especially
instruction optimizers and do not try to optimize directly the data or the data-
cache. ADORE (ADaptive Object code REoptimization) [11] is a system that inserts
prefetch instructions into the source code to achieve a speed-up. It is also a dynamic
system that uses the same ideas than Dynamo since it also interprets the executed
code and, when it notices that the execution is remaining in the same code segment,
it will try to optimize it, store the new version in a shared memory block.

The major differences between ADORE and Dynamo are:

• Dynamo uses a certain number of counters (instrumenting the code) to know
if a zone is being heavily used. ADORE uses the hardware counters that are
in the Itanium processor to know the program counter position, the number
of cache-misses in this zone, etc;

• Dynamo optimizes instructions, whereas the ADORE system handles memory
issues. It inserts the prefetch instruction lfetch in loop nests, which will reduce
the program’s cache misses.

• Dynamo will try to optimize a lot of portions of code to achieve a speed-
up. ADORE ’s overhead being fairly low, it can concentrate it’s efforts on the
portions of code that can really be optimized.

• Dynamo can run in theory, on any kind of architecture. ADORE can only be
executed and tested on the Itanium processor since it uses hardware counters
and the lfetch isntruction.

Eventhough their system handles only loop nests, it is still a good automatic
system. In the different programs they tested, they achieve a 20% speed-up while
compiled at the third optimization level (compilation option -O3). The drawback
being that it depends entirely on the Itanium infrastructure.

1.1.4 Another dynamic system under Windows

In 2002, Chilimbi and Hirzel [5] present a dynamic prefetching mechanism that uses
two existing programs: Vulcan and Sequitur [13, 14]. It’s with these two tools that
they are capable of implementing a system capable of executing profitable prefetches.

Vulcan is a tool capable of modifying binary code even in the case of multi-
threaded programes.

Sequitur lets us study the data accesses and extract patterns by constructing a
grammar. It’s by using both tools that they are capable of identifying interesting
loads and inserting the prefetches.

Their system is not totally portable since the tool Vulcan can only work under
the operating system Windows.



Chapter 2

ELF, Itanium, Modifying code
dynamically

In this chapter, we will present the ELF Format and the Itanium processor. Of
course, only the aspects in regard to the work done will be dealt with in detail.

2.1 ELF Format

The executable and linking format (ELF) was originally developed by Unix System
Laboratories.

There are three main types of ELF files: executable, relocatable, and shared
object files. These file types hold the code, data, and information about the program
that the operating system and/or link editor need. The three types of files are
summarized as follows:

* An executable file supplies information necessary for the operating system
to create a process image suitable for executing the code and accessing the data
contained within the file.

* A relocatable file describes how it should be linked with other object files to
create an executable file or shared library.

* A shared object file contains information needed in both static and dynamic
linking.

The ELF (Executable and Linking Format) Header is the only section in the
binary code that has a fixed position. The other sections are indexed by the ELF
Header. In a more general view, the ELF Header is a description section, giving the
type of the object file (relocatable, executable, shared or core). But it is also an
index table, giving the program’s layout and the first execution instruction. All the
other sections can be put in any order and may not even be present.

A more detailed view of the ELF Format can be found at [1].
Before continuing the presentation with the Itanium processor, we will just ex-

plain why the comprehension of the ELF Format is important for this work. We are
trying to modify and optimize code dynamically, this means that we must know the
basic structure of the binary code. Among other things, the ELF Format gives us
the position of each function and their size.

2.2 Itanium

The Itanium processor [7] uses the instruction set called EPIC. The instructions
are packed into bundles of three instructions. With certain restrictions on which
instructions can be executed in the same bundle there is a possibility of executing
the 3 instructions of the bundle at the same time. The execution units, the scheduler
and the EPIC instruction set lets the Itanium execute up to 20 instructions in a single
cycle.
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instruction slot 2 instruction slot 1 instruction slot 0 template

127 87 86 46  45 5   4 0

41 4141 5

Figure 2.1: Bundle format under the Itanium processor. Three instructions, each
41 bits long, and a 5 bit template

Instruction type Description Execution Unit Type

A Integer ALU I-unit or M-unit
I Non-ALU Integer I-unit
M Memory M-unit
F Floating-point F-unit
B Branch B-unit

L+X Extended I-Unit or B-unit

Table 2.1: Possible instruction types for the EPIC instruction set used in the Itanium
processor

Of course, the Itanium-2 processor is a more complex processor. The instructions
are still bundled together but there are more execution units, making it possible to
execute more instructions in a same cycle. This section will present in more detail
the itanium bundle, the general format of a bundle and of an instruction. Then we
will explain the existence of templates for each bundle and the IP-relative branches
used in jumps and calls.

