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ABSTRACT
In modern micro-architectures, computation speed is often
reduced by cache misses. Cache analysis is therefore im-
perative to obtain effective optimization. We present an
analytical technique based on reuse distances that focuses
on efficiently determining the behavior of fully associative
caches and extends to set-associative caches. In this tech-
nique, the number of cache misses is obtained by counting
the number of integer points in a parameterized polytope.

It is well know that this parameterized count can be repre-
sented by an Ehrhart polynomial. Previously, interpolation
was used to obtain these polynomials, but this technique has
some disadvantages, most notably that under certain condi-
tions it fails to produce a solution. Our main contribution is
a novel method for calculating Ehrhart polynomials analyt-
ically. It extends an existing method, based on Barvinok’s
decomposition, for counting the number of points in a non-
parameterized polytope. Our technique always produces a
solution and is usually faster than interpolation.

1. INTRODUCTION
With the performance gap between processor and memory
doubling about every two years, current processors are able
to execute up to 1000 instructions in the time of a single
memory fetch. Although caches are used to alleviate this
bottleneck, many programs do not sufficiently exploit the
cache hardware. Large speedups can therefore be obtained
for these programs by optimizing their cache behavior.

Two different techniques are used to analyze a program’s
cache behavior: profiling and analytical modeling. The first
technique is based on cache simulators or locality analyzers
and although this technique allows accurate measurement of
the cache behavior, it remains slow [36, 23] and cannot be
directly applied for different program inputs. In contrast,
analytical methods use memory access patterns to predict
the cache behavior [17, 20, 31]. In this paper, we present an
analytical technique that differs from the previous ones in
the fact that it allows to efficiently determine the behavior of
fully associative caches and extends to set-associative ones.
This method exploits the concept of reuse distance to com-

municate the locality of memory accesses to the processor
through cache hints and leads to an improved LRU policy.
The reuse distance of a certain access in a loop to a mem-
ory element A is the number of distinct memory elements
accessed between this access and the next access to A and
may depend on the iteration of the loop. This number is
obtained by counting the integer points in a union of finite
sets described by linear equations and parameterized by the
iterators. Such sets are called parameterized polytopes. The
result of this counting is represented by an Ehrhart poly-
nomial [15, 11], which is a multivariate polynomial in the
parameters. The coefficients of such polynomials depend pe-
riodically on the parameter values. Parameterized counting
has many applications in the program optimization commu-
nity. In particular, it is very useful in cache analysis [10, 11,
4], but has also found applications in the context of process
networks [30, 35] and real-time systems [24, 8].

Several techniques have been proposed for counting the inte-
ger points in finite sets, but most do not handle parameter-
ized problems symbolically (e.g., [28, 14]), while some oth-
ers have never been implemented (e.g., [29]). Arguably the
most general and useful technique to date which handles ar-
bitrary parameterized polytopes is that of Clauss and Loech-
ner [11] implemented in PolyLib [25]. Their method com-
putes the coefficients of an Ehrhart polynomial by solving a
system of equations based on the function values for some
initial parameter values, in effect interpolating the polyno-
mial. Sometimes the number of available parameter values
is insufficient and then the technique fails to produce a solu-
tion. In our application we have seen that this failure occurs
for three out of seven benchmark programs.

In this paper, we present a new counting method that also
targets arbitrary parameterized polytopes. Unlike the pre-
vious method, ours calculates Ehrhart polynomials analyti-
cally. It therefore always produces a solution and it is usually
also faster than the interpolation method. Our technique
extends an existing, polynomial time (for fixed dimension)
algorithm for computing the number of integer points in
non-parameterized polytopes which is based on Barvinok’s
decomposition [2].



S1 do j = 1 , N
S2 do l = j , N
S3 do k = 1 , j−1
S4 A( l , j ) = A( l , j ) − A( l , k ) ∗ A( j , k )
S5 enddo
S6 enddo
S7 A( j , j ) = sq r t (A( j , j ) )
S8 do m = j +1 , N
S9 A(m, j ) = A(m, j ) / A( j , j )
S10 enddo
S11 enddo

Figure 1: Source code of Cholesky factorization

The remainder of this paper is organized as follows. In Sec-
tion 2 we show through an example our motivation behind
this work. In Section 3 we first recall both some notions
from the method of Clauss and Loechner and Barvinok’s
algorithm. We then show how these two can be combined
in our own method. In Section 4 we explain how we apply
our counting method to improve the LRU policy through
the use of reuse distances and cache hints and we give some
experimental results. Finally, implementation details and
related works are given in Section 5.

2. MOTIVATING EXAMPLE
In this section we present an example of polytope enumera-
tion to improve cache accesses.

The forward reuse distance is the number of unique mem-
ory locations accessed by a program between two accesses
to the same data element. This extra information can be
added as an extra register operand to the instruction per-
forming the first data access. This is called a cache hint and
it is useful to improve the LRU replacement policy: if the
forward reuse distance is larger than the cache size, then the
data will probably not be reused and should be evicted more
quickly from the cache. The LRU+CH (LRU+cache hints)
replacement policy has been proven to perform at least as
well as the LRU policy [21]. More experiments are given in
section 4.

Let us consider the Cholesky factorization. The source code
is presented in Figure 1. Consider the iteration spaces P1

enclosing statement S4 and P2 enclosing S9:

P1 = { (j, l, k) ∈ Z
3 | 1 ≤ j ≤ l ≤ N ∧ 1 ≤ k ≤ j − 1 }

P2 = { (j, m) ∈ Z
2 | 1 ≤ j ≤ N ∧ j + 1 ≤ m ≤ N }.

We will compute the forward reuse distance for the data
element A(m, j) accessed by statement S9.

