
Parallel Adaptive Mesh Coarsening for Seismic Tomography

Marc Grunberg
IPGS, UMR 7516,CNRS-ULP,

5 rue R. Descartes, F-67084 Strasbourg

Stéphane Genaud
Catherine Mongenet

LSIIT-ICPS, UMR 7005,CNRS-ULP,
Bd S. Brant, F-67400 Illkirch

Abstract

Seismic tomography enables to model the internal struc-
ture of the Earth. In order to improve the precision of exist-
ing models, a huge amount of acquired seismic data must be
analyzed. The analysis of such massive data require a con-
siderable computing power which can only be delivered by
parallel computational equipments. Yet, parallel computa-
tion is not sufficient for the task: we also need algorithms to
automatically concentrate the computations on the most rel-
evant data parts.

The objective of the paper is to present such an algo-
rithm. From an initial regular mesh in which cells carry
data with varying relevance, we present a method to ag-
gregate elementary cells so as to homogenize the relevance
of data. The result is an irregular mesh which has the ad-
vantage over the initial mesh of having orders of magni-
tude less cells while preserving the geophysical meaning of
data. We present both a sequential and a parallel algorithm
to solve this problem under the hypotheses and constraints
inherited from the geophysical context.

1. Introduction

Seismic tomography is an important field in geophysics.
Its objective is to build a global seismic wave velocity
model of the Earth, that is to determine the physical charac-
teristics and heterogeneities of the various parts of the Earth
interior. The data used to build such a model are obtained
from the seismic events recorded by the many seismic sta-
tions (or captors) covering the planet.

When a seismic event occurs, the network of stations
record the corresponding seismograms. These seismograms
are analyzed to localize the source (e.g. the earthquake
hypocenter) and determine the wave type and the wave
travel time. The data are then stored in databases by in-
ternational institutions such as the ISC (International Seis-
mic Center). Obviously, the number of such records is huge.

For instance, our case study process the seismic data set ac-
quired by the ISC for year 1999 which represents 817000
records. From each record, the wavefront propagation from
the source to the captor, called the seismic ray, can be com-
puted. Computing the ray paths from the records is called
the ray-tracing process.

Seismic tomography is a three-phases process :

• The space of study (either the whole globe or just a re-
gion) is meshed with elementary cells.

• Then the set of rays is traced using an initial velocity
model. During the ray-tracing phase, each ray segment
crossing a cell brings some information stored into that
cell. Because of the uneven repartition of both the seis-
mic stations and the earthquake centers, some regions
are crossed by very few rays. We call illumination the
property reflecting the wealth of information for a cell,
which depends on the number and variety of the rays
(in terms of incidence angle) crossing it.

• Eventually, the data collected enable to setup an enor-
mous overdetermined system of equations called the
inverse problem. In this third phase, the objective is
to find the velocities that best fit the computed ray
paths, yielding a new velocity model. The parametriza-
tion of the inverse problem is crucial for its resolu-
tion. With a regular mesh, the parametrization gener-
ates as many unknowns for regions with badly illumi-
nated cells than for zones with a good ray sampling,
leading to an ill-conditioned system. Hence, the con-
struction of an adaptive mesh in which only cells with
enough information remain small, while poorly infor-
mative cells are gathered to increase the local illumina-
tion, is necessary to improve the model accuracy. Fur-
thermore, the reduction in the number of cells (two or-
ders of magnitude in this paper) allows to use a fine
resolution for well-sampled zones in the inverse prob-
lem without exceeding the current computing capabil-
ities.

Various methods have already been studied to tackle this
problem. They can be roughly classified in two categories.

In the first category, the mesh is build according to some
static information: for instance the method in [10] pro-
poses a grid optimization which uses a very dense model
gridding in localized areas where sources are densest. An-
other method enables some optimizations by interactively
changing the grid boundaries [6]. In the second category
are methods which automatically adapt the mesh depend-
ing on the cells illumination (as we do in this work). Dif-
ferent approaches have been studied to construct such ir-
regular meshes: Delaunay or Voronoi decompositions have
been used to build tetrahedral meshes in [8] and [7], while
non uniform sized rectangular blocks are used in [9]. How-
ever, these studies mainly comment on the geophysical re-
sults obtained through the method used, and give few details
on the adaptive algorithms used though it obviously has an
impact on the parameterization problem.

