
325

The Periodic-Linear Model
of Program Behavior Capture

Philippe Clauss, Bénédicte Kenmei, and Jean Christophe Beyler

ICPS/LSIIT, Université Louis Pasteur, Strasbourg
Pôle API, Bd Sébastien Brant

67400 Illkirch, France
{clauss,kenmei,beyler}@icps.u-strasbg.fr

Abstract. Understanding and controlling program behavior is a chal-
lenging objective for the design of advanced compilers and critical system
development. In this paper, we propose an analysis and modeling strategy
of program behavior characteristics by considering traces generated from
opportune code instrumentation. The proposed models consist in peri-
odic and linear interpolations separated into adjacent program phases.
It is shown that these models exhibit apparent and useful information
on program behavior. Moreover they can directly be used to guide static
optimizations or to build dynamic optimization processes as it is shown
for the implementation of efficient dynamic data prefetching processes
for some benchmark programs.

1 Introduction

Many works have shown that software controlled policy of hardware mechanisms
can significantly improve their efficiency. A compiler can be able from a static
analysis of the source code to generate some instruction hints [1]. However,
such an approach is only exploitable for static control and data structures as
for-loops accessing multi-dimensional arrays through affine reference functions.
When considering more general control structures accessing data through point-
ers, static optimizations generally can not be applied since essential information
is not known at compile-time and can only be observed during execution. Hence
dynamic analysis and optimization have become an important area of research.

In this paper, we propose an off-line analysis and modeling strategy for traces
generated from opportune code instrumentation. We consider Input Indepen-
dent Programs (IIPs) as programs whose execution behaviors are not influenced
qualitatively by their input data. IIPs are interesting candidates for trace driven
analysis and profile feedback optimizations, since information common to any
of their runs and input data can be extracted. IIPs, or input independent pro-
gram sub-parts, can be identified through several approaches: input-dependency
analysis by abstract interpretation [2]; static code analysis of control structures
and conditionals by variable propagation; comparisons of traces resulting from a
sufficient number of executions and showing the same execution behavior. Notice

