
Analytical Computation of Ehrhart Polynomials:
Enabling more Compiler Analyses and Optimizations

Sven Verdoolaege
Dept. of Computer Science

K.U.Leuven

sven@cs.kuleuven.ac.be

Rachid Seghir
ICPS-LSIIT UMR 7005

Université Louis Pasteur,
Strasbourg

seghir@icps.u-strasbg.fr

Kristof Beyls
Dept. of Electronics and

Information Systems
Ghent University

kristof.beyls@elis.UGent.be

ABSTRACT
Many optimization techniques, including several targeted
specifically at embedded systems, depend on the ability to
calculate the number of elements that satisfy certain condi-
tions. If these conditions can be represented by linear con-
straints, then such problems are equivalent to counting the
number of integer points in (possibly) parametric polytopes.

It is well known that this parametric count can be rep-
resented by a set of Ehrhart polynomials. Previously, in-
terpolation was used to obtain these polynomials, but this
technique has several disadvantages. Its worst-case compu-
tation time for a single Ehrhart polynomial is exponential
in the input size, even for fixed dimensions. The worst-case
size of such an Ehrhart polynomial (measured in bits needed
to represent the polynomial) is also exponential in the input
size. Under certain conditions this technique even fails to
produce a solution.

Our main contribution is a novel method for calculating
Ehrhart polynomials analytically. It extends an existing
method, based on Barvinok’s decomposition, for counting
the number of integer points in a non-parametric polytope.
Our technique always produces a solution and computes
polynomially-sized Ehrhart polynomials in polynomial time
(for fixed dimensions).

Categories and Subject Descriptors
G.2.1 [Discrete Mathematics]: Combinatorics—Count-
ing problems,Generating functions; D.3.4 [Programming
Languages]: Processors—Compilers

General Terms
Algorithms, Performance

Keywords
Barvinok’s decomposition, compiler analysis, Ehrhart poly-

c© ACM, (2004). This is the author’s version of the work. It is posted here
by permission of ACM for your personal use. Not for redistribution. The
definitive version will be published in Proceedings of International Con-
ference on Compilers, Architectures, and Synthesis for Embedded Systems
(CASES’04), September 22–25, 2004, Washington, DC, USA

nomial, parametric polytope, polyhedral model, quasi-poly-
nomial, signed unimodular decomposition

1. INTRODUCTION
In many program analyses and optimizations, questions

starting with “how many” need to be answered, e.g.

• How many memory locations are touched by a loop?[16]

• How many operations are performed by a loop?[23]

• How many cache lines are touched by a loop?[16]

• How many array elements are accessed between two
points in time?[3]

• How many array elements are live at a given iteration
(i, j)?[33]

• How many times is a statement executed before an
iteration (i, j)?[32, 17]

• How many parallel processing elements can be used
when executing a loop on an FPGA?[21]

• How many cache misses does a loop generate?[11, 9,
19]

• How much memory is dynamically allocated by a piece
of code?[6]

• How many different array elements are accessed before
element (x, y) is accessed?[25]

Answering these questions is often one of the corner stones
in program analyses and optimizations important in embed-
ded systems development, such as increasing parallelism[32],
minimizing memory size[33, 32], estimating worst case exe-
cution time[23], increasing cache effectiveness[3], high-level
transformations for DSP applications[17] and converting soft-
ware loops into parallel hardware implementations[32, 21].

In all these compiler optimizations, the “counting” prob-
lems are modeled by linear inequalities, and the question
becomes “How many integer points x ∈ Zd satisfy the sys-
tem of inequalities Ax ≥ b?”. Furthermore, the number of
integer points often needs to be expressed as a function of
a number of parameters. In some optimization techniques,
the need for parameters depends on the problem instance,
while in other techniques, e.g., [3, 6, 9, 16, 17, 23, 25, 32],
the counting problem is intrinsically parametric.

S1 void s(int N, int M)
S2 {
S3 int i , j ;
S4 for(i=max(0,N−M); i<=N−M+3; i++)
S5 for(j=0; j<=N−2∗i; j++)
S6 S1;
S7 }

Figure 1: Example loop code

Recently, new techniques have been developed for such
counting problems, but they either do not support parame-
ters, e.g., [5, 28], or only to a very limited extent, e.g., LattE
[14]. Earlier, Clauss [10] developed a technique for counting
the number of integer points in general parametric sets of
the form

Pp =
{

x ∈ Q
d | Ax ≥ Bp + c

}

, (1)

where A and B are integer matrices, c is an integer vector,
and p is a vector of parameters. Pp is called a parametric
polytope, when the number of points satisfying Ax ≥ Bp+c
is finite for each value of p. Clauss showed that the number
of integer points in Pp can be represented by a set of Ehrhart
polynomials, each valid on a different validity domain. Con-
sider, for example, the loop in Figure 1, and assume we
wish to know how many times statement S1 executes, as a
function of N and M . The answer to this question can be
computed by counting the number of integer points in

P(N
M) =

{(

i
j

)

∈ Z
2|

1 0
1 0
−1 0
0 1
−2 −1

(

i
j

)

≥

0 0
1 −1
−1 1
0 0
−1 0

(

N
M

)

+

0
0
−3
0
0

.

(2)

The solution to this question is

#P(N
M) =

−4N+8M−8

if M ≤ N ≤ 2M−7

MN−2N−M2+6M − 8

if N ≤ M ≤ N+3 ∧ N ≤ 2M−7

N2

4
+N+1− 1

2
frac

(

N
2

)

if 0 ≤ N ≤ M−1 ∧ 2M ≤ N+6

N2

4
−MN−N+M2+2M+1− 1

2
frac

(

N
2

)

if M ≤ N ≤ 2M ≤ N+6

with frac(x) the fractional part of x. This solution contains
4 validity domains, each with a different Ehrhart polyno-
mial. Although Clauss’s technique intends to be general, it
may still fail to produce a solution for some class of prob-
lems[32, 9]. Furthermore, for some other class of problems, it
can produce exponentially sized Ehrhart polynomials, com-
puted in a likewise exponential time, even for fixed dimen-
sions, i.e., when the number of variables in the inequalities
is fixed.

In this paper, we present a novel method of comput-
ing Ehrhart polynomials, which combines the decomposition
into validity domains of [10] and a parametric version of the
counting algorithm in [14]. The resulting algorithm

• handles general parametric polytopes of the form (1),

• always produces an answer,

• computes Ehrhart polynomials that are only polyno-
mially large in terms of the input size (for fixed di-
mensions), by representing periodicity using fractional
parts, and

• computes each of these polynomials in polynomial time,
when the number of variables in the inequalities is
fixed.

In Section 2, two examples are presented which highlight
the limitations of Clauss’s method, and give the motivation
for using the presented method. In Section 3, our method
for computing the number of integer solutions to parametric
linear inequalities is presented. Section 4 evaluates and com-
pares our method with Clauss’s method, using a large set of
linear inequalities generated by different compiler analyses.
In Section 5, we give some implementation details. Finally, a
comparison with related work is made in Section 6, followed
by conclusions in Section 7.