2.2.1 Bundles

An instruction must be coded inside a bundle when using the Itanium processor.
Each bundle is made of three instructions and, when no dependences are involved,
the three instructions will be issued and executed at the same time. This whole
section is a general view of the third part of Intel Itanium Architecture Software
Developer’s Manual (in no way do we suppose that this section covers the whole
part of the manual, it is only a general presentation).

General format

The general format of a bundle is given by the figure 2.1. Each bundle is made of
16 bytes (thus 128 bits) and are divided in four parts. The first three parts are the
three instructions (each formed of 41 bits) of the bundle and the last part is the
template (last 5 bits).

It will be noted, from the programmer’s point of view, the first byte contains
the 5-bit template and 3 bits of the first instruction, the second byte contains the
8 next bits of the first instruction and so forth. A little bit of reflection is needed
before tackling and trying to interpret a bundle using general C programmation.

2.2.2 An instruction code

Each instruction is categorized into one of six types. Table 2.1 shows the six different
types. Each instruction is defined as 41 bits in the bundle. Figure 2.2 shows the
basic instruction format. The basic instruction structure is:

1. The opcode is what defines exactly what is the operation that is going to
be done. We define a very large definition of opcode since we include the
possibility of hints, the possibility of a sign bit for the immediate (if there is
one).



qpr1/f1/immr2/f2/immr3/f3/immopcode

677714

Figure 2.2: Instruction format under the Itanium processor. Generally the instruc-
tions use this format. There are, of course, exceptions.

1d M−Unit F−Unit B−Unit

Template

9

1

0

M−Unit

M−Unit

Slot 0 Slot 1 Slot 2

M−Unit M−Unit

I−Unit

I−Unit I−Unit

I−Unit

I−Unit

M−Unit M−Unit I−Unitb

Figure 2.3: A few templates to show the different possibilities. A double vertical
lign represents a stop. The values of the template are in the hexadecimal base.

2. The next three portions are either register numbers (integer or floating-point)
or a constant (also known as an immediate). There are almost every size of
immediates with the general size being 8 or 22.

3. The last 6 bits is the qp portion. This is the predicate for this instruction.
Predicates are used to define if this instruction is to be executed or not. If
qp = 0 then the instruction is always executed, otherwise it depends whether
the predicate is true or false. This is done using a compare instruction.

To know of which type the instruction is, the processor uses the template portion
of the bundle and the opcode of the instruction. Once again, this is the general
format, there are exceptions and the Itanium manual defines each instruction in
detail.

Templates

The template lets the processor know which type of instructions are present in the
bundle but it also gives us the stops that can be present in the bundle. The template
is defined using 5 bits, thus defining 32 possible combinations of 3 instructions.
There are actually only 24 combinations since 8 combinations are reserved. And, if
we ignore the stops, we only have 9 different kinds of bundles.

We will now take the time to explain what is a stop. Since the itanium processor
executes the instructions of each bundle in a parallel manner, it is possible that
there is a data-dependence involved. The stop permits to put two instructions that
depend on each other (one MUST be executed before the second one) in the same
bundle.



Stops also have a more general use. Since the scheduler can schedule more than
one bundle in every cycle, data-dependencies can exist between different bundles.
Stops are also used to permit the execution of the first ones before executing the
second one. Thus, eliminating any possible conflict.

Figure 2.3 shows a few templates that are possible.

IP-relative branches

One important detail that we will need to keep in mind is the way jumps and calls
are designed in the Itanium processor. Jumps and calls are generally IP-relative
jumps and calls; we will call offset the value of the jump.

This means that the destination calculation depends on the instruction address.
One important thing to note is that the offset in the instruction is the number of
bundles (and not bytes in the text segment) we must jump.

For example, if the jump has an offset of 3, the program will skip 2 bundles and
resume execution at the third bundle. Another example is using an offset of 0 which
will define a infinite loop.

2.3 Modifying code dynamically

Now that we have presented how to find a function and how the instructions are
coded on the Itanium processor, we will present a simple example of modifying
a function. This was actually the first implementation showing that modifying
dynamically code is possible. We could call it Version 0, the different low-level
mechanisms that have to be put in place to make the whole system work should be
self-explanatory.

We will not however show the source-code but will only show the general idea of
the process.

2.3.1 The original example

Let us suppose that we have the function given by the table 2.2.

alloc r34=ar.pfs,5,3,0
void ex() addl r35=88,r1
{ mov r33=b0
int a; mov r36=4
a = 4; ld8 r35=[r35]
printf(”a: %d”,a); br.call.sptk.many b0= init+0x170
} mov.i ar.pfs=r34

mov b0=r33
br.ret.sptk.many b0

Table 2.2: A simple example and its associated assembly code. For clarity, the
bundles have been taken out, as have been the stops (represented by ; ;).

What we will be doing is modifying this function so that the a=4 becomes a=6.
We will suppose that we know which function to modify (only the name).