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 325–335, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Used Distiller 5.0.x Job Options
This report was created automatically with help of the Adobe Acrobat Distiller addition "Distiller Secrets v1.0.5" from IMPRESSED GmbH.You can download this startup file for Distiller versions 4.0.5 and 5.0.x for free from http://www.impressed.de.GENERAL --File Options: Compatibility: PDF 1.2 Optimize For Fast Web View: Yes Embed Thumbnails: Yes Auto-Rotate Pages: No Distill From Page: 1 Distill To Page: All Pages Binding: Left Resolution: [600 600] dpi Paper Size: [439.37 666.142] PointCOMPRESSION --Color Images: Downsampling: Yes Downsample Type: Bicubic Downsampling Downsample Resolution: 150 dpi Downsampling For Images Above: 225 dpi Compression: Yes Automatic Selection of Compression Type: Yes JPEG Quality: Medium Bits Per Pixel: As Original BitGrayscale Images: Downsampling: Yes Downsample Type: Bicubic Downsampling Downsample Resolution: 150 dpi Downsampling For Images Above: 225 dpi Compression: Yes Automatic Selection of Compression Type: Yes JPEG Quality: Medium Bits Per Pixel: As Original BitMonochrome Images: Downsampling: Yes Downsample Type: Bicubic Downsampling Downsample Resolution: 600 dpi Downsampling For Images Above: 900 dpi Compression: Yes Compression Type: CCITT CCITT Group: 4 Anti-Alias To Gray: No Compress Text and Line Art: YesFONTS -- Embed All Fonts: Yes Subset Embedded Fonts: No When Embedding Fails: Cancel JobEmbedding: Always Embed: [] Never Embed: []COLOR --Color Management Policies: Color Conversion Strategy: Convert All Colors to sRGB Intent: DefaultWorking Spaces: Grayscale ICC Profile: RGB ICC Profile: sRGB IEC61966-2.1 CMYK ICC Profile: U.S. Web Coated (SWOP) v2Device-Dependent Data: Preserve Overprint Settings: Yes Preserve Under Color Removal and Black Generation: Yes Transfer Functions: Apply Preserve Halftone Information: YesADVANCED --Options: Use Prologue.ps and Epilogue.ps: No Allow PostScript File To Override Job Options: Yes Preserve Level 2 copypage Semantics: Yes Save Portable Job Ticket Inside PDF File: No Illustrator Overprint Mode: Yes Convert Gradients To Smooth Shades: No ASCII Format: NoDocument Structuring Conventions (DSC): Process DSC Comments: NoOTHERS -- Distiller Core Version: 5000 Use ZIP Compression: Yes Deactivate Optimization: No Image Memory: 524288 Byte Anti-Alias Color Images: No Anti-Alias Grayscale Images: No Convert Images (< 257 Colors) To Indexed Color Space: Yes sRGB ICC Profile: sRGB IEC61966-2.1END OF REPORT --IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Job Option File
<< /ColorSettingsFile () /AntiAliasMonoImages false /CannotEmbedFontPolicy /Error /ParseDSCComments false /DoThumbnails true /CompressPages true /CalRGBProfile (sRGB IEC61966-2.1) /MaxSubsetPct 100 /EncodeColorImages true /GrayImageFilter /DCTEncode /Optimize true /ParseDSCCommentsForDocInfo false /EmitDSCWarnings false /CalGrayProfile () /NeverEmbed [] /GrayImageDownsampleThreshold 1.5 /UsePrologue false /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /AutoFilterColorImages true /sRGBProfile (sRGB IEC61966-2.1) /ColorImageDepth -1 /PreserveOverprintSettings true /AutoRotatePages /None /UCRandBGInfo /Preserve /EmbedAllFonts true /CompatibilityLevel 1.2 /StartPage 1 /AntiAliasColorImages false /CreateJobTicket false /ConvertImagesToIndexed true /ColorImageDownsampleType /Bicubic /ColorImageDownsampleThreshold 1.5 /MonoImageDownsampleType /Bicubic /DetectBlends false /GrayImageDownsampleType /Bicubic /PreserveEPSInfo false /GrayACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >> /ColorACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >> /PreserveCopyPage true /EncodeMonoImages true /ColorConversionStrategy /sRGB /PreserveOPIComments false /AntiAliasGrayImages false /GrayImageDepth -1 /ColorImageResolution 150 /EndPage -1 /AutoPositionEPSFiles false /MonoImageDepth -1 /TransferFunctionInfo /Apply /EncodeGrayImages true /DownsampleGrayImages true /DownsampleMonoImages true /DownsampleColorImages true /MonoImageDownsampleThreshold 1.5 /MonoImageDict << /K -1 >> /Binding /Left /CalCMYKProfile (U.S. Web Coated (SWOP) v2) /MonoImageResolution 600 /AutoFilterGrayImages true /AlwaysEmbed [] /ImageMemory 524288 /SubsetFonts false /DefaultRenderingIntent /Default /OPM 1 /MonoImageFilter /CCITTFaxEncode /GrayImageResolution 150 /ColorImageFilter /DCTEncode /PreserveHalftoneInfo true /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ASCII85EncodePages false /LockDistillerParams false>> setdistillerparams<< /PageSize [576.0 792.0] /HWResolution [600 600]>> setpagedevice

326 Philippe Clauss, Bénédicte Kenmei, and Jean Christophe Beyler

that this last approach can never be as reliable as the previous ones, but can
give useful information relevant to the most frequent case.

Traces resulting from IIPs are candidates for standard data-mining methods
based on statistical and machine learning algorithms. Although some relevant
information can be found from their use, programs should take advantage of more
dedicated approaches. Interesting observations are necessarily related to software
and/or hardware mechanisms involving some specificities: many traces can be
reduced to binary data or at least integers, repetitive and/or periodic behaviors
can be often expected from program executions, observations can hopefully lead
to simulation models implemented as programs, ...

With this purpose of a dedicated approach, we propose a model based on
periodic interpolation by intervals of the trace values. Periodic interpolation
consists in interpolating a sequence of values by a periodic polynomial function.
A periodic polynomial is a polynomial whose coefficients are periodic numbers,
i.e., a sequence of values indexed by the modulo of the variable relatively to
the number of these values. For example, the periodic polynomial [1, 2, 3]x2 +
[3, 4]x + 5 is equal to x2 + 3x + 5 if x mod 3 = 0 and x mod 2 = 0.