The objective of our work is thus to design a method to
build such an adaptive mesh. Because of the huge quantities
of data to be processed, the 3D mesh construction algorithm
has been parallelized. The whole approach is decomposed
into 3 successive steps :

• the construction of an initial regular 3D mesh,

• the seismic ray tracing process in the regular mesh,

• the construction of the adaptive mesh obtained by
merging adjacent cells of the original mesh to prop-
erly fit the illumination criteria.

The paper is organized as follows. Section 2 shows how
to compute the ray tracing and to build the initial mesh
where each cell contains the information on its crossing
rays. Section 3 explains how the adaptive mesh is con-
structed, whereas section 4 focuses on the parallelization of
the algorithm. Section 5 presents experimental results. Con-
cluding remarks and future works are given in section 6.

2. Initial mesh construction

The first step of the method, which consists in tracing
the seismic rays in a regular Earth mesh, has been fully pre-
sented in [3]. The main ideas underlining this process are
briefly presented in this section.

The ray path modelization represents the wavefront
propagation from one seismic hypocenter to one sta-
tion. Each time a ray reaches a geological interface (for in-
stance the lower mantle / outer core interface) it can be
either transmitted or reflected, depending on the inci-
dence angle and the geological characteristics of the in-
terface. It can also change its propagation mode, from
compressional mode to shear mode or vice-versa. These in-
formations define the signature of the ray. In order to trace
the ray, we use an initial velocity model, the IASPEI91
model [4], based on a decomposition of the Earth in-
terior into 11 layers in which the ray tracing computa-

tion depends only on the depth. The tracing algorithm uses
the Snell-Descartes law in spherical geometry to com-
pute the discretization. The ray is computed in 2D and
then positioned in the 3D space with appropriate rota-
tions.

The 2D ray path computation is done using an iterative
process that builds the ray path segment by segment us-
ing either elementary equal-length segments or equal-angle
segments depending on the incidence angle. The signature
of the ray is used to decide how to propagate the ray each
time an interface is reached.

The ray information is computed and stored into the ini-
tial regular 3D mesh. This mesh is obtained from the de-
composition of the sphere into a given number of layers
from the surface to the center. Each layer is then decom-
posed into regular angular sectors (both in latitude and lon-
gitude) issued at the center of the Earth. Each elementary
volume thus obtained defines a cell that can be approxi-
mated by an hexahedron.

Each cell carries the information brought by all ray frag-
ments that cross it:

• the number of rays,

• for each ray : the length of the ray fragment in the cell,
the input and output impact points in the cell, the input
and output incidence angles,

• encoded information to measure the way the rays are
distributed in the cell. A cell is not very well illumi-
nated if most of its crossing rays are roughly parallel.
In the other hand, the cell is efficiently illuminated if
the azimuth of its crossing rays are widely distributed
in the 3D space.

From all these informations we compute the score associ-
ated with a given cell. The score computation can be param-
eterized. For instance, a very simple score would only take
into account the number of rays crossing the cell, whereas
a more sophisticated one would take into account the distri-
bution of the rays in the cell.

In a global Earth model, a ray path is usually discretized
using several hundred to several thousands of points de-
pending on the ray length and its nature. Since the millions
of rays contained is the databases have to be discretized,
billions of information have to be computed. Therefore the
ray tracing and initial mesh construction processes require
a parallel computation.

The parallelization lies in the concurrent computations
of ray paths using independent copies of the mesh. The set
of rays to be traced is divided into subsets according to the
number of computing processors. Each of these processors
receives a description of the mesh and one or more sub-
sets of rays to trace1. During the first step of the algorithm,

1 Load-balancing issues have been addressed in [2].

each processor computes the ray paths of its subset indepen-
dently of any other processor and updates its local copy of
the mesh with information brought by the computed rays.

Once all the rays have been traced, each processor con-
tains a representation of the whole mesh where only the
information related to the rays it has traced are collected.
The second phase of the algorithm requires therefore to
merge the informations of all the rays in all the cells into
a unique regular 3D mesh. This step is also computed in
parallel as follows. The global mesh is decomposed into
sub-domains and each processor is responsible for one
sub-domain. An all-to-all communication phase occurs :
each processor sends the partial informations it carries in
each sub-domain to the processor responsible for the sub-
domain. Once the communication phase is over, each pro-
cessor merges the whole rays information in all the cells of
its sub-domain. The final step of the algorithm consists in a
collective communication to gather all the sub-domains on
one master processor.

