
ESODYP: An Entirely Software and Dynamic Data Prefetcher

based on a Memory Strides Markov Model

Jean Christophe Beyler and Philippe Clauss

ICPS/LSIIT, Université Louis Pasteur, Strasbourg
Pôle API, Bd Sébastien Brant

67400 Illkirch - France

e-mail: {beyler,clauss}@icps.u-strasbg.fr

Abstract

Many works have shown that data prefetching can be an efficient answer to the well-known
memory bottleneck. Although several approaches ranging from dynamic hardware to static soft-
ware mechanisms have been proposed, no pure and stand-alone dynamic software data prefetching
solution has yet been proposed. However such a portable approach can be quite worthy regarding
the number of data-intensive applications having a dynamically changing memory behavior and
regarding the ever growing variety of processor and memory architectures.

In this paper, we propose an Entirely SOftware and DYnamic data Prefetcher (ESODYP)
based on a memory strides Markov model. It runs in two main phases: a short training phase
where a graph coding sequences of occurring memory strides is constructed, and an optimizing
phase where predicted addresses are prefetched while some informations in the graph are updated
by continuously monitoring the program.

Significant speed-ups are obtained on an Itanium-2 processor using ESODYP for several bench-
mark programs that could not have been optimized statically. It is particularly shown that the
induced software overhead can represent a minor execution time regarding performance improve-
ments, due to a careful lowering of the optimizer computations and memory accesses.

This work also opens some interesting perspectives in the development of pure software dynamic
optimizers.

1 Introduction

It is quite well-known that memory causes a serious performance bottleneck in spite of the use of caches,
since the implemented loading and replacement strategies are unable to suit all possible program
memory behavior. Many works have shown that software controlled policy of hardware mechanisms
can significantly improve their efficiency. A compiler can be able from a static analysis of the source
code to generate some instruction hints [4]. However, such an approach is only exploitable for static
control and data structures as for-loops accessing multi-dimensional arrays through affine reference

functions. When considering more general control structures accessing data through pointers, static
optimization can generally not apply since the essential information are not known at compile-time
and can only be observed during execution. Hence dynamic analysis and optimization have become
an important area of research.

Works focusing on a dynamic approach can be distinguished by the presence of an off-line phase,
and by the hardware or software portion of the proposed system. An off-line phase allows to avoid the
overhead induced by a necessary training step of the implemented optimization strategy. However,
such a phase can be demanding from multiple execution profilings and program-specific analysis. For
example in [16, 13], cache-miss detection is done off-line in order to create threads for data prefetching
on an hyperthreaded processor [10].

A fully on-line system is more challenging, since the whole overhead has to be more severely
reduced. But no initial profilings are necessary and the system is transparent to the user.

Also pure hardware solutions allow to avoid the overhead of a software system [12, 7, 14, 18, 17, 2, 1].
However, those cannot have the flexibility of software to implement sophisticated strategies and are
obviously not portable. Hybrid systems can provide nice solutions but are also not portable to any
processor architectures [16, 15, 13]. The usage of operating system specific tools also reduces the range
of possible target platforms. For example in [6], the presented software optimizer uses the software
tool VULCAN only available on Windows platforms.

Most hardware models [12, 14] rely uniquely on addresses yielding cache misses. To achieve this,
they rely on an on-chip buffer added to the processor used to calculate what is prefetched. A pure
software solution does not use an on-chip buffer. Most pure software approaches [3, 6, 9, 5, 15] consider
a large memory block shared by the original process and the optimizer. Moreover in a pure software
system, it is not known whether a data access induces a cache miss or a cache hit. For example,
the system ADORE [15] detects cache misses using the Itanium hardware counters, thus it can be
considered as hybrid.

In this paper, we propose a pure software and fully on-line system based on a memory strides
Markov model. Classically, a Markov predictor uses a history of accessed data to predict the next
data that is going to be accessed by a program [12, 14]. Using statistical information on past memory
behavior, it tries to load the data before the program effectively needs it. If done correctly, this can
result in a significant speedup.

In our model, we do not consider the accessed data memory addresses but the strides occurring
between successive accesses. Unlike other approaches, a large amount of accessed memory can therefore
be considered while modeling a relatively constant memory behavior of the program. Hence in many
cases a moderatly small amount of memory is needed to contain all the information used to achieve
prefetching. Moreover, our model considers prediction from any number of past occurring values
unlike other Markov models only considering a unique past value [12, 14, 18]. Our experiments show
significant speedups for several benchmark programs using our dynamic optimizer.