Periodic interpolation allows to extract periodic behavior information of the
observed program as well as reduce the complexity of the interpolation function.
For example, the sequence [3, 3, 7, 13, 11, 23, 15, 33, 19, 43, 23] where each element
is respectively indexed by 0, 1, 2, ... is interpolated classically by the polynomial:

−4

2835
x
10 +

197

2835
x
9 −

277

189
x
8 +

16348

945
x
7 −

16912

135
x
6 +

77408

135
x
5 −

932752

567
x
4 +

7998976

2835
x
3 −

814336

315
x
2 +

59518

63
x+3

which is a quite high degree polynomial exhibiting no apparent information
about periodicity. Instead, periodic interpolation would give the following inter-
polation function: [2, 5]x + [3,−2], showing a periodic behavior of period 2 and
a linear relation between 2-spaced elements.

The elements inside a large program trace generally represent several differ-
ent behaviors associated to several different program phases. Hence, a unique
periodic interpolation function with a low degree can rarely be found on the
whole trace, but on some contiguous values in separated intervals. These succes-
sive intervals covering the whole trace are then associated to successive program
phases. We target originally linear functions, i.e., polynomials of degree 1, but
construct a non-linear model by recursive compositions of the linear functions.

Since each periodic coefficient of the periodic interpolation function can itself
be interpreted as a trace, we recursively apply the model to the coefficients.
This approach yields the definition of a multi-dimensional time space and a
granularity hierarchy of the program behavior.

Our phase definition criteria are different than those of other works based
either on hardware or software metrics. A phase is classically defined as intervals
characterized by values staying near a given average [4, 5]. Such an approach
ables the extraction of some specific hardware behavior of a program. Our ap-
proach is closer to the program semantic since it can be seen as a way trying
to re-write the original program from the unique knowledge of some observation
traces, but in a more “behavior-expressive” way.

The Periodic-Linear Model of Program Behavior Capture 327

Our representation model is detailed in next section where periodic-linear
functions are defined, as well as periodic-linear interpolation and our notion
of program phases. Model construction algorithms are presented in section 3
where important considerations related to the nature of the extracted models are
discussed. Applications and experiments are presented in section 4. Conclusions
and perspectives are given in section 5.

2 Formal Definition of the Periodic-Linear Model

2.1 Periodic-Linear Function

A periodic-linear function f is a function of the form f(x) = ax+ b where a and
b are periodic numbers. A periodic number is a finite list of n numerical values
[a1, a2, ..., an] where the rank of the selected value at a given time to evaluate f
is given by y mod n, y ∈ Z:

f(x) = ax + b = [a1, a2, ..., an]x + b =

a1x + b, if y mod n = 0
a2x + b, if y mod n = 1
... ...
anx + b, if y mod n = n − 1

Notice that since b is also a periodic number of m values [b1, b2, ..., bm], f is also
defined depending on y mod m. The number of values of a periodic number is
called the period. Two periodic numbers can be reduced to the same period equal
to the lowest common multiple (lcm) of their respective periods.

2.2 Periodic-Linear Interpolation

A periodic-linear interpolation of a time-serie links non-overlapping successive
intervals (slices of the trace) such that any element in interval i at position
j, eij , is linearly dependent of ei−1,j : eij = ei−1,j + aj , where aj is constant.
The number of elements in each interval is the lowest common multiple of both
periods of the periodic coefficients a and b in the interpolation function f .

We distinguish 4 possible cases:

1. all intervals are adjacent and their size p is constant;
2. all intervals are adjacent and their respective sizes p(t) can vary depending

on the interval occurrence t;
3. intervals are not necessarily adjacent and their size is constant;
4. intervals are not necessarily adjacent and their respective sizes can vary (see

figure 1).

Adjacent intervals correspond to a unique behavior model while non adjacent
intervals represent several interleaved behaviors: the dots in figure 1 are other
intervals interpolated by some other periodic linear functions. A model with
constant size intervals considers the duration as being a criterion characterizing
a behavior, saying that two behaviors are identical if their durations are equal.

328 Philippe Clauss, Bénédicte Kenmei, and Jean Christophe Beyler

Fig. 1. an illustration of the case with non adjacent intervals of different sizes

On the other hand, with intervals of different sizes, the model does not consider
the duration as being discriminant.

Consider two successive interpolated intervals i and i − 1. If both intervals
have the same size then the definition of periodic-linear interpolation given pre-
viously holds. Otherwise, we redefine periodic-linear interpolation in the follow-
ing way. Let imax be the largest interval of size max over all the interpolated
intervals. Then for all successive elements eij in another interval i of size s,
0 ≤ j ≤ s − 1, there exist α ∈ Z and s successive elements eimaxk in interval
imax, 0 ≤ k ≤ max−1, such that eij = eimaxk +αak. Moreover, the value of α is
uniquely associated to interval i. In other words, any interval i can be mapped
onto the interval imax such that the difference between each inter-mapped ele-
ments is equal to αak, and no other mapping onto the interval imax yields the
same value of α.