Therefore, the Algorithm 1 gives the general view of what is done. We can see
that it is with the ELF Format that we will be able to get the address of the function
in memory. Then we have a known problem, it is of common knowledge that the
text segment (the code portion of a process’ memory) is a read-only segment. How
can we then modify it?

• The text segment of a process’ memory is allocated using the function mmap.
The protection flag (read, write and execute) can be modified by the function



0a 20 19 00 00 24

nop.i 0
ld8 r35 = [r35]
mov r36 = 6;;

30 02 8c 30 20 00
00 00 04 0000 00 04 00

30  02 8c 30 20 00
0a 20 11 00 00 24

ld8 r35 = [r35]
nop.i      0

mov r36 = 4;;

Original Bundle: Assembler code: New assembler: New Bundle:

Figure 2.4: Binary instruction change. We show a add instruction in it’s binary form
(in the hexadecimal base), before and after the change. There is only one change
between the two bundles and we have put in bold.

mprotect. The simplest solution is to unprotect the whole code-segment and
then to reprotect it. Both functions are in the C library and have detailed man
pages so we will not explain more than just giving their prototypes:

1. void * mmap(void *start, size t length, int prot , int flags, int fd, off t
offset);

2. int mprotect(const void *addr, size t len, int prot);

Stop execution;

Open binary file;

Read the ELF Header and locate the ex function;

Let fct be the address of the function ex ;

Let bund be the address of the bundle to change;

Take off the write protection for the function fct ;
Modify the bundle bund, the instruction mov r36=4 will become mov r36=6;

Put back the write protection fct ;
Resume execution;

Algorithm 1: General algorithm

Let us explain a little bit more in detail the various steps of the algorithm:

• Stop the execution: This can be done by either creating a separate thread that
halts the execution of the main thread or, more simply, just adding a function
call to the Dynamic Optimizer at the beginning of the main;

• Read the ELF Header and locate ex function: using the documentation on the
ELF Header, this stage is just a traversal of a data structure. Finding the
name of the function is just a question of parsing what is called the String
Table;

• Take off the write protection: As it has been said, if we know the size of
the executable file, we can use the function mprotect to change the write
protection;

• Modify the bundle: This is just a question of finding the assembly instruction
that we want to change. Figure 2.4 shows how the change is done.

• Resume the execution: Either the thread is terminated or the function returns.



Chapter 3

General overview

This chapter is a general overview of the project and of the purpose of the work
done. We will explain the way the project has been started and the philosophy that
was used to make the model more and more complicated and thus more general.
Finally we will show two examples of programs that can be optimized with the
current model.

3.1 From simple to more complex

When the project was started, it was not sure if it was feasible or even realistic.
The solution for the implementation of such a project is to start with the simplest
example, see if we can optimize it and move to a more complex example. Ideally,
the second solution must englobe the first solution, trying to keep the speed-up
unchanged.

Of course, more complex the solution, more chances are that the model will have
a higher overhead, thus reducing the speed-up.

3.2 Presentation of the two examples

3.2.1 First example

The first model was capable of optimizing a simple loop nest that exists in some
real-world applications. Figure 3.1 is the code source of the first example that was
optimized using a Dynamic Optimization scheme.

We will briefly comment the choice of the example. First of all, the function has
an instruction generating a lot of cache-misses. The load that is required to retrieve
the data t[k][j] is going to practically always produce a cache-miss. This, of course,
is logical if we suppose that the array is allocated using the C standard (in the order
of rows).

long ex1(int **t, int m, int n, int o)
{
long res = 0;
int i,j,k;
for(i=0;i¡m;i++)

for(j=0;j¡n;j++)
for(k=0;k¡o;k++)

res += t[k][j];
return res;
}

Figure 3.1: The first example: a nested-loop causing heavy cache-misses.
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List ex2(long key)
{
List tmp = main list;

while(tmp)
{
if(tmp-¿key == key)

return tmp;
tmp = tmp-¿next;
}

return NULL;
}

Figure 3.2: The second example: a link-list traversal

Next, the values of m,n and o are not known at compile time and, since they
can influence the choice of optimizing or not (will the initial overhead be covered by
the ulterior speed-up?), only a dynamic solution can be used.

It is true however, that this is only a test example. An actual function coded this
way has no real meaning, since a single traversal of the array, and in the right order,
multiplied by m would be much quicker. Note, however, that the external loop only
simulates successive calls to the function. A simple modification in the first model
would be able to handle such a case. We have kept this version for reasons of clarity.

3.2.2 Second example

Probably as classic as the first example, a key search in a link-list structure is by
far a good example to try to optimize. This example, that can be seen with figure
3.2, is however, more complicated because there are now two loads that we have to
optimize: tmp-¿key and tmp-¿next. This example is already more complicated and
it will be shown that the first model is not capable of taking care of it. However,
the second model will be able to optimize it and, at the same time, handle the first
example too.