In the next section, we present our Markovian model and show how it fits in a dynamic approach.
Section 3 details ESODYPS’s two main phases: the training phase consisting in the construction of a
graph and the prediction phase consisting in prefetching the predicted memory accesses. ESODYP’s

2

usage and several experiments are presented in section 4. Finally, conclusions are given in section 5.

2 The Markov predictor

Our Markovian predictor remembers sequences of strides between successive data accesses. When the
predictor is given a new address, it tries to map the new stride computed from the previous access
and the previously occurring strides to a particular sequence. If successful, it is able to predict the
next access. Accuracy of the prediction depends on the amount of information stored by the predictor
and on the relative redundant behavior of the program memory strides.

The maximum number of past values stored by the predictor is called the depth. Most models
[12, 18] use only a one-depth predictor. Our model considers any depth and hence can give better
predictions as shown in our experiments.

Considering memory strides instead of actual addresses can give the predictor a better chance to
keep all the information retrievable by the program with the least memory necessary. Of course, this
strategy is not universally the best. If the number of different strides is too high, our model uses a
lot of memory. But it is able to capture many regular memory behaviors often occurring in programs,
unlike methods based on actual adresses whose applicability is limited to behaviors characterized by
a lot of temporal data reuses.

We call prefetching distance the number of strides we attempt to predict in advance. Suppose
we know that after a stride sequence S the predicted strides are A, B and C. Then it is possible to
prefetch addresses b+

∑
S+A, b+

∑
S+A+B or b+

∑
S+A+B+C, where b denotes the base address

of the accessed data and
∑

S denotes the sum of all strides in the sequence S. Since prefetching takes
a certain amount of time, if address b +

∑
S + A is prefetched, it is possible that the program arrives

at the point where the concerned data is needed before the prefetch has been completed. The program
would then stall. In such a case, it would be wrong to prefetch address b +

∑
S + A and it would be

preferable instead to prefetch addresses b +
∑

S + A +B or b+
∑

S +A + B +C as it is done in [15].
When the predictor gets the current accessed address, it must decide what to predict. In the most

favourable case, there is only one possible choice. In the case of several choices, the most naive answer
is to do the prefetch from each possibility. But since we are going to predict two or three strides
in advance, we obviously cannot predict every possible address. Moreover most processors support
a limited amount of simutaneous prefetches (16 on the Itanium-2 [11]). Because of both factors, we
must restrain the number of prefetches at each step by prioritizing all the possibilities as it is explained
while presenting the model creation process in the next section.

The predictor depth influences considerably the prediction accuracy. Each program can be char-
acterized by the necessary depth yielding a significant speedup. Obviously, a higher depth gives a
better chance for accurate predictions but needs more memory to store the information. Therefore we
need to determine what is more essential in each situation between depth and memory in order to get
the best speedup. As an illustration of this fact, our experiments in subsection 4.2 point out the ks

program from the Pointer Intensive Benchmarks which requires a depth of 2 for an actual speedup to

3

be observed.
Like other dynamic optimizers [3, 9, 15], our model does not try to compete with static opti-

mizations of compilers. Its purpose is to reduce memory contention for data accesses that could not
have been optimized at compile-time. For example, we do not consider array accesses through affine
reference functions in for-loops, since such memory references can be efficiently considered statically
giving evidently better results than any dynamic process could do.

One main challenge of a dynamic optimizer is to keep its overhead low enough so that the gain
makes the overall program run faster.

There are different ways for implementing a dynamic optimizer:

• If available, a second processor can calculate all the information needed for the predictions.

• The optimizer can be implemented as a second thread giving the chance to mask the processing
time as in the previous case. Such an approach can be efficient using a hyperthreaded processor
[13, 10].

• All the code can be left in one unique thread executing either our optimizer or the original
program.

Notice that a second thread would require synchronizing mechanisms likely raising the overhead.
Our implementation uses the third approach not relying on a particular processor architecture.

Our model is not yet totally transparent at this time since it still needs some help from the
programmer. A function links the original program to the optimizer. This function feeds our model
with accessed addresses and automatically prefetches the predicted data. A more detailed description
of this API is given in the next section.