With each of the n intervals is associated a time instant t, 0 ≤ t ≤ n − 1,
defining the time space of the model. All n intervals are modeled by a periodic
linear function f(t) = at + b where a and b are periodic numbers. Their periods
are equal to either p in cases (1) and (3), or the maximum of the p(t)’s in
cases (2) and (4). These periodic numbers can have a large period and therefore
constitute by themselves new time-serie. Hence we recursively apply our periodic-
linear model to these new traces, i.e., to both periodic numbers, yielding an
additional time dimension. Finally the whole application of the model yields a
multi-dimensional time space (t1, t2, ...).

Application of the model on both time-serie, or periodic numbers, a and b
can result in two different periodic linear functions fa and fb. If their periods
are different, we need to reduce them to the same period which is the lcm of
their initial respective periods.

The whole recursive process yields a binary tree where each node is either
a fa or a fb function and at each depth level is associated a time dimension.
All functions of a same depth level have the same period and model simultane-
ously occurring traces. Finally, this multi-dimensional time model can be fully
represented as a loop nest of depth d of the following general form, where the
instruction of the innermost loop serves to output the element value associated
to a time instant (t1, t2, ..., td):

for t1 = 0 to n
for t2 = l(t1) to u(t1)

for t3 = l(t1, t2) to u(t1, t2)
...

for td = l(t1, t2, ..., td−1) to u(t1, t2, ..., td−1)
f(t1, t2, ..., td);

The Periodic-Linear Model of Program Behavior Capture 329

where f(t1, t2, ..., td) is the final multi-variable function resulting from the d-
depth recursive application of the model. This function is linear relatively to each
variable ti and globally non-linear. Moreover if d is maximum, i.e., the model
has been applied as far as possible, then the function is no longer periodic, since
any period associated to a time dimension ti is now expressed as a loop index.

The recursive application of the model terminates as soon as the computed
coefficients a and b are no more periodic numbers, i.e., are reduced to one single
value. In the case where no more interpolation of any coefficients a or b is possible,
with a or b consisting in at least three values, coefficients are decomposed into
phases as explained in the next subsection. However the application depth can
be fixed according to a chosen analysis granularity. All time dimensions can be
seen as different granularity levels of the behavior model.

Functions l(t1, t2, ..., ti) and u(t1, t2, ..., ti) give the sizes of the interpolated
intervals at depth i+1. When the model consists in constant size intervals, these
functions are constants: l = 0 and u+1 is equal to the period of the interpolation
function at depth i+1. When the model consists in non-constant sized intervals,
functions l(t1, t2, ..., ti) and u(t1, t2, ..., ti) are functions interpolating the posi-
tions of the first, respectively the last, elements in all the intervals. Although
these functions are generally not linear functions we limit ourselves to the cases
where they are affine.

Example 1. Consider again the time-serie [3, 3, 7, 13, 11, 23, 15, 33, 19, 43, 23]. Fol-
lowing the model of adjacent intervals of constant sizes, at the first time dimen-
sion, it can be interpolated by f1(t1) = [4, 10]t1+[3, 3], 0 ≤ t1 ≤ 5. At the second
dimension, serie [4, 10] and [3, 3] are interpolated respectively by the functions
fa(t2) = 6t2 + 4 and fb(t2) = 0t2 + 3, 0 ≤ t2 ≤ 1. Hence the recursive process
stops and the following loop nest can be generated:
for t1 = 0 to 5

for t2 = 0 to 1

(6t2 + 4)t1 + 3;

2.3 Program Phase Intervals

In our model, we define phases as the largest adjacent slices of the trace allow-
ing periodic-linear interpolations of their elements. Hence successive phases can
occur at different granularity levels yielding a hierarchy of phases. This can be
represented as successive loops whose loop indices range from the first to the
last element of each phase, and where each loop contains itself successive loops
associated to inner level phases and so on.

The size of the generated program can be seen as a complexity measure of
the modeled input trace, in the same way as it is stated in the Kolmogorov
complexity theory [6].