Chapter 4

Version 1

In this chapter, we will present the first version of the Dynamic Optimization
model. It is important to understand this model to be able to fully grasp the second
one. This chapter (and the next one) are both written the same way. First, we will
present some assumptions concerning the properties of the data access sequences.
Next, we will present the model and how it works on a simple example. Finally, we
will show a few implementation issues and a few results.

4.1 Assumptions for the data accesses

For the first model, that will only work on the first example, the assumptions are:

1. The data structure is a read-only data structure in all the scope of our dy-
namic code transformation.

2. The data sequence is always the same (there is no change in the order)

3. The data accesses are in a nested-loop, the outer loop determining when we
restart the sequence

These two assumptions are very strict and, we will later show how we can try
to make them more flexible. Once again, if the model is not able to optimize this
example, there is almost no reason to try to complicate it, since the overhead will
be even worse, thus giving us an even bigger speed-down.

4.2 Presentation of the model

All the assumptions simplify our model because it is then possible to monitor (and
copy) the data in the first iteration of the external loop and then we will know
exactly what will be accessed during the rest of the loop nest.

This is the building block of the first model.
To be able to model the data accessed, we then suppose we have a buffer large

enough to copy all the data. Once again, these suppositions are made to simplify the
model at an extreme to be able to determine whether it is worthwhile to continue.

Algorithm 2 shows the idea behind the first version. We can see that it is rela-
tively easy and straightforward. The beginning is the same as in the first algorithm.
We will not discuss in this report how we know which bundle is interesting or needs
to be optimized (we could suppose a profiling scheme was used), this will be the
main interest of future works.

Since we are going to unroll a loop nest, the resulting function size will be greater
than originally. This means we cannot just leave the function in place (otherwise
we would write on the next function that is in the binary file). Figure 4.1 shows
the problem. The adopted solution is to copy the function to a function buffer and
change the first bundle of the original function into an unconditionnal jump.

12



Stop execution;

Open binary file;

Read the ELF Header and locate theex function;

Let fct be the address of the function ex ;

Let bund be the address of the load that causes cache-misses;

Copy fct to the function buffer;

Modify the nested loop containing bund so that the first iteration of the external loop is

extracted. The first iteration will be used to copy the data, the other iterations will use the

copied data instead of the original data. Modify the IP-relative jumps;

Take off the write protection for the function fct ;
Change the first bundle of fct into an unconditional jump to the modified function;

Put back the write protection fct ;
Resume execution;

Algorithm 2: First version algorithm
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Function 1

Function 3

Function 4

jump

Function 2
New

Function 1

Function 3

Function 4

Function 2

Function 1

Function 3

Function 4

Function 2

Original With a jump

Function 2 is bigger now, if we do not
move it, we will lose parts of function 3

Without a jump

Figure 4.1: Function overflow. From left to right, original function layout in the
binary file, if we add instructions to function 2, it will extend onto the third function
(thus erasing parts of function 3), a good solution: using a jump.

This has a considerable advantage: if, for any reason, we would want to undo
the optimization, a simple copy of the original bundle will reset the function.

Once we have copied the code of the function, we must now find a way to copy
the original data. The most important idea to be able to this very quickly is to
use the assembly instruction st8 [r31] = r14,8. We suppose r14 is the register
containing the data to store (the data that causes heavy cache-misses), and r31 the
register that contains the current address to the data buffer. The 8 at the end of
the instruction instructs the processor to increment the value of r31 by 8 after the
execution of the instruction, thus positionning r31 to the next free position in the
buffer array. Using this instruction, we only have to initialize r31 to the beginning
of the data-buffer. If that is done, this unique instruction is sufficient to copy the
whole data sequence.

The last remark for this algorithm is the modification of the IP-relative jumps.
There are two categories of jumps when moving the function in memory. Function
calls also use IP-relative branches so any call to printf for example needs to be
modified since we have moved the bundle containing the jump. The second category



Original code in C Original code First iteration Other iterations

int ex(int *t,int m, int n) mov r8=r0;;
{ mov r15=r0;;
int i,j,res=0; cmp4.lt p6,p7=r8,r33;;

(p07) br.ret.dptk.many b0;;
for(j=0;j¡m;j++) sxt4 r14=r15;;

shladd r14=r14,2,r32;;
ld4 r14=[r14];;

for(i=0;i¡n;i++) st4 [r28] = r14,4;; ld4 r14 = [r31],4;;
add r8=r8,r14

res += t[i]; adds r15=1,r15;;
cmp4.lt p6,p7=r15,r33

return res; (p06) br.cond.dptk.few 4000000000000630 ¡ex+0x20¿
} br.ret.sptk.many b0;;

Figure 4.2: A loop nest example. The bold instruction is the load that we have to
optimize. We have taken out the nop instructions for clarity. If there is no vertical
separtion, that means the instruction is the same for the different versions.

consists of jumps that jump over the modified section, the jumps must take into
account the new distance to their destination.