2. CLAUSS’S METHOD

2.1 Ehrhart’s Theory
To illustrate the deficiencies of Clauss’s method, we first

need to explain the general structure of the number of in-
teger points in a parametric polytope Pp (1). Ehrhart [15]
showed that this parametric count can be represented as a
quasi-polynomial provided Pp can be represented as a con-
vex combination of its parametric vertices, i.e.,

Pp =

{

x ∈ Q
d | x = λV (p), 0 ≤ λj ,

∑

j

λj = 1

}

, (3)

with the columns of V (p) the vertices of Pp. Each vertex
vj(p) is an affine combination of the parameters with ra-
tional coefficients. Before we can define a quasi-polynomial,
we need the concept of a periodic number.

Definition 1. An n-periodic number U(p) is a func-
tion Zn 7→ Z, such that there exist periods q = (q1, . . . , qn) ∈
Nn such that U(p) = U(p′) whenever pi ≡ p′

i mod qi, for
1 ≤ i ≤ n. The lcm (least common multiple) of all qi is
called the period of U(p).

Definition 2. A quasi-polynomial in n variables is a
polynomial in n variables over the n-periodic numbers.

In other words, the coefficients of a quasi-polynomial de-
pend periodically on the variables. In the remainder of
this paper, we call the quasi-polynomials that represent the
parametric count of a polytope simply Ehrhart polynomi-
als. The periodic numbers can be represented by an n-di-
mensional lookup-table Up such that U(p) = Up[p1 mod
q1, . . . , pn mod qn]. The period in dimension i of such a pe-
riodic number is a divisor of the lcm of the denominators
that appear in the coefficients of pi in the affine expressions
that define the vertices vj(p) [10].

Loechner and Wilde [26] showed that the parametric ver-
tices in (3) correspond to the n-faces of (1) when consid-
ered as a polyhedron in the (d + n)-dimensional combined
data and parameter space.1 Each of these faces may only
correspond to a parametric vertex for a subset of the pa-
rameter values. Therefore, the parameter space has to be
partitioned into validity domains Dk, each with a subset
VDk

(Pp) ⊂ V(Pp) of the total number of parametric ver-
tices. Each validity domain Dk then also has a different rep-
resentation (3), with the elements of VDk

(Pp) as the columns
of VDk

(p). It follows from [15] that in each validity domain
the number of integer points in Pp can be represented by an
Ehrhart polynomial E(P ;p).

For example, in domain 0 ≤ N ≤ M − 1 ∧ 2M ≤ N + 6,
the parametric polytope in Equation (2) has vertices (0, 0),
(0, N) and (N

2
, 0). Taking into account the denominators,

the period is 2 in the dimension of parameter N and 1 in
the dimension of parameter M . Therefore, the Ehrhart-
polynomial for this validity domain has the following form

[a, b]NN2 + [c, d]NNM + [e, f]NM2

+ [g, h]NM + [i, j]NN + [k, l]N , (4)

where unknowns a, . . . , l are rational numbers. After finding
the correct values for a, . . . , l, the solution can be written as:

1

4
N2 + N +

[

1,
3

4

]

N

, (5)

which equals N2

4
+ N + 1 − 1

2
frac

(

N
2

)

.

2.2 Interpolation and Degenerate Domains
Based on the knowledge of the structure of the solution,

Clauss and Loechner [10] calculate the number of points in
a set of instances of Pp for fixed values of p in a given valid-
ity domain, called initial countings, and then calculate the
Ehrhart polynomial for this validity domain through inter-
polation. During this calculation, they directly determine
the elements in the lookup-tables representing the periodic
numbers. To interpolate a d-dimensional Ehrhart polyno-
mial with periods qi their algorithm requires

∏n

i=1(d + 1)qi

initial countings. For its initial countings, the algorithm
searches for fixed parameter values located in a hyperrectan-
gle, which ensures that the solution is uniquely determined.
However, it is not always possible to find a hyperrectangle of
the correct size that is completely inside a given parameter
domain.

For example, consider domain N ≤ M ≤ N + 3 ∧ N ≤
2M − 7 from the polytope in Equation (2). This domain
is geometrically represented with •s in Figure 2. For this
domain, the period in both dimensions is 1, and the imple-
mentation of Clauss’s method in PolyLib[24] searches for a
solution of the following form

aN2M2+bN2M+cN2+dNM2+eNM+fN+gM2+hM+i.
(6)

To find the nine unknown values, Clauss’s method looks for
a 3×3 rectangle in the validity domain where it can compute
initial countings for. As is clear from Figure 2, however, no
such rectangle can be found and the method fails to com-
pute the solution. The validity domains where this problem

1Intuitively speaking, an n-face is an n-dimensional “bor-
der” of the polytope.

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·⋆
·◦
·◦
·◦
·

·

·

·

·

·

·

·

·

·

·

·

·

·

·⋆
·◦
·◦
·•
·

·

·

·

·

·

·

·

·

·

·

·

·

·⋆
·⋆
·◦
·◦
·•
·

·

·

·

·

·

·

·

·

·

·

·

·

·⋆
·⋆
·◦
·•
·•
·

·

·

·

·

·

·

·

·

·

·

·

·⋆
·⋆
·⋆
·◦
·•
·•
·

·

·

·

·

·

·

·

·

·

·

·

·⋆
·⋆
·⋆
·•
·•
·•
·

·

·

·

·

·

·

·

·

·

·

·⋆
·⋆
·⋆
·⋆
·•
·•
·•
·

·

·

·

·

·

·

·

·

·

·

·⋆
·⋆
·⋆
·•
·•
·•
·•
·

·

·

·

·

·

·

·

·

·

·⋆
·⋆
·⋆
·⋆
·•
·•
·•
·•
·

·

·

·

·

·

·

·

·

·

·⋆
·⋆
·⋆
·⋄
·•
·•
·•
·•
·

·

·

·

·

·

·

·

·

·⋆
·⋆
·⋆
·⋆
·⋄
·•
·•
·•
·•
·

·

·

·

·

·

·

·

·

·⋆
·⋆
·⋆
·⋄
·⋄
·•
·•
·•
·•
·

·

·

·

·

·

·

·

·⋆
·⋆
·⋆
·⋆
·⋄
·⋄
·•
·•
·•
·•

·

·

·

·

·

·

·

·

·⋆
·⋆
·⋆
·⋄
·⋄
·⋄
·•
·•
·•

·

·

·

·

·

·

·

·

·⋆
·⋆
·⋆
·⋆
·⋄
·⋄
·⋄
·•
·•

·

·

·

·

·

·

·

·

·

·⋆
·⋆
·⋆
·⋄
·⋄
·⋄
·⋄
·•

·

·

·

·

·

·

·

·

·

·⋆
·⋆
·⋆
·⋆
·⋄
·⋄
·⋄
·⋄

·

·

·

·

·

·

·

·

·

·

·⋆
·⋆
·⋆
·⋄
·⋄
·⋄
·⋄

·

·

·

·

·

·

·

·

·

·

·⋆
·⋆
·⋆
·⋆
·⋄
·⋄
·⋄M

N

Figure 2: Geometrical representation of the validity
domains of Equation (2). The points in the differ-
ent validity domains are shown by different symbols.
The domain marked by • is degenerate.

occurs are known as degenerate domains. In principle, the
algorithm could be adapted to search for points in configu-
rations other than hyperrectangles, but a systematic way for
finding such configurations is not obvious without resorting
to the addition of an extra parameter [27].