This parallel algorithm has been programmed in C (with
specific routines in Fortran) and implemented using the MPI
library [5]. It has been tested on various parallel platforms:
an Origin 2000 parallel machine, a cluster of PCs and a grid
with machines distributed all over France.

3. Adaptive mesh algorithm

The main contribution of this paper is the construction
of an irregular mesh from the initial regular one. Figure 1
gives a partial representation of a regular mesh of 259200
cells covering the globe coarsened to 21383 cells. The con-
struction is obtained by merging cells of this initial mesh in
order to get well-illuminated cells. How well a cell is illu-
minated depends on the score related to that cell. As men-
tioned in section 2 the score computation relies on a specific
parameterized function that uses the sets of information col-
lected at each cell. The higher the score is, the better the il-
lumination is. The merged cells in the irregular mesh are
called meta-cells.

One peculiarity of the meshes we construct is their multi-
layers aspect that comes from geophysical properties. This
allows to run independently our algorithm on each layer of
the 3D-mesh. We start from a one-layer regular mesh Ω of
cells noted Cx,y, where x, y are the cell’s longitude and lat-
itude coordinates in Ω (the depth coordinate is given by the
considered layer). The objective is to construct an irregular
mesh Ω′ made of juxtaposed, non-overlapping meta-cells.
A meta-cell Mp,q

x,y is a rectangular area composed of p × q

juxtaposed cells whose upper-left corner is originated at co-
ordinates x, y. The surface of a meta-cell is limited by pa-
rameters: 0 < p ≤ P and 0 < q ≤ Q, so that the solution
does not produce very big meta-cells that would not make

(a) regular mesh

(b) irregular mesh

Figure 1. 0.5◦× 0.5◦regular mesh and its cor-
responding irregular mesh at 660-760 km
depth.

sense from a geophysical point of view2.
We can give an overview of the algorithm by decompos-

ing it in two phases:

1) Configurations computation and ordering. For each cell
Cx,y we evaluate the score Si,j

x,y of each meta-cell M i,j
x,y that

can be constructed from Cx,y, i.e. we compute the scores :
{Si,j

x,y | i∈ [1, P] ∧ j ∈ [1, Q] }. We sort these values in
decreasing order in a list called Mx,y. This step is repeated
for all the cells, resulting in one list M per cell.

Because the head element of an M list is the best can-
didate meta-cell, we build a list L containing all these
head elements. This list is also sorted by decreasing scores:
L = sort ({∪ head (Mx,y), ∀x, y | Cx,y ∈ Ω }).

2 These parameters are set by the geophysicist.

At this point the situation corresponds to the one ex-
emplified on figure 2. In this example the first three best
scores are respectively the ones of meta-cells M

3,4
2,1 , M

1,2
4,5

and M
5,5
8,2 , being by definition the leading elements of the

meta-cells lists M2,1,M4,5 and M8,2. These best scores
are therefore the first elements of list L.

..
6 4 13.33 1 12.2313 14.373L

M2,1 M4,5 M8,2

1 2 16.27
4 5 16.11

p q score

5 5 16.03
4 3 15.40

p q score

3 17.34
2 15.12

p q score

4
5

Figure 2. A configurations ordering example

2) Configurations selection. The algorithm must now select
the meta-cells with the best scores in such a way that the re-
maining meta-cells define a paving of the domain (i.e. the
final set of meta-cells covers the whole domain with neither
overlap nor hole). It therefore consists in scanning the ini-
tial list L and ”cleaning” it by removing all the meta-cells
that do not belong to the final irregular mesh. Obviously, the
head element of L (M3,4

2,1 on figure 2) represents the meta-
cell with the best score amongst all possible meta-cells, and
as such is selected. As a consequence, all other potential
meta-cells that have a common cell with the selected meta-
cell will never be realized since they would overlap. They
must therefore be removed from the set of candidates.

The removing phase process, described by Algorithm 1,
is the core of our method. We use classical functions on
lists, head and tail to return the first element and the
rest of the list respectively. Function remove which re-
turns a list without a given element has O(1) complex-
ity due to the pointers used in the implementation. Func-
tion insertsorted which inserts an element at the right
place in a sorted list of length l has a O(l+log2 l) complex-
ity.

The removing process is decomposed into two phases, as
sketched on figure 3.

Let us suppose Mp,q
x,y has been selected for realization.