The only real technique is to parse the function and check each jump, this will
be one of the bottlenecks of the model, especially if the function that is treated is
huge.

4.3 Example

To show exactly how the model works we are going to show how it reacts during
a simple example. Figure 4.2 shows a simple portion of assembly code that sums
the elements of an array. We use a predicate to test the result of the compare. Of
course, there are multiple ways of programming a loop next in assembly code.

More and more compilers, and that includes the Itanium processor, have tech-
niques to handle correctly and efficiently these kind of problems. The example we
give is an understandable version given by the gcc compiler using the O1 optimiza-
tion level. We have kept this one because of its relatively easy assembly code.

The assembly code is divided in three colums. On the left is the original assembly
code, in the middle the first iteration of the external loop and, on the right, the
assembly code for the next iterations. If we look more closely, we see that all we
have to do to put this optimization in place is to:

1. Find the loop nest code that contains the data-cache miss instruction

2. Copy the beginning of the function before this loop-nest

3. Copy a first iteration of the loop-nest without the external loop jump

4. Add a st4 [r28] = r14,4 instruction after the load

5. Copy the loop nest code for the other iterations

6. Copy the rest of the function

7. Add an unconditionnal jump to the new function



Original assembly code New assembly code

ld8 r14 = [r14] ;;
st8 r31 = r14,8
nop.i

ld8 r14 = [r14];; add r14 = r14,r35
add r14 = r14,r34 nop.m 0
nop.i 0 nop.i 0

Figure 4.3: Instruction dependence in a loop. On the left the original bundle, on
the right the load is extracted and put before with a store. The ; ; represents a stop.

4.4 Implementation issues

There are a few implementation issues that need to be resolved to have a fully
working version.

4.4.1 Finding the loop nest code and extracting the first iteration

This is not always as easy as it sounds. As we have already stated in the previous
section, depending on the compiler/processor, there are different ways to implement
and program a loop nest in assembly code. For example, the Itanium processor has
a system where the loop bundle counter is in a special register, that way, when there
is a loop jump, the processor internally decrements the counter.

If this is the solution used, it is difficult to extract the loop nest (but not im-
possible). A solution would require to find the instruction that sets the counter and
substract 1 prior to the loop nest execution.

Since we were only working on a prototype, the model is not able to do this.
Furthermore, we want a more general model so this problem is actually irrelevant
as we move to the second version. But it is interesting to note that extracting an
iteration is not always as easy as it might seem.

4.4.2 Dependence in the bundle

If we look more closely to a bundle, as we have in figure 4.3 (on the left), we can
see that adding a store after this load is not as easy as it might seem. There is a
data dependence between the load and the add instructions. This means that if we
simply add after this bundle another bundle containing the store instruction, it will
store the data of the array, to which we have added something.

We have supposed that the data loaded from the array is always the same, not
what we subsequently add to it. This means that we cannot just add the store
instruction after the bundle. The contents of the register r34 can differ between
iterations.

What we need to do is extract the load and put it in a bundle before with the
store, taking care of setting a stop between the two (in the figure on the right).

Of course, it is also possible for the load to be dependent of an instruction in
the current bundle, as we can see in the figure 4.4. In this second example, the load
does not need to be extracted because we can insert the store in the next bundle.

These two simple examples show that it is not always easy to know how to insert
the store instruction. A special care must be taken to make sure that we do not
change the semantic of the program.

4.5 Results

The results of this model on the example in figure 3.1 was surprisingly good. We
knew before hand that any model that tries to relocate data and optimize data-cache



Original assembly code New assembly code

add r14 = 24,r15;; add r14 = 24,r15;;
ld8 r14 = [r14] ld8 r14 = [r14]
nop.i 0;; nop.i 0;;

st8 r31 = r14,8;;
nop.i
nop.i

Figure 4.4: Instruction dependence in a loop, version 2. This time, the store can be
easily insterted in the next bundle of the code.

miss had to get good results on such an unfriendly case for the cache-hit problem.
Our tests showed that for almost any values of m,n and o we got more that a 50%
speed-up. In some cases, we got up to 78%.

Eventhough we could make a table with the results, we think it is useless since
any value of the parameters give the same results. This is true regardless of the size
of the array used. However, we used the word almost since it is impossible to test
every possible values of m, n and o.

What has to be remembered from this first version is that it is a very simple
model which is able to find loops and optimize a load by copying the data accessed
during the initial loop and then use the buffer cache instead of the initial data.
This first prototype was implemented to prove that such a technique can with the
speed-up that was obtained, we believed that we could complicate the model to be
able to cover more complicated cases. This lead us to the version 2 of the model.

The proof of correctness of the model can easily be obtained with the assumptions
that were enumerated. Indeed, we admit that our assumptions in section 4.1 on page
12 are very restrictive. The data is a read-only data structure, this means that
once copied, we know that there will be no change, hence no updates will be needed.
The fact that the data sequence is always the same means that by knowing where
is the start, we can easily reset the model so that it can load the first data in the
sequence. And, finally, the load is in a loop nest, this means we know where the
data accesses are going to cycle.