2.3 Large Solution Size
Since the periods qi are bounded only by the value of the

coefficients in the input, they can be exponential in terms of
the input size and so the worst-case computation time for
the Ehrhart polynomial in a single validity domain is expo-
nential even for fixed dimension. Since Clauss’s method is
based on the lookup-table representation of periodic num-
bers, the output size is also exponential in the input size.

Consider, for example, the program in Figure 3 (matrix
multiplication). Suppose we want to count the number of
distinct TLB (Translation Lookaside Buffer) pages accessed
between two consecutive accesses to the same TLB page.
This count is an indication of the number of TLB page
misses that can be expected and is called the reuse distance
[3].

For simplicity, we’ll assume that A[i][k] and B[k][j] ac-
cess different TLB pages and we will concentrate on A[i][k].
We assume that A is 200×200 matrix, which is laid out in col-
umn major order, and starts at address zero. Furthermore,
an element size of 4 bytes is assumed. As such, A[i][k] is
located at address 4 × (200k + i).

Iterations (i, j, k) and (i, j + 1, k) access the same array
element A[i][k]. Figure 3b shows the iterations that are
executed between these two iterations: iterations (i, j, k +
1 . . . 199) (◦ on the figure) and iterations (i, j +1, 0 . . . k−1)
(⋄ on the figure). The set of TLB pages accessed by the
◦-iterations can be described as

S1 =

{

t | ∃k′ : t =

⌊

800k′ + 4i

L

⌋

∧ 0 ≤ i, j, k ≤ 199

∧ k + 1 ≤ k′ ≤ 199
}

,

where i, j and k are parameters. Assuming page size L =

do i = 0, 199
do j = 0, 199

s = 0
do k = 0, 199

s = s + A[i][k] ∗ B[k][j]
enddo
C[i][k] = s

enddo
enddo

(a) Source code

.

.

.

.
⋄

.

.

.

.

.
⋄

.

.

.

.

.
⋄

.

.

.

.

.
⋄

.

.

.

.

.

.

.

.

.

.
◦

.

.

.

.

.
◦

.

.

.

.

.
◦

.

.

.

.

.
◦

.

.

.

.

.
◦

.

.

•
(i, j, k)

•(i, j + 1, k)
j

k

(b) Intermediate accesses

Figure 3: Matrix multiplication

4096, this can be written as a set of linear constraints:

S1 = { t | ∃k′ : 1024t ≤ 200k′ + i ≤ 1024t + 1023

∧ 0 ≤ i, j, k ≤ 199 ∧ k + 1 ≤ k′ ≤ 199 }

and further simplified to (e.g., using Omega [22])

S1 = { t | 0 ≤ i ∧ 1024t − 39800 ≤ i ≤ 199 ∧ 0 ≤ k ≤ 198

∧ 0 ≤ j ≤ 199 ∧ i + 200k ≤ 823 + 1024t }

We obtain a similar expression S2 for the ⋄-iterations. The
total count of TLB pages is #(S1 ∪S2) = #S1 +#(S2 \S1).
Concentrating on S1, we see that it is a one-dimensional
polytope and using PolyLib we can find out that its vertices
are

i

1024
+ 25

k

128
−

823

1024
and

i

1024
+

4975

128
.

Since the dimension of this polytope is d = 1 and the peri-
ods are qi = 1024, qj = 1 and qk = 128, the interpolation
method requires 23 · 1024 · 128 initial countings. If we as-
sume we need two bytes to represent a value, then we need
up to 256KiB just to store a single periodic number in the
output. Using our technique detailed in Section 3, which
allows for a different representation of periodic numbers, we
obtain the following equivalent, but much shorter solution
in polynomial time (for fixed dimensions):

−
25

128
k − frac

(

i + 888

1024

)

+ frac

(

i + 200k + 199

1024

)

+
40625

1024
,

with frac (x) the fractional part of x. Although the degen-
eracy problem can in principle be solved, the problem of
a worst-case exponentially-sized output is intrinsic to this
approach.

A number of the proposed compiler methods[3, 17, 25, 32]
hard-code the resulting Ehrhart polynomial in the program
they are optimizing. For these optimizations, large Ehrhart
polynomials result in large binaries, making the optimiza-
tions less interesting in an embedded systems context. Using

• •

• •

•

•

x1

x2

(0, 0)

Figure 4: Barvinok example

our method, the size of the resulting Ehrhart-polynomials
remains small.

In the next section we show how we have solved the degen-
erate domains and exponential complexity problems by tak-
ing an existing algorithm for counting the number of points
in non-parametric polytopes based on Barvinok’s decompo-
sition and extending it to compute Ehrhart polynomials.

3. OUR METHOD

3.1 Barvinok’s Algorithm
Without loss of generality (see Section 5), we assume that

P is full-dimensional, i.e., that the dimension of P is d as
well. Results cited from other sources have been adapted ac-
cordingly. When we refer to Barvinok’s algorithm we mean
the algorithm as outlined by Barvinok and further refined
by De Loera et al.

The basic idea behind Barvinok’s algorithm [1, 7, 14], is
to consider the generating function of the integer points in
a polytope P . This generating function is a formal power
series with a term for each integer point in P , i.e.,

f(P ;x) =
∑

α∈P∩Zd

xα ,

with xα = xα1
1 xα2

2 · · ·x
αd

d . Evaluating this function at x = 1
yields the number of terms, which equals the desired num-
ber of points. The generating function is obviously not con-
structed by enumerating all the integer points in P , but
rather as a signed sum of short rational functions that can
be derived from the description of P .

Example 1. Consider the polytope T shown in Figure 4:
T = {x | x1 ≥ 0 ∧ x2 ≥ 0 ∧ x1 + x2 ≤ 2 }. Its generating
function is f(T ;x) = 1 + x1 + x2

1 + x2 + x1x2 + x2
2. Barvi-

nok’s algorithm, however, will produce this function in the
following form:

f(T ;x) =
x2

1

(1 − x−1
1)(1 − x−1

1 x2)
+

x2
2

(1 − x−1
2)(1 − x1x

−1
2)

+
1

(1 − x1)(1 − x2)
.