3 Model Construction Algorithms

Our algorithms have been implemented and can obviously represent a high com-
putation cost for large and highly irregular input traces. However modeling a

330 Philippe Clauss, Bénédicte Kenmei, and Jean Christophe Beyler

very regular behavior with a few number of phases is fast. For example, each
memory access information considered in [3] in several benchmarks are instanta-
neously modeled by our tool while giving similar results. Anyway it is generally
worth the time to model critical systems behavior.

In the following and due to space limitation, only the algorithm dedicated to
adjacent intervals of constant size is presented.

3.1 Quality Criteria of the Model

Since our model is hierarchically organized as a multi-dimensional time-space,
the deeper we go into the hierarchy, the more accurate is the model. Interpo-
lations involving a minimum number of phases per level is preferred since it
corresponds to a minimum number of general behaviors associated to each cur-
rent levels. Hence between the four model alternatives presented in subsection
2.2, a preference order related to the regular layout of the model and the number
of phases is applied: (1),(2),(3) and (4).

A convenient number of phases is related to their different sizes and the size
of the input trace. Each phase must include a sufficient number of elements.
However since phases are related between each other through the whole interpo-
lation model, some interesting and large phases can be coupled with some small
phases. Hence an opportune quality criterion can just consider the large phases.

On the other hand, some solutions with only a few phases have to be evicted.
For example, the solution consisting in modeling the whole input trace as two half
traces interpolated by one periodic-linear function is obviously not interesting
and does not represent any behavior specificity, since the same can be done for
any sequence of numbers. Hence we constraint each phase to contain at least
three interpolated intervals. Moreover, between several possible solution phases
of the same size modeling the same elements, the phase containing the maximum
number of interpolated intervals is selected, since it involves a lower periodicity
of the interpolation function, each period corresponding to a larger number of
interpolated elements.

From these observations, we can define an heuristic criterion consisting in a
lower bound for the covering range of the phases. For example, we can state that
at least 80% of the input trace has to be covered by all the phases whose sizes
are greater than 5% of the input trace.

3.2 Phase Detection

Our model construction algorithms have the following general scheme:

1. find a periodic linear interpolation function covering the largest possible slice
of the trace with at least three interpolated intervals. Define this slice as a
program phase.

2. for all the remaining elements not belonging to the previously defined phases,
repeat the previous step in order to define more program phases.

3. at this step, a hierarchical level has been fully modeled.

The Periodic-Linear Model of Program Behavior Capture 331

4. for each of the previously defined phases and their associated periodic-linear
interpolation functions, repeat all steps with each of the periodic coefficients
a and b considered themselves as traces, thus defining a deeper hierarchical
level.

3.3 Adjacent Intervals of Constant Size

The frequency of linear relations between p-spaced elements in a trace can be
detected by computing the autocorrelation coefficients for several values of p. The
highest obtained coefficients, i.e., the closest to 1, associated to given values
of p, give some good indications on the best possible sizes, or periods, of the
interpolated intervals. Hence our algorithm tries successively all interval sizes
from their highest to their lowest associated autocorrelation coefficients in order
to find the largest phase of interpolated intervals. Since at least three intervals
have to take part in a phase, autocorrelation coefficients for all values of p less
than n/3 are computed, n being the number of elements in the input trace.

The general algorithm is shown in figure 2. It is defined as a recursive function
devoted to finding the largest phase of interpolated intervals from a given input
trace. As it has been found, the function is recalled to find some previous or
next phases necessarily smaller and covering the remaining parts of the trace.
Some added comments in the figure explains some further details. When phases
have been found covering the whole trace, the first time dimension has been
defined and the next step consists in applying the function find phase for each
phase and their periodic-linear interpolation function to the periodic coefficients
a and b. This will define the second time dimension. The same process is applied
recursively until there is no remaining phase interpolated by a periodic function,
i.e., the interpolation function has constant coefficients a and b.

4 Application Examples and Data Prefetching

In these experiments, we model memory addresses accessed by some time-consu-
ming program instructions. We initially profile the execution using the gnu gprof
tool in order to exhibit the most time consuming functions. We then instrument
the code in order to store the accessed virtual memory addresses in output files.
Those files are then used as input in our model construction algorithms.

4.1 Building an Hybrid Model

Hybrid models can be constructed from the observation of some input depen-
dent events mixed with input independent events. Through abstraction of the
input dependent events that cannot be modeled, a model characterizing some
linear and periodic behavior of these non-deterministic occurring events can be
constructed.