Chapter 5

Version 2

The second version of the model was created in such a way that it is able to
optimize the first example and can handle examples the first model cannot. It can
be defined as being a more general model that the first version but, at the same
time, maintaining a good speed-up on the first example.

This chapter will have the same organization as the previous one. We will,
however, take the time to show and explain the differences between the two models.

5.1 Assumptions for the data accesses

This second version is more complicated than the first model. This also means that
it is capable of handling more complex examples. This model will also be able to
handle the first version and almost as well.

These changes in the model reduce the assumptions that were put up for the
first version, these are the new assumptions:

1. The data structure is a read-only data structure.

2. The data sequence has a certain redundancy that will be explained later.

As we can see, the assumptions are simplified. The read-only is kept since
it reduces the number of checks of data-consistency to a minimum. The second
assumption has to be detailed. Let us try to explain what we mean by a certain
redundancy.

This second model is still relatively restrictive on the kind of data accesses that
can be modeled. After being able to handle array accesses in a loop-nest code, we
wanted to tackle the link-list problem. The second example, given in figure 3.2,
show a basic search for an element in a link-list depending of the key.

This time, there is no proof or hint telling us when we are going to be restarting
the traversal of the data structure. We will use the address of the first element as
a reference to know when we are restarting the traversal. We suppose the link-list
is a simple link-list with no cycles. The fact that we say that the data structure
is read-only means that nothing in the link-list changes (not the key values, the
element values or the links).

5.2 Presentation of the model

Knowing that the data-structure is read-only helps us to create a good model for
this problem. We will use a finite automaton to define the model and know when
to restart the data sequence. Figure 5.1 shows the model as a simple state machine.
The initialization phase is to have the first address as a reference.

The model will optimize the load instruction. We will leave the calculation of the
address intact, that way we can compare the current address with the first address.
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New data address

Initialization

Do we have the data?

Load from buffer Load from memory
Store in buffer

Modify counters

Input data

Automaton

YES NO

Figure 5.1: Finite state machine for the second model. The box on the top is the
data that is fed to the state machine.



Is it the reference address?

Answer yes Answer no

Reset counter Is counter < max elements?

yes
no

yes no

Figure 5.2: Finite automaton to answer the question ”Do we have the data?”

The two big questions that we will have to consider to are Do we have the data?
but even more important is Where is that data?. These two questions will remain
the corner stone of the next versions that will be implemented. Not only must we
be able to answer them but we have to do it as fast as possible, since we are working
at the same time as the program. We do not have the luxury of time that static
optimizers have.

5.2.1 The Do we have the data? dilemna

The figure 5.1 has a ”black box” in the middle. The question Do we have the data?
is where all the problem resides. If we can answer that question efficiently and give
the data requested without a cache-miss, we will obtain a speed-up. In our case, we
use 2 counters and 2 pointers to answer the problem.

Luckily, with the assumptions for this model, the two questions are quite easy
to answer. Do we have the data? can easily be answered using two counter and an
address reference. Figure 5.2 shows the automaton that gives us the answer to that
question. As we have already said, we suppose the initialization phase has set up
the reference address and put the counters to zero.

Then, once we have the answer to the question, we must take action accordingly
(Let us notice that if the address is the reference address, we only have to load the
data and reset the counter):

• If we do have it, then we load the data from the buffer, increment the counter.

• If we don’t, it means that we must add it to the buffer. We store the data into
the buffer, increment the counter and the max.

5.2.2 The Where is the data? question

Once we have answered the question of whether or not the data resides in our own
data-buffer, it is important to figure out how to load it. More specifically, we need
to know exactly where it is. This is where our assumptions help us. Their restrictive
nature gives us an easy solution to this problem.

Since we know that we have a certain redundancy in the data sequence, we will
know straight away where the data resides. Even better, with almost no work, we
will almost always have a register at the right place, no extra calculations will be
needed.

Let us suppose that the register r31 is a pointer referencing the data-buffer. At
the initialization step, the model will store the first data and shift the register r31
so that it points to the second element of the data-buffer. These are the different
possibilities for the register r31:

1. If the next access is the first element, we only have to put r31 back at the
beginning of the data-buffer (only one mov is needed). Then we can load the
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Figure 5.3: A simple link list example, the information around the cells are their
addresses, the information in the cells is the key value.

ex2(5); 1024

ex2(3); 1024 2048

ex2(5); 1024

ex2(4); 1024 2048 3072

ex2(2); 1024 2048 3072 4096

Figure 5.4: The sequence of calls to the second function and the addresses of the
data structure accessed

first element using the instruction ”ld8 r15=[r31],8”. This instruction will load
the first element and then move r31 to the second element of the array for an
possible store in the future.