To construct the generating function as a signed sum of
short rational functions, we consider the vertices vi of P
and the constraints that it saturates, i.e., the constraints
〈a,x〉 ≥ b with 〈a,vi〉 = b, where 〈., .〉 is the standard
scalar product. The region in Qd bounded by these con-
straints for a particular vi is called the supporting cone
cone(P,vi). E.g., the supporting cone of vertex v1 of the
polytope (shaded area) in Figure 5 is shown in thick lines. It
can be shown [1] that the generating function of P is equal to

K1 + v1

K2 + v1u2
2

u1
1

E(v1, K2)

E(v1, K1)

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

+

+

+

+

+

+

+

+

+

+ +

+

+

+

+

+

+

+

•

u2
1

u1
2

v1

•

•
(0, 0)

Figure 5: Decomposition of cone(P,v1).

the sum of the generating functions of its supporting cones.
To construct the generating function of a supporting cone,
we use Barvinok’s decomposition into unimodular cones.

Definition 3. A cone with generators u1,u2, . . . ,uk ∈
Zd is a set of the form {

∑

i
λiui | λi ≥ 0 }. It is called uni-

modular if its generators form a basis of Zd.

Note that using this definition, cone(P,vi) is not a cone
itself, but the sum of vi and some cone K. Barvinok pro-
posed to decompose this cone into a signed “sum” of uni-
modular cones { (ǫi, Ki) } = B(K), with ǫi ∈ {−1, 1 }, the
sign corresponding to unimodular cone Ki. Here, “sum” can
be interpreted to mean that the generating function of K is
the signed sum of the generating functions of the unimodu-
lar cones. It can be shown [1] that a simple explicit formula
exists for the generating function of a unimodular cone:

f(Ki;x) =
k
∏

j=1

1

(1 − xui
j)

,

with ui
j the generators of Ki. A key feature of this decom-

position is that its computation time is polynomial in the
input size (for fixed dimensions), where, as usual [30], the
input size is the number of bits needed to represent the input
polytope.

To obtain the final generating function, the generating
functions corresponding to the unimodular cones Ki need
to be translated to the vertex v. If v is integer, then we
simply need to add v to all the exponents in the generating
function, which corresponds to a multiplication by xv. If v
is not integer, however, then we need to find another point

v′ = E(v, Ki) such that xv′

f(Ki;x) generates Ki+v. Since
Ki is unimodular, this point exists and is uniquely defined
as the smallest integer linear combination of the generators
of Ki that lies inside Ki + v [14]. I.e.,

E(v, Ki) =
∑

j

⌈λj⌉u
i
j , (7)

where λ is the rational solution to v =
∑

j
λju

i
j and ⌈.⌉

is the upper integer part. Note that if v is integer, then
E(v, Ki) = v. The final generating function is then

f(P ;x) =
∑

v∈V(P)

|B(Kv)|
∑

i=1

ǫi
xE(v,Ki)

∏d

j=1(1 − xui
j)

. (8)

For a proof of the correctness of this formula, see [1].

Example 2. Figure 5 shows a polytope P (shaded area)
and its supporting cone (thick lines) at vertex v1. A possible
signed unimodular decomposition for cone(P,v1)−v1 is the
pair { (1, K1), (1, K2) }.

2 Let v′
1 = E(v1, K1) and v′′

1 =
E(v1, K2). Since both signs are positive, we have

f(cone(P,v1);x) = f(v′
1 + K1;x) + f(v′′

1 + K2;x).

The integer points in v′′
1 + K2 are marked by +, whereas

those in v′
1 + K1 are marked by +.

Note that each term in (8) has a pole at x = 1. We
can still evaluate this function at x = 1 by computing the
residue. De Loera [14] shows that, through a suitable vari-
able substitution, each (multivariate) term in (8) can be
written as the univariate

ǫ′i
N(s)

D′(s)
= ǫ′i

(s + 1)〈µ,E(v,Ki)〉−c

sdD(s)
, (9)

with xi = (s + 1)µi , D(s) a polynomial with integer coeffi-
cients, independent of v, µ an integer vector not orthogonal
to any generator and c the sum of the negative 〈µ,ui

j〉s.
Evaluating (8) at x = 1 is equivalent to summing the terms
(9) evaluated at s = 0. This in turn can be accomplished
by computing the coefficient of sd in the Taylor expansion
of N(s)/D(s). Note that this only requires the first (d + 1)
coefficients of N(s). The (signed) sum of the coefficients of
sd in each of the terms then yields the desired number of
points in the polytope.

Example 3. Consider once more the polytope T from Ex-
ample 1. Since each of its supporting cones is unimodular,
the generating function f(T ;x) has exactly one term for each
vertex. To evaluate f(T ;x) at 1 one can take µ = (1,−1)
since it is not orthogonal to any generator. Substituting
x1 = (s + 1)µ1 and x2 = (s + 1)µ2 in f(T ;x) we obtain:

f(T ; s) =
(s + 1)2

(1 − (s + 1)−1)(1 − (s + 1)−2)
+

(s + 1)−2

(1 − (s + 1))(1 − (s + 1)2)
+

1

(1 − (s + 1))(1 − (s + 1)−1)
.

In order to obtain only positive powers in the denominators,
we multiply the numerator and the denominator of each term
by (s + 1)−c, with c the sum of the negative powers in the
denominator. This returns f(T ; s) in the form:

f(T ; s) =
(s + 1)5

(1 − (s + 1))(1 − (s + 1)2)
+

(s + 1)−2

(1 − (s + 1))(1 − (s + 1)2)
−

(s + 1)

(1 − (s + 1))(1 − (s + 1))
.

(10)

2Note that this is not the decomposition that our implemen-
tation would produce, since, like De Loera [14], we perform
the decomposition on the dual cone.

Algorithm 1 Parametric Barvinok

1. For each vertex vi(p) ∈ V(P)

(a) Determine supporting cone cone(P,vi(p))

(b) Let K = cone(P,vi(p)) − vi(p)

(c) Let {(ǫj , Kj)} = B(K)

(d) For each Kj

i. Determine f(Kj ;x)

(e) f(cone(P,vi(p));x) =
∑

j
ǫjx

E(vi(p),Kj)f(Kj ;x)

2. For each validity domain Dk of P

(a) fDk
(P ;x) =

∑

vi∈VDk
(P) f(cone(P,vi(p));x)

(b) evaluate fDk
(P ;1)

Rewriting each term in the form 1
s2

N(s)
D(s)

(through Taylor ex-

pansion and polynomial division) we obtain:

f(T ; s) =
1

s2
(
1

2
+

9

4
s+

31

8
s2+· · ·)+

1

s2
(
1

2
−

5

4
s+

17

8
s2+· · ·)

−
1

s2
(1 + s + 0s2 + · · ·).

Finally, the number of integer points in the polytope T is
given by the sum of the coefficients of s2 in the polynomials
N(s)
D(s)

, i.e, 31
8

+ 17
8
− 0 = 6.

3.2 Computing Ehrhart Polynomials
Algorithm 1 shows our extension of Barvinok’s method to

parametric polytopes. The main idea behind this general-
ization is to consider Loechner and Wilde’s decomposition
of the parameter space and to apply Barvinok’s algorithm
to the fixed set of (parametric) vertices that belong to each
validity domain. Thus, one parametric generating function
is to be computed for each of these validity domains. We
refer to [26] for details on how to compute these validity
domains.