We consider the program ks from the pointer intensive benchmarks, and
model memory addresses accessed through the pointer mrB in the most time-
consuming function FindMaxGpAndSwap. We observe the following in the trace

332 Philippe Clauss, Bénédicte Kenmei, and Jean Christophe Beyler

function find phase(T : input trace) {n is the trace size}
phasemax = NULL
for all p such that 1 ≤ p ≤ n/3 do

compute the autocorrelation coefficient rp of order p
for the highest to the lowest coefficient rp and its associated period p, rp ≥ 0.1 do

for i=1 to p do
find the lowest integer value α ≤ n−3p

p
such that at least the 3 elements T [i+αp],

T [i + (α + 1)p] and T [i + (α + 2)p] are linearly dependent
while a value α has been found do

for all q such that 1 ≤ q ≤ p − 1 do
check if elements T [i + αp + q], T [i + (α + 1)p + q] and T [i + (α + 2)p + q]
are also linearly dependent

if so then
extend this sequence of intervals to the right to the maximum possible size
if size(phasecurrent) > size(phasemax) {the last found phase is the largest
at the moment}
OR (size(phasecurrent) = size(phasemax) AND pcurrent < pmax) {the last
found phase has smaller interpolated intervals} then

phasemax = phasecurrent;pmax = pcurrent

find the next greater value for α ≤ n−3p
p

{the following is useful to find the last phases from a few remaining elements:}
if phasemax = NULL {no phase with at least 3 intervals has been found} then

allow to select phases with less than 3 elements
build the periodic-linear interpolation function fphasemax of coefficients a and b and
of period pmax

let Tleft be the left part of T −phasemax;let Tright be the right part of T −phasemax

{recursive calls}
find phase(Tleft);find phase(Tright)

Fig. 2. The general algorithm to find phases of adjacent interpolated intervals of con-
stant sizes

of memory addresses: same sequences of addresses are accessed successively sev-
eral times; after a sequence has been accessed, a new sequence, being the same
as before but with one element less, is accessed again successively several times;
after the last sequence of one element has been accessed, a completely differ-
ent sequence of numModules/2 elements is accessed successively several times,
numModules being the second value in the input file; then the same process goes
on with the same sequence having one element less; the number of times a se-
quence is accessed successively is equal to its number of elements; values into a
sequence cannot be interpolated linearly and periodically; elements evicted from
a sequence cannot be determined and depend on the considered input.

In conclusion, non-predictable sequence of known sizes are accessed in a pre-
dictable manner. Hence an hybrid model can be constructed consisting in a
learning phase storing occurring address sequences, and a following prediction
phase that outputs in a exact way occurring addresses. This model can be rep-
resented as the loop nest shown in figure 3.

The Periodic-Linear Model of Program Behavior Capture 333

M = numModules/2 − 1
for t1 = 0 to N
for t2 = 0 to M
for t3 = 0 to 0 // * Learning phase *
for t4 = 0 to M − t2

T [t4] = accessed address ;// store values in an array of size M
for t3 = 1 to M − t2 // * Prediction phase *
for t4 = 0 to M − t2

T [t4] ;

Fig. 3. Hybrid model capturing program ks memory behavior

4.2 Using Models for Data Prefetching

Let us consider the program mcf from the Spec2000 benchmarks: 31% of the
whole running time is spent in function price out impl. By looking at the
source code of this function, we can see that two main instructions access some
data structures defined as chained lists. We then instrument the code in order
to store the accessed virtual memory addresses in two output files and run the
program using the test.in input file provided in the SPEC2000 benchmarks.

For both memory accesses, an hybrid model of adjacent intervals of differ-
ent sizes, enclosed in adjacent intervals of constant size is constructed. In the
first dimension t1, the constant size intervals are identical. In the second di-
mension, successive intervals sizes grow from one element at each interval, and
corresponding elements between successive intervals are spaced by 120 for the
first instruction, and by 192 for the second instruction.

In a given interval, values are decreasing by 120, or 192, until 0. Hence, a
3-dimensional model represents entirely the whole trace. It is stated by the loop
nest shown in table 1.