2. Otherwise, we have a new data that needs to be stored. We will want to put
it next to the first one and r31 is exactly there! Therefore, only a store ”st8
[r31]=r14,8” is needed.

This means that the value in r31 is always up-to-date and is ready to either
store (if we are at the end of the data-buffer) or to load (if we are in the middle of
the data-buffer). The use of ”st8 [r31]=r14,8” or ”ld8 r15=[r31],8” gives us, in one
instruction, the load or store and the incrementation of the value in register 31.

5.3 Example

As an example for this model we will give a simple sequence and the state of the
model at each step. The example will be a sequence of data accesses that traverse a
link-list given by figure 5.3. This is a very simple link-list. We also suppose that the
function given by figure 3.2 is going to be called more than once. Figure 5.4 gives
the sequences of calls made and the different addresses that were accessed. For this
example, we will only handle the tmp-¿key instruction.

5.3.1 Initialization phase

When the first access will be needed, the model will set up the pointers and counters
as it is needed for the rest of the execution. This is called the Initialization phase.

Sequence: 1024 1024 2048 1024 1024 2048 3072 1024 2048 3072 4096
State: 1024 1 1
Data-buffer: 5

Figure 5.5: The sequence of address accessed



In our example, figure 5.5 gives the data access order as it is defined by the figure
5.4 and the state of the model . Throughout the example, we will give different
figures with the sequence, we will also put the current address in bold. The state of
the model is given by 3 integers, the first one is the reference address that will not
change throughout the example. The second integer is the counter and the third
one is the number of elements in the data-buffer.

As we can see on the third line, we have a single 5, which is the first key of the
link-list. This is the first element of the data-buffer. When we will need the first
element of the link-list (for the key value), we will be able to use this integer instead
of loading part of the node from memory.

5.3.2 Next 3 accesses

We will show in detail what happens next.

Sequence: 1024 1024 2048 1024 1024 2048 3072 1024 2048 3072 4096
State: 1024 1 1
Data-buffer: 5

Figure 5.6: The sequence of address accessed (2)

Figure 5.6 shows the state after we have treated the next address. As we can
see, the model has not moved. But something has been done, the question Do we
have the data? actually answered yes. Since the next address is also 1024, we know
we have the data. So we reset the counters and when we load the first element (here
5), we increment the counter back to 1 (for obvious reasons, we do not really put
the counter to 0, because we know that in the end, it must be equal to 1... We
directly assign 1 to it’s value). Of course, when we reset the counter, we also reset
the register r31 that points to the current cell in the data-buffer.

Sequence: 1024 1024 2048 1024 1024 2048 3072 1024 2048 3072 4096
State: 1024 2 2
Data-buffer: 5 3

Figure 5.7: The sequence of address accessed (3)

Figure 5.7 shows the evolution of the model when we add something to the data-
buffer. We knew we did not have 2004 in the buffer, so we had to store it there.
That is why the counter and the max are now at 2 and that there is a 3 in the
data-buffer.

Sequence: 1024 1024 2048 1024 1024 2048 3072 1024 2048 3072 4096
State: 1024 1 2
Data-buffer: 5 3

Figure 5.8: The sequence of address accessed (4)

Figure 5.8 shows us what happens when we encounter a 1024 (which is the
reference address). As we can see, the only difference is the counter that is reset one
more time. Nothing else really changes.

5.3.3 And finally...

If we walk through the sequence adding to the buffer, reseting the counter when
needed, the last access will leave the model in this state: We notice that we now



Sequence: 1024 1024 2048 1024 1024 2048 3072 1024 2048 3072 4096
State: 1024 4 4
Data-buffer: 5 3 4 2

Figure 5.9: The sequence of address accessed (Final)

have every key of the link-list and, to now do the search, we only have to look at 4
integers instead of walking through a whole link list.

5.4 Implementation issues

There were a few implementation issues when we first tried to put up this model.
We will present them briefly here.

5.4.1 The instruction cache

When working dynamically and especially when modifying code at run-time, the
instruction cache has an important influence.

When we modify the binary code, the problem is that the change might not be
taken into account straight away if the processor is working with the cached version.

This means that the changes must happen before hand or we must accept to
wait until they will be. We tried to find ways to flush the instruction cache but to
no avail.

Another important note is that this reduces the options we have in modifying
the code. If our modification is only on one bundle then there is no problem. But
if we want to change, remove more than one bundle, the program will probably
crash. Since, the cache is not aware of the changes, it can ask to reload part of the
modifications and not the totality. This means that for a certain while, the program
can be running part of the original code and part of the modification!

The only reasonable solution is to overwrite a single bundle with a jump if
the modifications are on more than one bundle. There are always synchronization
problems if we are working with threads. The write is only atomic for a 8-byte write
so that means that the thread could be paused while changing a bundle. In the
same manner, if working with threads, the only solution is to pause the main thread
before overwriting the bundle.