The generating function for the parametric polytope Pp

on validity domain D is the parametric version of Equa-
tion (8):

fD(Pp;x) =
∑

v(p)∈VD(Pp)

|B(K
v)|

∑

i=1

ǫi

xE(v(p),Ki)

∏d

j=1(1 − xui
j)

, (11)

with ǫi ∈ {−1, 1} and v(p) a parametric vertex of the poly-
tope Pp. Each coordinate of v(p) is an affine function of
the parameters. Ki is the ith unimodular cone in the signed
unimodular decomposition of cone Kv, the translation to
the origin of the supporting cone at v(p). The support-
ing cone is again defined by the constraints that v(p) sat-
urates, i.e., the constraints 〈a,x〉 ≥ 〈b,p〉 + c such that
〈a,v(p)〉 = 〈b,p〉 + c. The correctness of (11) follows from
the fact that the generators of K are independent of the pa-
rameters, which means that Barvinok’s decomposition can
be applied without change.

The exponent in the numerators of (11), which corre-
sponds to the uniquely defined point inside the translated

unimodular cone, is given by the parametric version of (7):

E(v(p), Ki) =

d
∑

j=1

⌈λj(p)⌉ui
j , (12)

where the λj(p)s are rational affine functions of the param-

eters that solve v(p) =
∑d

j=1 λj(p)ui
j . This form cannot

be used directly to construct Ehrhart (quasi-)polynomials,
since the upper integer part is not periodic. It can however
be rewritten as

⌈λj(p)⌉ = −⌊−λj(p)⌋ = λj(p) + frac(−λj(p)) . (13)

The second term on the right is now clearly a periodic num-
ber, say U ′

j(p), with period at most the common denomi-
nator of the coefficients that appear in λj(p). Substituting
the value of ⌈λj(p)⌉ in (12) we get

E(v(p), Ki) =

d
∑

j=1

λj(p)ui
j +

d
∑

j=1

U ′
j(p)ui

j = v(p) + U(p),

(14)
with U(p) a vector of periodic numbers.

As in the non-parametric case, we can obtain the value of
the parametric generating function (11) at x = 1 by comput-
ing the residue. Again, the variable substitution proposed
by De Loera [14] is independent of the numerator and hence
of the parameters. Substituting (14) in (9), we obtain

Np(s) = (s + 1)〈µ,v(p)+U(p)〉−c = (s + 1)Λ(p), (15)

with Λ(p) an affine function of the parameters with a con-
stant part that may be a periodic number. The coefficients
of Np(s) up to that of sd (i.e., those required to compute
the coefficient of sd in Np(s)/D(s)) are

ni(p) =

(

Λ(p)

i

)

=

∏i−1
j=0(Λ(p) − j)

i!
for 0 ≤ i ≤ d. (16)

Each coefficient ni(p) in the above formula is given by a
product of at most d affine functions of the parameters with
constant parts that may be periodic numbers. This implies
that each of these coefficients is a multivariate polynomial
of the parameters in which the coefficients may be periodic
numbers and for which the sum of powers in each multivari-
ate monomial is at most d. Since the coefficient of sd in
Np(s)/D(s) is a linear combination of these ni(p), it con-
forms to the same property and so does the signed sum of
all these terms. That is, the residue of (11), which is equal
to the parametric number of points in Pp, is an Ehrhart
polynomial, as expected. I.e.,

ED(P ;p) = fD(Pp;1) =
∑

0≤i1+i2+···+in≤d

Ui(p)pi, (17)

with the Ui(p)s periodic numbers and d the dimension of
Pp.

As explained in Section 2.1, such periodic number can be
represented by a lookup-table. However, to avoid the ex-
ponential behavior of such lookup-tables, we keep the frac-
tional parts from (13) instead. Since we require both ad-
ditions (in (14), (15) and (16)) and multiplications (16) of
periodic numbers, we represent all periodic numbers as lin-
ear combinations of products of such expressions:

U(p) =
∑

i

αi

∏

j

frac

(

βij0 +
∑

k

βijkpk

)

,

with αi ∈ Q and βijk ∈ Z. This representation is clearly
closed under addition and multiplication.

Example 4. Consider the polytope

P(p) = {x | x1 ≥ 0 ∧ x2 ≥ 0 ∧ 2x1 + 2x2 ≤ p } .

This is a parametric version of the polytope in Examples 1
and 3 where p was set to 4. This polytope has a single va-
lidity domain p ≥ 0 with parametric vertices (0, 0), (p

2
, 0)

and (0, p

2
). The generators of the corresponding supporting

cones are (1, 0), (0, 1), (−1, 0), (−1, 1) and (0,−1), (1,−1)
respectively. Since all these supporting cones are unimod-
ular, there is a single term in (11) for each vertex. Since
(p

2
, 0) = − p

2
(−1, 0) + 0(−1, 1), we conclude from (12) that

the exponent in the numerator of the term for this vertex is
⌈

−
p

2

⌉

(−1, 0) =
(p

2
− frac

(p

2

)

, 0
)

.

As in Example 3, we take µ = (1,−1), a vector not orthog-
onal to any of the generators. The exponent of (s + 1) in
(15) is
〈

(1,−1),
(p

2
− frac

(p

2

)

, 0
)〉

+ 3 =
p

2
− frac

(p

2

)

+ 3,

where c = −3 as in (10). The other vertices are handled
similarly and we obtain

f(P ; s) =
(s + 1)

p
2
−frac(p

2)+3

s2(s + 2)
+

(s + 1)−
p
2
+frac(p

2)

s2(s + 2)
−

s + 1

s2
,

where we simplified the denominators that we already calcu-
lated in (10). To evaluate f(P ; 0), we calculate the coeffi-
cient of s2 in

N(s)

D(s)
=

(s + 1)
p
2
−frac(p

2)+3 + (s + 1)−
p
2
+frac(p

2)

s + 2
− (s + 1).

(18)
The second term does not contribute to s2. The terms in
the numerator of the first term can be expanded according to
(16) as

(s + 1)
p
2
−frac(p

2)+3 = 1 +
(p

2
− frac

(p

2

)

+ 3
)

s +
(

p2

8
+

(

5

2
− frac

(p

2

)

)

p

2
+

1

2

(

frac
(p

2

))2

−
5

2
frac

(p

2

)

+ 3

)

s2

+ r(s)s3

and

(s + 1)
p
2
−frac(p

2) = 1 +
(p

2
− frac

(p

2

))

s +
(

p2

8
+

(

1

2
− frac

(p

2

)

)

p

2
+

1

2

(

frac
(p

2

))2

−
1

2
frac

(p

2

)

)

s2

+ r′(s)s3.

while the denominator yields

1

s + 2
=

1

2

(

1 −
1

2
s +

1

4
s2 + r′′(s)s3

)

.