Since the actual accessed addresses are known, it is possible to monitor the number of correct
predictions by comparing them with the prefetched addresses. The optimizer could be stopped whether
this number exceeds a certain threshold. By this way, the speed-down that would most likely occur
would be reduced.

3 Implementation

In models that only need the previous address for prediction, the use of a table seems natural. Some
models [12, 14] use such tables storing more than one prediction giving the possibility to prefetch more
than one address.

Since we use sequences of strides with different depths, our model does not use a table. However
our data structure has to allow the prediction process to be as fast as possible. We use a graph to
represent the different sequences that have already been monitored. Each time a new stride is caught,
the next ones can be predicted with a complexity not related to the depth used.

To illustrate the graph creation phase, let us consider the following example of a sequence of strides
that a running program could have given our model: 1, 2, 16, 2, 32, 2, 16, 2, 32.

4

Previous strides Next stride

2 32, 16

1 2 16
2 16 2
16 2 32
2 32 2
32 2 16

Table 1: A prediction table

Table 1 shows what would be stored if the sequence was coded in a table with a maximum depth
of 2. The left column represents the last strides made by the program memory accesses and the
right column the next stride that is probably going to occur, with the assumption that what occurred
previously is likely to be repeated.

We notice that after a stride of 2, the next stride is uncertain as it is not known what stride
occurred before. In our case, the probabilities that a stride of 16 or 32 occurs are the same. However
it is likely that sometimes a certain stride follows more often a certain sequence. It is this most
probable stride which is selected for prediction.

1 2

2

1 2

16

16

2

1 2

2 16

16 32

2
32

2

1 1 1
1

1
1

2
2

2
2 1

1
2

c)b)a)

1

Figure 1: The Markovian graph (with a depth of 2) after two strides (a), three strides (b) and the full
sequence (c) has been passed to the model

To explain how the graph works, let us see what happens as the two first strides are caught (Figure
1 (a)). Similarly to the table, we restrict ourselves to a depth of 2. The meaning of the single edge
is that after a stride of 1, to our knowledge, a stride of 2 will occur. In the case of nodes without
successor, it is not known what could happen next. For example, the connex group (1,2) is not attached
to anything since we do not have any information on the next stride. The node 2 alone symbolizes
that, if all we know is that there was a stride of 2, nothing can be predicted. The edge label 1 means
that this edge has been followed once. Such labels are used to select the most followed edges.

We can see how the graph construction evolves on figure 1 (b) while another stride is added to our
model. Two more nodes have been added to the graph. The first node 16 is attached to both nodes

5

2. This symbolizes that after a 2, and after the sequence (1,2) as well, a 16 occurs. The second node
16 tells that, knowing only that the last stride was a 16, what happens next is not known.

Eight nodes are used in the graph when the whole sequence has been processed on figure 1 (c).
Now some edge labels have value 2 meaning that those edges were followed twice.

Our graph has many similarities with suffix trees or suffix automata constructed for pattern recog-
nition algorithms in strings [8]. But since we have quite different usage requirements, our graph can
be seen as a mix between a suffix tree and a suffix automaton.

This graph construction process has to stop after a while as the graph starts to be used in the
prediction phase. As the construction is stopped, the optimizer points to the last created node and
starts prediction. When receiving a new stride, it checks whether there is an edge from the current
node leading to that stride. If so, the pointer to the current node is updated. Otherwise two strategies
are considered:

• If a root node for the received stride exists, that node becomes the current node as no information
about the past occurring strides is known and a prediction can be made.

• If no root node for the received stride exists, nothing is done until receiving the next stride that
hopefully will allow prediction.

Searching for a root node associated to a given stride is a frequent operation that therefore has to be
fast. That is why a binary search tree is added to our graph.

Notice that like other optimizers using the concept that programs act in different phases [3, 9, 15],
it is possible to construct an associated graph at each phase beginning. This approach reduces the
memory consumption of the optimizer and therefore also reduces its overhead. In our optimizer, phase
detection is done by monitoring the number of consecutive miss predictions. When a given threshold
is reached, the graph is flushed and the construction is restarted.

Another solution would be to simply restart the construction without flushing the graph. Even-
though in some cases it might seem opportune to do so, we think that in general a phase change yields
a quite different memory behavior. Some edge labels would include the previous phase and so would
have higher counts than the recently added edges. It would take a certain amount of time before these
latter edges would be followed, yielding a lot of misspredictions. If the construction is started over,
the counters are reset and the number of nodes does not grow unnecessarily.