Table 1. Nested loop models, execution times and speedups

Program:
opt. function

Model Orig. time Opt. time Speedup

mcf:
price out impl

for t1 = 0 to M
for t2 = 0 to nb timetable trips−2

for t3 = 0 to t2
120t2 − 120t3 + offset ;

512 sec. 405 sec. 20%

equake:
smvp

for t1 = 0 to timesteps− 1
for t2 = 0 to N − 1
for t3 = 0 to 2
128t2 + 32t3 + offset ;

350 sec. 262 sec. 25%

Values M and N vary depending on the program input file. Value M + 1
denotes the number of constant size intervals in the first dimension and N +
1 denotes their size. We use the three input files provided in the SPEC2000
benchmarks, test.in, train.in and ref.in, and analyze the generated traces

334 Philippe Clauss, Bénédicte Kenmei, and Jean Christophe Beyler

to extract the associated values of M and N , by checking the model adequacy.
We notice that interval sizes are directly given by the first input parameter of
the input files. In the mcf program documentation, this parameter is defined
as being the number of timetabled trips. It is equal to N + 2. The number of
intervals cannot be linked directly to an input parameter, since it rather depends
qualitatively on the convergence speed of the implemented optimisation process
for the considered problem. Nevertheless, a generic model can still be described,
since values in dimensions t2 and t3 do not depend at all on t1. Moreover, the
use of the model for some dynamic optimization is not constrained at all by the
ignorance of M , since the optimization process runs until the end of the whole
program run.

We use both generated models to implement a dynamic prefetching mecha-
nism for improving the program performance on an Itanium-2 processor. This
mechanism is simply built as two functions prefetching data three accesses in
advance from the address computed due to our model. They are called before
each memory access in function price out impl. Significant speedups are ob-
tained for reference input runs of the whole program as it is shown in table 1.
Original and optimized programs have been compiled at O3 optimization level.

In the same way, we model the program equake from the SPEC2000 bench-
marks as shown in table 1.

Notice that other optimizations could have been constructed from these mod-
els as for example the generation of cache hints from the knowledge of data-reuse
distances due to our models, as it is done from static analysis in [1].

5 Conclusion

The presented dynamic analysis and modeling approach constitutes a rich frame-
work to formalize behavior capture of programs. The representation model fa-
cilitates program behavior understanding and analysis, and also allows the con-
struction of efficient static or dynamic optimizations. It is for example pleasant
to notice that array-like memory accesses are identified through our model, as
it generates an access function of the same form as an access function resulting
from a linearized multi-dimensional array accessed through affine functions in-
dices. We argue that a lot of important behavior characteristics can be handled
through our approach: as we were working on the experiments of the previous
section, we observed that a lot of memory instructions can be nicely modeled.
Moreover, even non-deterministic events can be considered as they are enclosed
in a behavior that can be represented.

Our immediate objective is to improve performance of our algorithms in
order to build a global profiling and modeling system. Such a system could then
advantageously be used for applications whose performance or behavior control
are critical.

The Periodic-Linear Model of Program Behavior Capture 335

References

1. K. Beyls and E. H. D’Hollander. Reuse distance-based cache hint selection. In
Euro-Par ’02: Proceedings of the 8th International Euro-Par Conference on Parallel
Processing, pages 265–274. Springer-Verlag, 2002.

2. J. Gustafsson, B. Lisper, R. Kirner, and P. Puschner. Input-dependency analysis
for hard real-time software. In Proc. 9th IEEE International Workshop on Object-
Oriented Real-Time Dependable Systems, Oct. 2003.

3. I. Issenin and N. D. Dutt. Foray-gen: Automatic generation of affine functions for
memory optimizations. In DATE, pages 808–813, 2005.

4. J. Lau, S. Schoenmackers, and B. Calder. Structures for phase classification. In
IEEE International Symposium on Performance Analysis of Systems and Software,
March 2004.

5. J. Lau, S. Schoenmackers, and B. Calder. Transition phase classification and predic-
tion. In 11th International Symposium on High Performance Computer Architecture,
February 2005.

6. M. Li and P. Vitanyi. An Introduction to Kolmogorov Complexity and Its Applica-
tions. Springer-Verlag, New York, 1993.

	The Periodic-Linear Modelof Program Behavior Capture
	1 Introduction
	2 Formal Definition of the Periodic-Linear Model
	2.1 Periodic-Linear Function
	2.2 Periodic-Linear Interpolation
	2.3 Program Phase Intervals

	3 Model Construction Algorithms
	3.1 Quality Criteria of the Model
	3.2 Phase Detection
	3.3 Adjacent Intervals of Constant Size

	4 Application Examples and Data Prefetching
	4.1 Building an Hybrid Model
	4.2 Using Models for Data Prefetching

	5 Conclusion
	References