The forward removing removes all meta-cells M p′,q′

u,v inter-
secting with the selected one, such that their heading cell
Cu,v is contained in Mp,q

x,y (x≤u<x+p and y≤v<y +q).
The backward removing successively analyses each elemen-
tary cell Cu,v of the selected meta-cell. For each of them, it
scans the rectangular area of dimension P × Q focused on
Cu,v (as shown on the figure 3 (b)) and removes from L all

meta-cells M
p′′,q′′

a,b which contain Cu,v . After that, we must
find the next valid meta-cell Ma,b to insert at the right place
in L. Notice that in both cases, the meta-cell to be removed
has a lower score than the selected one. It is therefore lo-

Data : meta-cell Mp,q
x,y to realize, list L

Result : partial cleaned list L

foreach {(u, v) | Cu,v ∈Mp,q
x,y and Cu,v 6= Cx,y} do

// Forward removing

Mp′,q′

u,v ← head (Mu,v)

L← remove (Mp′,q′

u,v , L)
free (Mu,v)

// Backward removing

Area← {Cu−i,v−j | i ∈ [0, P [and j ∈ [0, Q[}
foreach {(a, b) | Ca,b ∈ Area and Ca,b 6= Cx,y } do

Mp′′,q′′

a,b
← head (Ma,b)

if Cu,v ∈ Mp′′,q′′

a,b
then

L← remove (Mp′′,q′′

a,b
, L)

Ma,b← tail (Ma,b)
//Find the next valid meta-cell Ma,b to
be inserted in L

found = False
while not found and Ma,b 6= ∅ do

Mp′′,q′′

a,b
← head (Ma,b)

if Cu,v /∈ Mp′′,q′′

a,b
then

L← insertsorted (Mp′′,q′′

a,b
, L)

found = True

else
Ma,b← tail (Ma,b)

endif
endw

endif
endfch

endfch

Algorithm 1: Removing phase process (call to
SelectClean (Mp,q

x,y , L))

cated after the selected meta-cell in list L as shown on fig-
ure 3.

We encapsulate Algorithm 1 in a procedure called
SelectClean (Mp,q

x,y , L). The rest of the sequen-
tial algorithm consists in scanning L, and calling
SelectClean for each element not yet selected.
This is described by the main procedure (Algorithm 2).

At each iteration the algorithm removes many meta-cells
due to the backward and forward removing process. At
the first iteration the number of removed meta-cell is in
O(P 2Q2). After a certain number of steps, most of the
cells that should be removed have already been erased in
previous iterations, and therefore the remaining iterations
are in O(1). This behavior is illustrated on figure 4: for
P = Q = 10, with Card(L) = 259200 we call 16420
times the SelectClean procedure but almost all meta-
cells have been removed before the 4000th call.

4. Parallelization of the algorithm

The parallelization of the algorithm consists in divid-
ing the domain of the initial mesh Ω into adjacent non-
overlapping sub-meshes Ωi,j such that ∪Ωi,j = Ω and
∩Ωi,j = ∅. Each sub-mesh Ωi,j is treated by a given pro-

L :

Mp,q
x,y Mp′,q′

u,v

p

q Cx,y

Cu,v

Mp,q
x,y

Mp′,q′

u,v

q′

p′

(a) Forward removing : M
p,q
x,y selected, M

p′,q′

u,v is re-
moved from L.

L :

Mp,q
x,y M

p′′,q′′

a,b

M
p′′,q′′

a,b

Mp,q
x,y

Area

Cx,y

Ca,b

Cu,v

p

q

p′′

q′′

P

Q

(b) Backward removing : M
p,q
x,y selected, M

p′′,q′′

a,b
is re-

moved from L. The next valid element of Ma,b is then
inserted into L.

Figure 3. Examples of meta-cell removing

cessor Proci,j which computes the initial list of meta-cells
Li,j and then cleans it up by selecting the ones that define
the paving.

In order to build such a list, the processor must
contain enough information to properly activate the
SelectClean procedure. This is why the data avail-
able on each processor correspond to overlapping sub-
domains, as shown on figure 5 (b). The size of the overlap
is 2(P − 1) × 2(Q − 1) and is correlated to the clean-
ing process as shown on figure 5(a). Hence the extreme
cells of Ωi,j (in black on figure 5(a)) require, when se-
lected both a forward cleaning and a backward clean-
ing that can reach cells whose distance from Ωi,j is
2(P − 1) or 2(Q − 1) at the farthest. The overlap-
ping sub-domain related to sub-mesh Ωi,j is denoted by
Di,j .