As said in section 2, a choice between different possible predictions has to be made and prediction
of a few strides ahead of time can be necessary. But since we cannot afford to figure out what stride
is to be made at each step, this stride is precalculated. Hence the sum of all strides to be made is
directly known when arriving at each node.

The full stride has also to be updated as the prediction changes. Suppose we are on the root node
2 in Figure 1 (c), 32 is the best prediction and only two strides ahead are prefetched. Consequently
the node 2 has a variable saying “prefetch 32+2”. If 16 becomes the best prediction then this variable
must be changed to “prefetch 16+2”. Considering that the number of changes is not too important,

6

the precalculation overhead can be quite small. In the worst case scenario, the optimizer would have
to calculate the stride at every access, which would have been the case without any precalculation.

Each node owns a list of its successors, that is to say the strides that have followed the current
sequence. To reduce the overhead, a pointer to the most probable node is used. To reduce it even
more, a LRU management strategy of the last two nodes accessed after the current node has been
implemented. The objective is to minimize the number of times the list of successors of a node has to
be scanned.

A global data structure holds all the information needed by the model: the predictor depth, the
prefetching distance, the graph, the threshold of consecutive misspredictions, the function pointer
fct,...

Our dynamic optimizer is composed of a few functions. It will automatically prefetch the data
once it has a graph completely constructed during the training phase. The different functions are
shown in Table 2. Function fct is not really a function but a pointer accessed through the Markov
structure. If different sequences in the same program have to be monitored, then it is possible for each
sequence to have different parameters.

Function name Description

initialize Initializes the Markov structure

set param Lets us parameter the depth of the construction, distance of prefetching...

set address Lets the programmer update the base address, since the model uses strides

fct The main function that is the link between the main program and our model

clear Clears the structure

Table 2: The functions used by the programmer

It is through fct that three functions are called depending in which of the phases the model is
in. At the beginning, fct points to a small function that is only there to set the base address. Since
strides are considered, the offset has to be known before creating the graph. After the first call, fct
points to the construction procedure. Once the construction is finished, it points to the prediction
procedure: prediction, followed edge labels incrementation and full stride variable update if necessary.

The construction procedure has a life duration variable set by the programmer that defines the
number of times it has to be run. The pointer fct is changed as soon as this variable reaches zero.

Another important factor is the usefulness of the function set address. Suppose we have the
stride sequence example used at the beginning of this section, and suppose it represents the strides
occurring from a certain base address. If this address changes all the time, for example from successive
calls to the same function, and the stride sequence does not, we would have many different sequences
in our graph. Being able to set the base address before the model considers the strides significantly
reduces the number of needed nodes.

7

m1 = initialize();

set(m1,&stop,M_ARRCONS);

set(m1,&j,M_PROF);

set(m1,&k,M_ERRMAX);

Figure 2: Initialization code of the strucutre

4 Experiments

To implement a prefetch mechanism, a way must be found to load before-hand the data into the cache.
A simple solution is to insert a load into the assembly code before the data is actually needed. The
drawback of such a solution is that the address must necessarily be valid. We are not allowed to load
an address not situated in the memory space of the current program. Therefore we would have to
check whether our strides do not let the prediction exit the possible address range. It is in general
unconceivable for a low overhead to put up these tests and still get a speedup. The simplest solution
is to use the prefetch instructions existing on most modern architectures.

On Itanium, the prefetch instruction is lfetch. However if there are too many outstanding prefetches,
and if it provokes a page miss, then the prefetch is not executed.

All the programs presented here have been compiled with the optimization level “-O3” and run on
an Itanium-2 processor. We used both compilers GNU gcc and Intel icc.

The instrumented programs come from the different benchmarks Spec2000, Pointer Intensive and
Olden.

4.1 mcf from the Spec2000 benchmarks

In what follows, we detail the instrumentation of the mcf program. This program can be accelerated
at least at two distinct locations, so two data structures are used to monitor both stride sequences.
Figure 2 shows the code used to initialize a structure. First, we call the initialize procedure that
puts all the parameters to default values. Then it is possible to specify the parameters: the number
of calls per phase, the depth of the construction, the number of consecutive misspredictions before a
flush occurs, ...