The coefficient of s2 in (18), which equals E(P ; p) = f(P ; 0),
is therefore

p2

8
+

(

3

4
−

1

2
frac

(p

2

)

)

p +
1

2

(

frac
(p

2

))2

−
3

2
frac

(p

2

)

+ 1.

Note that the Ehrhart polynomial in (17) can be com-
puted for any validity domain, no matter its size or shape.
Furthermore it is calculated analytically, which enables the
use of fractional parts for periodic numbers. For fixed di-
mensions, the elementary operations on this representation
can be performed in polynomial time. Furthermore, the
number of such operations performed for each vertex is poly-
nomial for fixed dimensions and so is Barvinok’s decom-
position [2]. Since the number of parametric vertices is
also polynomial (for fixed dimensions) [26], we can com-
pute a polynomially-sized Ehrhart polynomial in polynomial
time for any given validity domain. To obtain a bound on
the number of validity domains, consider the hyperplanes
in the parameter space formed by the affine hulls of the
(m − 1)-dimensionsal intersections of pairs of validity do-
mains.3 These k hyperplanes partition the parameter space
into a number of cells that is bounded by a polynomial in
k (for fixed dimensions) [8]. Since (part of) these cells form
a subdivision of the validity domains and since the k hy-
perplanes correspond (roughly) to the (m − 1)-faces of P ,
which are themselves bounded in number by a polynomial in
the input size (for fixed dimensions), the number of validity
domains and hence also the total size is polynomial in the
input size (for fixed dimensions). Note that in practice, the
number of validity domains is typically very small.

4. EXPERIMENTS
During the past years, a number of researchers have ob-

served degeneracy problems in Clauss’s method while they
were trying to count the number of points in the polytopes
generated by their compiler analyses. Thanks to their col-
laboration, we have collected polytopes resulting from cache
miss equations[19], exact analysis of cache behavior[9], con-
verting software to hardware implementations[32], comput-
ing reuse distance equations[3] and a number of counting
problems originating from as yet unpublished compiler anal-
yses. For all these polytopes on which Clauss’s method fails,
our method successfully computes the solution. Our imple-
mentation and a set of such polytopes are available from
http://freshmeat.net/projects/barvinok/.

Furthermore, we made a more extensive evaluation by
comparing the results, the computation time and the size
of the solution for parametric polytopes resulting from the
following two analyses:

• Computation of reuse distances[3]. The reuse distance
of a memory access to an array element a is the number
of different array elements that are fetched since the
previous access to a. First, the array elements accessed
between use and reuse are represented as a union of
parametric polytopes. Then, the reuse distance is com-
puted by symbolically counting the number of integer
points in the polytopes. In our experiments, none of
these polytopes have periodic behavior and therefore

3The affine hull of a set S is the set {λ1x1 + · · ·λkxk |
{x1, . . . xk } ⊂ S,

∑

i
λi = 1 }.

program nr. Clauss’s our
of method method

poly- #degen. exec. exec.
topes domains time time

vpenta 6496 0 269.50s 165.84s
mxm 66 0 7.92s 1.98s
liv18 5296 6 248.68s∗ 135.43s
cholesky 76 0 6.12s 1.94s
jacobi 246 6 11.58s∗ 6.32s
gauss-jordan 308 0 19.01s 8.08s
tomcatv 8786 66 731.31s∗ 247.46s
total 21274 78 1294.12s∗ 567.05s

Table 1: Number of polytopes constructed by
reuse distance calculation, number of degenerate do-
mains using Clauss’s method, and execution time of
Clauss’s and our method. The numbers marked by
an ∗ are partial since they only apply to the non-
degenerate domains.

their period is always 1. The solution size is then poly-
nomial for both fractional parts and table representa-
tion of periodic numbers. However, Table 1 shows that
for 4 out of the 7 programs for which reuse distances
are calculated, Clauss’s method fails to compute the
reuse distance, due to degenerate domains. Thanks
to our method, the reuse distance can be calculated
for all programs, which makes calculation of reuse dis-
tances practical and potentially useful to implement in
industrial compilers. Furthermore, Table 1 shows that
the computation times are reasonable and compared
to Clauss’s method, our method is about twice as fast
for this set of polytopes. For 99% of these polytopes,
there is only a single validity domain. The remaining
1% have two to four validity domains. The dimension
d of these polytopes is 1 or 2, whereas the number of
parameters ranges between 2 and 7.

• Computation of the number of cache lines and the
number of memory pages accessed by a reference in
a given execution of a loop nest[16]. In contrast to the
polytopes resulting from the reuse distance calcula-
tion, some of these polytopes do have large periods. In
Figure 6, the calculation time is plotted in function of
the periodic behavior. In Figure 7, the size of the solu-
tion is shown as a function of the period of the solution.
Remember that the period itself is exponential in the
input size, even for fixed dimensions. Figure 6 shows
that the computation time increases sharply with the
period for Clauss’s method. On the other hand, the
computation time of our method is always less than 1
second, irrespective of the period. In comparison, the
computation time using Clauss’s method increases to
more than 3 hours for one polytope. Figure 7 shows
that the size of the solution using Clauss’s method can
increase to more than 33MB, whereas our method al-
ways produces solution sizes smaller than 9KB. For
99% of these polytopes, there is only a single validity
domain. The remaining 1% have two validity domains.
The dimension d of these polytopes is 1 or 2, whereas
the number of parameters ranges between 0 and 3.

The experiments were performed on an otherwise idle

0.01

0.1

1

10

100

1000

10000

100000

1 10 100 1000 10000 100000 1000000 1E+07

period

ti
m

e
(s

)

Clauss's method

our method

Figure 6: Execution time as a function of maximum
period of computed polynomials.

1E+0

1E+3

1E+6

1E+9

1 10 100 1000 10000 100000 1000000 1E+07

period

s
o

lu
ti

o
n

s
iz

e
(b

y
te

s
)

Clauss's method

our method

Figure 7: Solution size as a function of maximum
period of computed polynomials.

2.66GHz Pentium4 machine running Linux. As explained
in the next section, our implementation is built on top of
the same library for performing polyhedral operations that
is used by the implementation of Clauss’s method. Further-
more, our implementation uses the same data structures to
store polynomials. The size measure corresponds to the to-
tal memory size allocated to store the result. Note that the
granularity is 4 bytes, since the experiments were performed
on a 32 bits machine.