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

nb
 o

f m
et

a−
co

nf
ig

 r
em

ai
ni

ng
 in

 th
e

m
es

h

nb of SelectClean realized

metaconf removed

Figure 4. Cumulated number of meta-cells
configurations removed as a function of the
number of SelectClean calls.

Data : Initial mesh Ω,M list and initial list L

Result : Cleaned list L containing the meta-cells of irregular mesh Ω′

Mp,q
x,y ← GetFirst(L)

while Mp,q
x,y 6= ∅ do

L← SelectClean (Mp,q
x,y,L)

Mp,q
x,y ← GetNext(L)

endw

Algorithm 2: Main procedure

The first overlap zone of size (P − 1) × (Q − 1) (in
light grey on figure 5) is the one on which initial list Li,j of
best-scores meta-cells is computed. It contains cells whose
corresponding meta-cells could further on interfere with a
meta-cell of Ωi,j . Initial list Li,j is computed in the same
way as in the sequential algorithm and is sorted on decreas-
ing scores.

Once the cleaning process starts on list Li,j , processor
Proci,j must compute both forward and backward remov-
ing as defined in the sequential mode. It must therefore have
the information related to the second overlap zone (in white
on figure 5), in order to remove all invalid meta-cells. The
set of all configurations related to possible meta-cells is
computed on this whole overlapping sub-domain Di,j at the
beginning of the computation.

Each time processor Proci,j selects a meta-cell whose
related cleaning process interferes with a sub-mesh adja-
cent to Ωi,j , it must communicate the corresponding infor-
mation to the appropriate processor.

On the other side, when the current meta-cell to be
treated by processor Proci,j intersects its overlap zone, it
is not allowed to treat it, because the processor which is re-
sponsible for this meta-cell is its neighbor. Therefore it has
to wait till it receives information from this neighbor.

Every time processor Proci,j receives from one of its

Ωi,j

Q

P

(a) Extreme situations for forward and backward remov-
ings

Ωi,j

2 × (Q − 1)

2 × (P − 1) Overlapping sub-domain

Di,j

(b) Overlapping zone around Ωi,j defining the domain
Di,j .

Figure 5. Overlap related to a given sub-mesh

neighbor the reference of the meta-cell the neighbor has se-
lected, it first inserts it into its private list Li,j , with re-
spect to decreasing scores, and then treats it, i.e. runs the
SelectClean procedure in order to remove all the in-
valid meta-cells it induces.

Because the various meta-cells lists are always kept or-
dered, the whole process will run without any deadlock. At
the end, the various Li,j lists have to be merged to get the fi-
nal irregular mesh. Some meta-cells can belong to two ad-
jacent sub-mesh (when they intersect with an overlap zone)
and the merging step must of course add them only once in
the resulting mesh.

This whole process is described by Algorithm 3.

Data : Di,j with cells Cx,y , meta-cells listsMx,y and initial list
Li,j .

Result : Cleaned list Li,j containing the meta-cells of irregular mesh
Ω′ .

MsgList ← ∅
Mp,q

x,y ← GetFirst(Li,j)
while Mp,q

x,y 6= ∅ do
// meta-cell Mp,q

x,y is selected

if Cx,y ∈ Ωi,j then
// process Pi,j is in charge of the creation
of meta-cell Mp,q

x,y.

foreach {(k, l) | k ∈ [i− 1, i + 1] ∧ l ∈
[j − 1, j + 1] ∧ (k, l) 6= (i, j)} do

if Mp,q
x,y ∩Dk,l 6= ∅ then
msg ← (x, y, p, q, Sp,q

x,y)
// non blocking send
SendMsg (msg, Pk,l)

endif
endfch
// elements of Li,j that share cells with
Mp,q

x,y must be removed

SelectClean(Mp,q
x,y,Li,j)

else
// proc. Pi,j has received or will receive
a message from the proc. in charge of the
creation of Mp,q

x,y.

reached← False
while reached = False do

// messages from neighbor processors
received

foreach {(k, l) | k ∈ [i− 1, i + 1] ∧ l ∈
[j − 1, j + 1] ∧ (k, l) 6= (i, j)} do

while ∃ messages of Pk,l do
msg ← RcvMsg(Pk,l)
AddMsg(msg, MsgList);

endw
endfch
// message list MsgList is sorted by
decreasing scores
sort(MsgList)