On figure 3, we can see that only a few added function calls (in this case three) is necessary to
monitor a certain sequence. For the sequence monitored by the structure m2, two calls are necessary
since the pointer it is monitoring is updated at two different locations. Notice how the right function
is called by using the pointer fct situated in the different Markov structures. The functions have two
parameters:

1. The pointer to the Markov structure, where the graph and the pointer function can be found ;

2. The pointer to the data to be monitored. Our functions transform the address sequence into a
stride sequence.

8

...

while(arcin) {

tail = arcin->tail;

m1->fct(m1, arcin->tail);

if(tail->time + arcin->org_cost > latest) {

m2->fct(m2, (void *)tail->mark);

arcin = (arc_t *)tail->mark;

continue; }

...

m2->fct(m2, (void *)tail->mark);

arcin = (arc_t *)tail->mark; }

...

Figure 3: Inserting the fct function in the mcf program (in the function price out impl)

0

5

10

15

20

25

30

gcc icc

Sp
ee

du
p

(%
)

Figure 4: Speedup with the mcf program using a depth of 1 and distance of 4.

Once the program is finished, we add a call to the clear function to free the memory used by our
model. Figure 4 shows the acceleration of the program. It has been accelerated by 18% using the icc
compiler. Only the single function price out impl, taking 50% of the whole execution time, has been
optimized. Hence this function has actually been accelerated by 36%.

4.2 treadd, equake, ks and mcf

We present three other program experimentations: treeadd from the Olden benchmarks, equake from
the Spec2000 benchmarks and ks from the Pointer Intensive benchmarks for which one of the most

9

Optimized 1
Optimized 2
Optimized 3

−25

−20

−15

−10

−5

0

5

10

15

20

25

treeadd ks equake mcf

Sp
ee

du
p

 (%
)

Figure 5: Speedup with treeadd, equake, ks and mcf. The meaning of the histograms is given by the
table 4

costly functions of each program has been optimized (See table 3).

Program File involved Function involved Input

treeadd node.c Treeadd 20 nodes and 1 processor

equake quake.c smvp The reference input

ks KS-2.c FindMaxGpAndSwap KL-5.in

mcf implicit.c price out impl The reference input

Table 3: The functions yielding a lot of cache misses

The speedups achieved on these different programs can be seen on figure 5 and table 4. Notice
that the given measures are resulting from the whole execution time of each program and not uniquely
from the time of the optimized function. They were obtained with different parameters shown in the
table. For example, if we look at the treeadd histograms, from left to right, they represent (1,1),
(1,3) and (1,4) where the first value is the depth used by the Markovian model and the second value
is the prefetch distance.

Program treeadd does not need a depth higher than 1 for speedup. Here our objective is to show
the importance of choosing a good distance of prefetching. We changed this program so that it scans
the tree more than once (2000 times), the original execution time being too short. On the other hand,

10

Program Depths Distances

treeadd 1/1/1 1/3/4

ks 1/2/4 3/3/3

equake 2/2/2 1/3/5

mcf 1/1/1 2/4/9

Table 4: Different parameters used for the histogram in figure 5

program ks does show a difference with a depth of at least two. Program equake works the best with
a depth of 2 and a prefetch distance of 3.

For the program mcf, the performance decline when the prefetch distance is too high as it is shown
by prefetching 9 strides ahead of time.

5 Conclusion

We have shown that a pure software dynamic optimizer is a realistic way of improving program
behavior. Using some standard hardware mechanisms, it is possible to define a generic dynamic
process whose overhead stays sufficently low regarding the resulting speedup.

The presented memory strides Markov model provides significant improvements for data-intensive
applications as shown in our experiments. Moreover it can easily be used for monitoring inter-
procedural memory accesses. But it obviously cannot be an universal solution. It could also still
be extended, for example by deleting the paths in the graph that are not followed very often, and so
reducing the overhead induced by too many nodes in the Markov graph. However, since the room
for manoeuvre is quite reduced, a smart balance between the optimization strategy and the induced
overhead must be found.

The way we implemented our optimizer could also be advantageously changed for example by
trying to avoid the necessary overhead of a function call with parameters.

We plan to explore other optimization strategies for prefetching, but also for other goals as dynamic
data locality optimization or dynamic generation of cache hints. The overall objective is to build a
global dynamic optimization framework where several strategies can be selected depending on the
kind of monitored memory accesses.