5. IMPLEMENTATION DETAILS
In Section 3, we assumed that P is full-dimensional. If

P is of dimension d − l, with l ≥ 1, then its description
contains an equality 〈a,x〉 = 〈b,p〉 + c. Let a′ = a/g,
with g the gcd (greatest common divisor) of the elements
in a. a′T can be extended to a unimodular matrix U [4].4

Let P ′ = UP . Since U and U−1 are unimodular, there
is one-to-one correspondence between the integer points in
P and those in P ′ and so the number of points in both
polytopes is the same, i.e., E(P ′) = E(P). Furthermore,
the first coordinate x′

1 of P ′ is independent of the other
coordinates since gx′

1 = g〈a′,x〉 = 〈b,p〉+c by construction
of U and so P ′ is the cross product of P ′′ = { (〈b,p〉 +
c)/g } and some P1 ∈ Rd−1. Therefore we can factor P and
compute the number of points in P as the product of those
in P ′′ and P1, i.e., E(P) = E(P ′) = E(P ′′) · E(P1). The
number of integer points in P ′′ is zero or one depending
on the parameters and can be represented by a periodic
number. Repeating the above l times, yields a Pl ∈ Rd−l of
full dimension.

Even if P is full-dimensional, then we may in some cases
still be able to write it as a cross product of two or more
sets [20]. Since the dimension of each set is smaller than
that of P , we can greatly reduce the computation time by
calculating the number of points in each factor separately
and multiplying the results afterward. Note that we also
need to “multiply” the validity domains, i.e., the validity
domains of the product are the intersections of the corre-
sponding validity domains in the factors. Furthermore, if P
or one of its factors is one-dimensional then it has two ver-
tices l(p) ≤ u(p) and we simply calculate ⌊u(p)⌋−⌈l(p)⌉+1
(again a periodic number) in each validity domain rather
than using the algorithm of Section 3.

Our procedure for calculating Barvinok’s decomposition
into unimodular cones is an independent reimplementation
of the corresponding procedure in LattE [13] as described
in [14]. Like LattE, we use Shoup’s implementation [31]
of Lenstra, Lenstra and Lovasz’ basis reduction algorithm
and GMP [18] for computing in exact long integer arithmetic.
Unlike LattE, however, we use PolyLib [24] for performing
polyhedral operations, since this allows us to reuse the pro-
cedures for subdividing the parameter space into validity
domains [26]. The disadvantage of using PolyLib is that it
incurs a speed penalty by insisting on maintaining the dual
representation for all polytopes and by its non-optimal use
of the GMP library.

6. RELATED WORK
Two methods are often cited for counting the number

of points in a parametric polytope: Clauss and Loechner

4A unimodular matrix is an integer matrix with determinant
1 or −1.

for(i=1;1000*i<=N;i++)

for(j=1;1000*j<=N;j++)

S1;

(a) How many times does S1 execute?

N2

1000000
if 1000 divides N

(N−1)N
1000000

− N−1
1000000

if 1000 divides N − 1

. . .
(N−999)N
1000000

− 999N−998001
1000000

if 1000 divides N − 999

(b) solution computed by Pugh’s method[29]

(

N

1000

)2

−
N

500
frac

(

N

1000

)

+

(

frac

(

N

1000

))2

(c) solution generated by our method

Figure 8: Example of an answer generated by Pugh’s
method. The number of different cases in Pugh’s
answer is as large as the factor of i and j in the
program in (a) (1000 in this example). Therefore,
the solution size of Pugh’s method is exponentially
large.

(1998) [10] and Pugh (1994) [29]. As already explained
in the previous sections, our technique and the first share
the decomposition into validity domains, but whereas the
first can produce exponentially sized Ehrhart polynomials
or sometimes no polynomial at all, our technique always
produces polynomially-sized Ehrhart polynomials in poly-
nomial time (for fixed dimensions).

The technique of Pugh consists of a set of simplification
and rewrite rules and the application of a set of standard
summation formulas for some base cases. In contrast to our
technique and that of Claus and Loechner, his technique
does not appear to have ever been implemented. Further-
more, the description of the method in [29] fails to indicate
which rewrite rules to use when several are applicable. We
are therefore unable to systematically compare our results
to those that would or would not be obtained using that
method. Application by hand on the example in Figure 8
shows that even if it could be implemented, it would result
in exponentially large solutions in the worst case, even for
fixed dimensions.

Although LattE initially only counted the number of points
in non-parametric polytopes, it has been extended to han-
dle some form of parametric polytopes by what the authors
call the homogenized Barvinok algorithm [12]. They only
support a single parameter p, however. In particular, they
only consider dilations pP of a non-parametric polytope P
by a factor p. This means that all the vertices (see Eq. (3))
are of the form pv and that they do not need to consider
validity domains, since the limited set of problems they han-
dle always have a single fixed validity domain. Rather than
Ehrhart polynomials, they compute Ehrhart series which
are formal power series closely related to Ehrhart polyno-
mials and seem to be more appropriate for their application
domain. The main difference is that in an Ehrhart series
the number of points in the dilatation pP is equal to the
coefficient of the term tp.

Recently some advances have been made towards automata-
based counting [5, 28]. Although these techniques handle
a larger class of problems (solutions to Presburger formu-
las), they do not support symbolic parameters. Preliminary
experiments have shown that in the intersection of the ap-
plication domains, i.e., for non-parametric polytopes, our
method is as fast or faster (up to a factor 100 in some ex-
ceptional cases) than Parker’s, except for polytopes with
a large number (say thousands) of vertices. For such poly-
topes, the homogenized Barvinok algorithm as implemented
by LattE would be more appropriate.5

7. CONCLUSION AND FUTURE WORK
Many compiler analyses and optimizations require the

computation of the number of integer solutions to paramet-
ric systems of linear inequalities. This count can be repre-
sented by a set of Ehrhart polynomials, each valid in part
of the parameter space. We have presented a new method,
based on Barvinok’s decomposition, for counting these poly-
nomials analytically, resulting in the first implementation
that handles all parametric polytopes of the form (1). By
further using an alternative representation of periodic num-
bers using fractional parts, we compute polynomially sized
Ehrhart polynomials—crucial for compiler optimizations that
encode the Ehrhart polynomial in the resulting optimized
program—in polynomial time, making a whole class of ex-
isting optimization techniques practically usable.

Our Ehrhart polynomials, though polynomially sized (for
fixed dimensions), can in some cases still be relatively large.
Further research into simplification of expressions containing
fractional parts beyond what is applied already may reduce
their size even further. We also plan to extend our tech-
nique to counting the number of points in integer projections
of parametric polytopes, which would allow the parametric
enumeration of solutions to Presburger formulas, after con-
version to disjoint disjunctive normal form.

8. ACKNOWLEDGEMENTS
We thank Jesus A. De Loera, Jörg Rambau and the anony-

mous reviewers for their advice and Erin Parker for provid-
ing us with an implementation of her technique.

Kristof Beyls was supported by research projects GOA-
12051002 and IWT-SB991147. Sven Verdoolaege was sup-
ported by FWO-Vlaanderen.

9. ADDITIONAL AUTHORS
Additional authors: Vincent Loechner (ICPS, LSIIT

(UMR CNRS 7005), Université Louis Pasteur, Stras-
bourg, email: loechner@icps.u-strasbg.fr) and Mau-
rice Bruynooghe (Dept. of Computer Science, K.U.Leuven,
email: maurice@cs.kuleuven.ac.be).