At first, we wanted to include the initialization code and, when it was executed,
overwrite it with the main stream code. This would have reduced the number of
required tests. But, because of the instruction cache, this was impossible. If a
solution is found, this optimized solution would be much better.

5.4.2 Scratch registers

At first, the idea behind this model was to use 4 global registers (r28-r31). But the
problem with this solution is that, even if they are called global registers. Between
function calls, they can be reset and put back to zero. This means that it is not
possible to use them in programs where there are function calls. The model must
save their values into local registers if possible or spill the values into memory.

Another big problem is when the model needs to optimize more than one load.
In this case (as it is in the second example), then again, local registers (but how
many can we use?) or spilling is necessary. This means adding more bundles and
thus rising the overhead.

The problem of using excessive local registers or spilling the data is not to be
taken lightly. The success of the model depends on its light-weight characteristic.



5.5 Results

Comparing with the results of the previous model, this model is almost as good.
Of course there is a little bit more overhead but it does obtain the 50% speed-up.
What is more important is that it also optimizes this example.

There hasn’t been a so good speed-up with the link-list example, but the model
must optimize two loads instead of only one and there is more overhead. The results
still show that this solution is a good one. It needs to be broadenned to handle even
more general examples but it is a good start. This model is capable of handling any
load as long as they respect the redundancy assumption, but it can be located in a
loop, in a recursive function or just a regular function. That aspect of the model is
already a big step compared to the first version.



Chapter 6

The next step

In this final chapter, we will try to explain why the work must go on and especially
in what direction. A lot of things have been done, a whole API has been put up to
be able to locate a function, locate a load and modify code dynamically. This API
will be used in the next versions and other works that will need to modify, interpret
or verify binary code while a program is running.

6.1 Discussion on the remaining assumptions

The two remaining assumptions are:

1. The data structure is a read-only data structure.

2. The data sequence is has a certain redundancy that will be explained later.

The first assumption is put there to keep the model light-weight in the sense
that, if it was not a read-only data structure, complicated tests and interpretations
would be needed to verify and prove the correctness of the model. That assumption
will likely be the last one to be removed.

Without the second one, the model will also become more complicated. It is
thought that instead of removing it, we will try to render it even more flexible by
redefining what we mean by a certain redundancy.. We are already trying to see if
another solution, resembling a hash function, can not be used to locate quickly if
the data is in the data-buffer or not.

6.2 Implementation issues

Of course, more complicated the model more assembly code will be required. This
poses an important problem that will be exposed in two parts:

• When programming in assembler, we are almost at the lowest level possible
(leaving binary programming to the secluded elite). The problem that arises
is the lack of possible debugging. In fact, almost no debugging is possible,
because we are programming dynamically and, for example, gdb does not
react well if you try to debug a dynamically modified program;

• When the algorithm becomes more complicated, it might seem natural to just
add a function call instead of the optimizer’s code. But the problem comes
from the famous scratch registers. Since we do not really know which ones
are being used, we would have to store every scratch register (roughly twenty)
before the call and load them back after the call. This will likely add a huge
overhead that will make the whole optimizer cause a slow-down...
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6.3 Where to from now and what about you?

The work that will be done in the immediate future is to try to study how can we
recalibrate the assumptions to make the model more general. After that, we will be
able to attack general benchmarks to test our model(s).

Of course, since all this has been a succession of prototypes and tests, a lot of
optimizations are probably possible. It would be interesting, at a certain point, to
launch a second team that would try to optimize the optimizer!

Eventhough we have not really shown pages of listings of our versions, we think
that a general programmer can probably put the pieces together. If there are any
questions, theoretical or on the implementation aspect of the problem, do not hesi-
tate to send a mail!



Conclusion

We have shown exactly how a dynamic optimizer can be set up. We have tried
to explain what kind of applications can be done and exactly how they would be
programmed. The basic problem of dynamic programming is probably going against
what the processor and hardware engineers are used to. Efforts to make a basic
program execute in the fastest time possible have created things like the Instruction-
cache, something that, without a possibility of a flush, will always be a problem for
our work and our implementations.

The two examples on which we have built our models are somewhat simple but
very representative. They can easily be found in any real application and it is for
that reason that they were chosen. The basic motive of this work is to get a working
general dynamic optimizer. Whether the final version will even remotely resemble
the first or second version is not relevant, since to learn about dynamic optimization,
it was probably necessary and a good exercise to put those two on their feet.

What is certain is that dynamic optimization is a solution to many statically
untractable problems. There are things that will only be known at run-time and
a dynamic process is sometimes the only solution. This work tries to show how
modifying code is easy and light weight. The question of what do we modify and
how, is where lies the problem and the big question mark.

But once we have the tools to change, extract, delete or add code during run-
time, dynamic optimizations become a reality.
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