// synchronization phase

msg ← GetFirst(MsgList)
while msg 6= ∅ and Sp,q

x,y ≤ GetScore(msg)
do

// forward and backward cleanings in
domain Di,j, according to msg

Mp′,q′

x′,y′
← GetMetaCell(msg)

SelectClean(Mp′,q′

x′,y′
, Li,j)

RemoveHead(MsgList)
LastMsg ← msg
msg ← GetFirst(MsgList)

endw

// checking whether or not there are
information on Cx,y ?

if Sp,q
x,y > GetScore(msg) then
reached ← False

else
// msg = ∅ ie. MsgList is empty

if Sp,q
x,y < GetScore(LastMsg) then
// Mp,q

x,y may have already been
selected

if isInvalidated(Mp,q
x,y) then

reached ← True
else reached← False

else
// Sp,q

x,y = GetScore(LastMsg)

if LastMsg ≡ Mp,q
x,y then

reached ← True
else reached← False

endif
endif

endw
endif
Mp,q

x,y ← GetNext(Li,j)

endw

Algorithm 3: parallel algorithm for process Pi,j

5. Experimental results

We have run a series of benchmarks to assess the ap-
plication performances on two kinds of cluster. The first is
a commodity cluster with six SMP bi-processors PC/Xeon
1.7Ghz, each bi-processor sharing 1 GO RAM and linked
with a gigabit ethernet network. The second cluster has 30
SMP nodes with two Itanium2 1.3Ghz and 8 GB RAM on
each node. It has a double internal interconnection network:
a gigabit ethernet network is used for NFS links while mes-
sages of parallel applications transit through an independent
Myrinet network.

As one of our objectives is to develop a code portable
to a wide range of parallel architectures we have chosen
the MPI standard [5] to develop the parallel version. The
program has been linked against the LAM-MPI implemen-
tation [1] on the PC/Xeon cluster, and compiled with gcc
3.3.3. On the Itanium cluster, the results are drawn from
the program using the MPI-GM library from Myricom and
compiled with the Intel icc 8.0 compiler. In all cases, com-
pilers were invoked with an O3 optimization level.

The data set we use comes from the ray-tracing of
817000 rays in an initial 11 layers mesh (as defined in the
IASPEI91 model). For all tests we work on the 7th layer
which contains more data than other layers, and therefore
implies a longer configuration ordering because the score
computation time increase with the data quantity.

The initial regular mesh is build from a decomposition
of a given layer into cells 0.5◦×0.5◦wide, resulting into
259200 cells by layer. We have run the application with
10×10 as maximum sizes for the meta-cells and the experi-
mental results are presented in tables 1 and 2. They show for
various numbers of processors, the total application time,
the time for the first phase of the algorithm, that is the con-
figurations computation and ordering, and the time for the
second phase, configuration removing. As explained in the
previous section, this last phase requires cooperation be-
tween processors for decision making and the time spent
waiting is reported between parentheses as idle time. Times
are in seconds, and for runs with several processors the aver-
age time is reported. The last column indicates the speedup
obtained.

np whole app. comp. and ordering selection (idle) speedup
1 160 116 43 (0) 1
4 75.5 36 37.2 (19.7) 2.11
8 42.7 19.25 22.9 (16.1) 3.74

12 38 14 22.2 (17.4) 4.21

Table 1. PC/Xeon 1.7Ghz cluster benchmarks
with P × Q = 10× 10

np whole app. comp. and ordering selection (idle) speedup
1 100 78 21 (0) 1
4 41 23.7 17 (9.2) 2.43
8 23.5 12.4 10.75 (7.6) 4.25
12 19.8 9.2 10.3 (8) 5.05
16 17 7.25 9 (7.2) 5.88

Table 2. Itanium2/1.3Ghz cluster benchmarks
with P × Q = 10 × 10

Quite obviously, the speedup for the parallel version of
the application show a limited scalability in the number of
processors.