10. REFERENCES
[1] A. Barvinok and J. Pommersheim. An algorithmic

theory of lattice points in polyhedra. New Perspectives
in Algebraic Combinatorics, (38):91–147, 1999.

[2] A. I. Barvinok. A polynomial time algorithm for
counting integral points in polyhedra when the
dimension is fixed. In 34th Annual Symposium on

5This version embeds a polytope P in a single cone with a
polar that has few rays if P has few facets [14].

Foundations of Computer Science, pages 566–572.
IEEE, Nov. 1993.

[3] K. Beyls. Software Methods to Improve Data Locality
and Cache Behavior. PhD thesis, Ghent University,
2004.

[4] A. J. C. Bik. Compiler Support for Sparse Matrix
Computations. PhD thesis, University of Leiden, The
Netherlands, 1996.

[5] B. Boigelot and L. Latour. Counting the solutions of
Presburger equations without enumerating them.
Theoretical Computer Science, (313):17–29, 2004.

[6] V. Braberman, D. Garbervetsky, and S. Yovine. On
synthesizing parametric specifications of dynamic
memory utilization. Technical report, Oct. 2003.

[7] M. Brion and M. Vergne. Residue formulae, vector
partition functions and lattice points in rational
polytopes. J. Amer. Math. Soc., 10:797–833, 1997.

[8] R. Buck. Partition of space. American Mathematical
Monthly, 50(9):541–544, 1943.

[9] S. Chatterjee, E. Parker, P. J. Hanlon, and A. R.
Lebeck. Exact analysis of the cache behavior of nested
loops. In Proceedings of the ACM SIGPLAN 2001
Conference on Programming Language Design and
Implementation, pages 286–297. ACM Press, 2001.

[10] P. Clauss and V. Loechner. Parametric Analysis of
Polyhedral Iteration Spaces. Journal of VLSI Signal
Processing, 19(2):179–194, July 1998.

[11] P. D’Alberto, A. Veidembaum, A. Nicolau, and
R. Gupta. Static analysis of parameterized loop nests
for energy efficient use of data caches. In Workshop on
Compilers and Operating Systems for Low Power
(COLP01), Sept. 2001.

[12] J. De Loera, D. Haws, R. Hemmecke, P. Huggins,
B. Sturmfels, and R. Yoshida. Short rational functions
for toric algebra and applications, July 2003.
http://arxiv.org/abs/math.CO/0307350.

[13] J. A. De Loera, D. Haws, R. Hemmecke, P. Huggins,
J. Tauzer, and R. Yoshida. A user’s guide for latte
v1.1, Nov. 2003. software package LattE is available at
http://www.math.ucdavis.edu/∼latte/.

[14] J. A. De Loera, R. Hemmecke, J. Tauzer, and
R. Yoshida. Effective lattice point counting in rational
convex polytopes, Mar. 2003.
http://www.math.ucdavis.edu/~latte/theory.html.

[15] E. Ehrhart. Polynômes arithmétiques et méthode des
polyèdres en combinatoire. International Series of
Numerical Mathematics, 35, 1977.

[16] J. Ferrante, V. Sarkar, and W. Thrash. On estimating
and enhancing cache effectiveness. In U. Banerjee,
D. Gelernter, A. Nicolau, and D. Padua, editors,
Proceedings of the Fourth International Workshop on
Languages and Compilers for Parallel Computing,
volume 589 of Lecture Notes in Computer Science,
pages 328–343. Springer-Verlag, Aug. 1991.

[17] B. Franke and M. O’Boyle. Array recovery and
high-level transformations for DSP applications. ACM
Transactions on Embedded Computing Systems,
2(2):132–162, May 2003.

[18] Free Software Foundation, Inc. GMP. Available from
ftp://ftp.gnu.org/gnu/gmp.

[19] S. Ghosh, M. Martonosi, and S. Malik. Cache miss

equations: a compiler framework for analyzing and
tuning memory behavior. ACM Transactions on
Programming Languages and Systems, 21(4):703–746,
1999.

[20] N. Halbwachs, D. Merchat, and C. Parent-Vigouroux.
Cartesian factoring of polyhedra in linear relation
analysis. In Static Analysis Symposium, SAS’03, San
Diego, June 2003. LNCS 2694, Springer Verlag.

[21] F. Hannig and J. Teich. Design space exploration for
massively parallel processor arrays. In Proceedings of
the Sixth International Conference on Parallel
Computing Technologies, volume 2127 of Lecture
Notes in Computer Science, pages 51–65, 2001.

[22] W. Kelly, V. Maslov, W. Pugh, E. Rosser,
T. Shpeisman, and D. Wonnacott. The Omega
calculator and library. Technical report, University of
Maryland, Nov. 1996.

[23] B. Lisper. Fully automatic, parametric worst-case
execution time analysis. In J. Gustafsson, editor, Proc.
Third International Workshop on Worst-Case
Execution Time (WCET) Analysis, pages 77–80,
Porto, July 2003.

[24] V. Loechner. Polylib: A library for manipulating
parameterized polyhedra. Technical report, ICPS,
Université Louis Pasteur de Strasbourg, France, Mar.
1999.

[25] V. Loechner, B. Meister, and P. Clauss. Precise data
locality optimization of nested loops. J. Supercomput.,
21(1):37–76, 2002.

[26] V. Loechner and D. K. Wilde. Parameterized
polyhedra and their vertices. International Journal of
Parallel Programming, 25(6):525–549, Dec. 1997.

[27] B. Nootaert. Een verbeterde methode voor de
berekening van Ehrhart-polynomen. Master’s thesis,
Ghent University, 2004.

[28] E. Parker and S. Chatterjee. An automata-theoretic
algorithm for counting solutions to Presburger
formulas. In Compiler Construction 2004, volume
2985 of Lecture Notes in Computer Science, pages
104–119, Apr. 2004.

[29] W. Pugh. Counting solutions to Presburger formulas:
How and why. In SIGPLAN Conference on
Programming Language Design and Implementation
(PLDI’94), pages 121–134, 1994.

[30] A. Schrijver. Theory of linear and integer
programming. John Wiley & Sons, 1986.

[31] V. Shoup. NTL. Available from
http://www.shoup.net/ntl/.

[32] A. Turjan, B. Kienhuis, and E. Deprettere. A compile
time based approach for solving out-of-order
communication in Kahn Process Networks. In IEEE
13th International Conference on Aplication-specific
Systems, Architectures and Processors (ASAP’2002),
July 2002.

[33] Y. Zhao and S. Malik. Exact memory size estimation
for array computations. IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, 8(5):517–521,
October 2000.

	1 Introduction
	2 Clauss's Method
	2.1 Ehrhart's Theory
	2.2 Interpolation and Degenerate Domains
	2.3 Large Solution Size

	3 Our Method
	3.1 Barvinok's Algorithm
	3.2 Computing Ehrhart Polynomials

	4 Experiments
	5 Implementation Details
	6 Related Work
	7 Conclusion and Future Work
	8 Acknowledgements
	9 Additional Authors
	10 REFERENCES -9pt