Hence another challenging objective is to render as transparent as possible the usage of such a
framework, by including program phase detection and classification processes guiding efficiently the
locations and natures of the optimizations.

Dynamic optimization can never be as efficient as static optimization while handling static control
and data structures. That is why we exclusively focus on variable-dependent control and memory
accesses where dynamic optimization is undoubtedly a convenient answer.

ESODYP is available by request to the authors.

11

References

[1] M. Annavaram, J. M. Patel, and E. S. Davidson. Data prefetching by dependence graph precom-
putation. In Proceedings of the 28th annual international symposium on Computer architecture,
pages 52–61. ACM Press, 2001.

[2] J.-L. Baer and T.-F. Chen. Effective hardware-based data prefetching for high-performance
processors. IEEE Trans. Comput., 44(5):609–623, 1995.

[3] V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: a transparent dynamic optimization system.
ACM SIGPLAN Notices, 35(5):1–12, 2000.

[4] K. Beyls and E. D‘Hollander. Compile-time cache hint generation for epic architectures. In
Proceedings of the 2nd workshop on Explicitly Parallel Instruction Computing Architectures and
Compiler Techniques, November 2002.

[5] D. Bruening, T. Garnett, and S. Amarasinghe. An infrastructure for adaptive dynamic optimiza-
tion. In 1st International Symposium on Code Generation and Optimization, 2003.

[6] T. M. Chilimbi and M. Hirzel. Dynamic hot data stream prefetching for general-purpose programs.
In Proceedings of the ACM SIGPLAN 2002 Conference on Programming language design and
implementation, pages 199–209. ACM Press, 2002.

[7] J. Collins, S. Sair, B. Calder, and D. M. Tullsen. Pointer cache assisted prefetching. In Proceedings
of the 35th annual ACM/IEEE international symposium on Microarchitecture, pages 62–73. IEEE
Computer Society Press, 2002.

[8] M. Crochemore and M.-F. Sagot. Handbook of Computational Chemistry, chapter Motifs in
sequences: localization and extraction. Marcel Dekker Inc., 2004.

[9] G. Desoli, N. Mateev, E. Duesterwald, P. Faraboschi, and J. A. Fisher. Deli: a new run-time
control point. In 35th Annual ACM/IEEE International Symposium on Microarchitecture, pages
257–268, December 2002.

[10] Intel. Hyper-threading technology. http://www.intel.com/technology/hyperthread/.

[11] Intel(R). Itanium(R) 2 Processor Reference Manual for Software Development and Optimization,
chapter Optimal use of lfetch, pages 71–72. Intel Corporation, May 2004.

[12] D. Joseph and D. Grunwald. Prefetching using markov predictors. In IEEE Transactions on
Computers, Vol. 48, NO. 2, pages 121– 133, Febuary 1999.

[13] D. Kim, S. Liao, P. Wang, J. del Cuvillo, X. Tian, X. Zou, D. Yeung, M. Girkar, and J. Shen.
Physical experimentation with prefetching helper threads on intel’s hyper-threaded processors. In

12

2nd IEEE / ACM International Symposium on Code Generation and Optimization, pages 27–38,
2004.

[14] J. Kim, K. V. Palem, and W.-F. Wong. A framework for data prefetching using off-line training
of markovian predictors. In 20th International Conference on Computer Design (ICCD 2002),
2002.

[15] J. Lu, H. Chen, R. Fu, W. Hsu, B. Othmer, P. Yew, and D. Chen. The performance of runtime data
cache prefetching in a dynamic optimization system. In 36th Annual IEEE/ACM International
Symposium on Microarchitecture, December 2003.

[16] C.-K. Luk. Tolerating memory latency through software-controlled pre-execution in simultaneous
multithreading processors. In 28th annual international symposium on Computer architecture,
pages 40–51, 2001.

[17] A. Roth, A. Moshovos, and G. S. Sohi. Dependence based prefetching for linked data structures.
In Proceedings of the eighth international conference on Architectural support for programming
languages and operating systems, pages 115–126. ACM Press, 1998.

[18] H. Zhou, J. Flanagan, and T. M. Conte. Detecting global stride locality in value streams. In
Proceedings of the 30th annual international symposium on Computer architecture, pages 324–335.
ACM Press, 2003.

13