Indeed, the algorithm design involves a heavy communi-
cating scheme for the parallelized application in the sec-
ond phase since a lot of small and asynchronous mes-
sages must be exchanged for processors to make their selec-
tion/removing decisions. In order to guarantee that the final
irregular mesh does contain the best illuminated cells, each
processor has to wait for information from one of its neigh-
bor when it is working on a meta-cell that has interaction
with its own overlapping zone. Hence it cannot decide to se-
lect this meta-cell without knowing whether it has been in-
validated or not by its neighbor. Therefore, a processor may
have to wait till it gets this information. However, the first
phase requires only independent computations whose com-
plexity depends on the data quantity in cells and on the cells
sizes. This leads to the idea that the choice for the parame-
ters has a great influence on the performances of the paral-
lel version. Choosing a finer mesh resolution would induce
more parallel computations (with the only overhead of the
overlap zone to compute) in the first phase.

To estimate the overhead inherent to the second phase,
we might consider the ratio between the number of cells in
a sub-mesh Ωi,j and the number of cells in its overlap zone
which are included in the Li,j list. This number depends on
the size P × Q of the meta-cells.

As we can see in table 3, this ratio is roughly equal to
3 for 16 processors, i.e. there are only three cells in Ωi,j

for one in the overlap zone which have populated list Li,j .
This implies a low computation/communication ratio that
explains the performances curves on figure 6.

np ratio
16 3.25
12 3.79
8 4.71
4 6.77

Table 3. Ratio between the number of cells in
Ωi,j and in its overlapped zone.

 0

 50

 100

 150

 200

 0 2 4 6 8 10 12 14 16

tim
e

in
 s

ec
on

ds

nb of processors

Process time of the application

PC/Xeon
Itanium2

Figure 6. Performances

In order to reduce the idle time, extra-work is currently
under way to optimize the parallel algorithm. The idea cur-
rently studied is to make processors manage several sub-
domains. By assigning several non-adjacent sub-domains
to a given processor, we minimize the probability for the
processor to enter an idle state waiting on all sub-domains.
Each processor will compute the selection phase for its as-
signed sub-domains in a preemptive way, by switching from
one sub-domain to the next after a certain number of either
SelectClean calls or sent messages.

6. Conclusion

In this paper we have proposed a method to construct an
adaptive mesh for seismic tomography. Because of the na-
ture of the data and of the geophysical problem, the result-
ing irregular mesh is build by layers and is characterized
by well-illuminated cells. We first discuss a sequential al-
gorithm to solve the problem. Given the size of the seis-
mic data to be processed, it is argued that parallel comput-
ers are required and a parallel version of the algorithm is
also proposed. We have experimented the application with
real data by running it on two parallel platforms. Experi-
mental results show that the speed-up is limited due to the
idle time during the second phase. Further work is currently
under way to improve the parallel algorithm and to reduce
this idle time. The idea currently developed is to make pro-
cessors manage several sub-domains so that a processor en-
tering in an idle wait for a cell, would be able to switch to
another sub-domain requiring computations, thus overlap-
ping communications.

References

[1] G. Burns, R. Daoud, and J. Vaigl. LAM: An Open Clus-
ter Environment for MPI. In Proceedings of Supercomput-
ing Symposium, pages 379–386, 1994.

[2] S. Genaud, A. Giersch, and F. Vivien. Load-balancing scat-
ter operations for grid computing. In Proceedings of 12th
Heterogeneous Computing Workshop (HCW ’03). IEEE So-
ciety Press, April 2003.

[3] M. Grunberg, S. Genaud, and C. Mongenet. Seismic ray-
tracing and Earth mesh modeling on various parallel archi-
tectures. The Journal of Supercomputing, 29(1):27–44, July
2004.

[4] B. L. Kennett. IASPEI 1991 seismological tables. Re-
search School of Earth Sciences Australian National Univer-
sity, 1991.

[5] Message Passing Interface Forum. MPI : A message-passing
Interface Standard, June 1995.

[6] A. Michelini. An adaptative-grid formalism for travel-time
tomography. Geophysical Journal International, (121):489–
510, 1995.

[7] M. Sambridge and R. Faletic. Adaptive whole earth tomog-
raphy. Geochem., Geophys., Geosyst, 4(3), March 2003.

[8] M. Sambridge and O. Gudmundsson. Tomography sys-
tems of equations with irregular cells. J. of Geophys. Res.,
103(No. B1):773–781, 1998.

[9] W. Spakman and H. Bijwaard. Optimization of cell
parametrizations for tomographic inverse problems. Pure
and Applied Geophysics, (158):1401–1423, 2001.

[10] C. Thurber and D. Eberhart-Phillips. Local earthquake to-
mography with flexible gridding. Computers & Geosciences,
(25):809–818, 1999.