A dependence analysis yields to the following result. State-
ment S9 accesses A(m0, j0) at iteration (j0, m0) of P2, which
is reused for the first time by statement S4 through refer-
ence A(l1, k1) at iteration (j1, l1, k1) of P1, with j1 = j0 +1,
l1 = m0, and k1 = j0. The set of iterations between these
two accesses is P ′

2 ∪ P ′
1 with:

P ′
2 =

˘

(j, m) ∈ P2 |
`

j = j0 ∧ m ≥ m0

´ ¯

P ′
1 =

˘

(j, l, k) ∈ P1 |
`

j = j1 ∧ l < l1
´

∨
`

j = j1 ∧ l = l1 ∧ k ≤ k1

´ ¯

.

The next step consists in computing all the data accessed

by this set of iterations. In iteration space P2 the elements
A(m, j) and A(j, j) are accessed, while in P1 the elements
A(l, j), A(l, k), and A(j, k) are accessed. We assume that
the order of accesses in statement S9 is A(m, j); A(j, j),
and the order of accesses in statement S4 is A(l, j); A(l, k);
A(j, k). So the set of data being accessed in array A is:

˘

(m, j) | (j, m) ∈ P ′
2 \ {(j0, m0)}

¯

∪
˘

(j, j) | (j, m) ∈ P ′
2

¯

∪
˘

(l, j) | (j, l, k) ∈ P ′
1

¯

∪
˘

(l, k) | (j, l, k) ∈ P ′
1 \ {(j1, l1, k1)}

¯

∪
˘

(j, k) | (j, l, k) ∈ P ′
1 \ {(j1, l1, k1)}

¯

.

Finally, the forward reuse distance for element A(m, j) ac-
cessed by statement S9 is the number of integer points con-
tained in this union of polytopes. The union can easily be
simplified as a union of disjoint polytopes and the sum of the
corresponding Ehrhart polynomials is: j0(m0 − j0 − 1) + N .

For each data element being loaded into cache, if this num-
ber is larger than the cache size, it will probably not be
reused and should be evicted from cache quickly. As a re-
sult, there is less cache pollution and the data elements that
have a chance to be reused probably will be.

The last step of our method, computing the Ehrhart polyno-
mials, sometimes failed with the interpolation based imple-
mentation. This is due to a lack of sufficient parameter val-
ues needed to complete the system of equations from which
the Ehrhart polynomial is computed. This is why we devel-
oped a novel method for calculating Ehrhart polynomials,
presented in the following section.

3. COUNTING PARAMETERIZED SETS
In this section, we consider the problem of counting the
number of integer points in a parameterized polytope, which
is a set of points bounded by linear equations:

Pp = {x ∈
� d | Ax ≥ Bp + c }, (1)

where A and B are integer matrices, c is an integer vector
and p is a parameter vector, p = (p1, p2, . . . , pn) ∈ � n.
Without loss of generality (see Section 5), we assume that
P is full-dimensional, i.e., that the dimension of P is d as
well. Results cited from other sources have been adapted
accordingly.

It is well known [15] that the above count can be repre-
sented by an Ehrhart polynomial E(P ;p), which is a pseudo-
polynomial of degree at most d. The coefficients of a pseudo-
polynomial depend periodically on the parameters and are
called periodic numbers.

Definition 1. An n-periodic number U(p) is a function
� n 7→ � , such that U(p) = U(p′) whenever pi ≡ p′

i mod qi,
for 1 ≤ i ≤ n and qi the period in dimension i. The lcm
(least common multiple) of all qi is called the period of U(p).

These periodic numbers can be represented by a lookup-
table Up such that U(p) = Up[p1 mod q1, . . . , pn mod qn].



In the remainder of this section, we first recall how Ehrhart
polynomials were calculated previously and the problems
this entails. Then we show how we solved these problems
by taking an algorithm for counting the number of points in
non-parameterized polytopes based on Barvinok’s decompo-
sition and extending it to compute Ehrhart polynomials.

3.1 Validity Domains and Interpolation
A parameterized polytope (1) can also be represented by an
explicit notation:

Pp =

(

x ∈
� d | x = λV (p), 0 ≤ λj ,

X

j

λj = 1

)

, (2)

with the columns of V (p) the extremal points of the poly-
tope, called the vertices V(Pp). Each vertex vj(p) is an
affine combination of the parameters with rational coeffi-
cients. As Loechner and Wilde [26] showed, however, some
of the vertices may only be valid for a subset of the pa-
rameter values. Therefore, the parameter space has to be
partitioned into validity domains {Dk } = W(Pp), each with
a subset VDk

(Pp) ⊂ V(Pp) of the total number of parame-
terized vertices.

Clauss and Loechner [11] showed that the period in dimen-
sion i of the periodic numbers that appear in the Ehrhart
polynomial of a parameterized polytope (in a given validity
domain) is a divisor of the lcm of the denominators of the
coefficients of pi in the affine expressions that define the ver-
tices vj(p) (that are valid in the validity domain). Based
on this knowledge, they calculate the number of points in a
set of instances of Pp for fixed values of p in a given valid-
ity domain, called initial countings, and then calculate the
Ehrhart polynomial for this validity domain through inter-
polation.

The main problem with this approach is that the number of
initial countings required for interpolating a d-dimensional
Ehrhart polynomial with periods qi is

Qn

i=1(d + 1)qi. If
a suitable set of parameter values cannot be found inside
the validity domain, then this approach fails to produce a
solution.

3.2 Barvinok’s Algorithm
The basic idea behind Barvinok’s algorithm [1, 9, 14], is
to consider the generating function of the integer points in
a polytope P . This generating function is a formal power
series with a term for each integer point in P , i.e.,

f(P ;x) =
X

α∈P∩ � d

xα,

with xα = xα1
1 xα2

2 · · ·xαd

d . Evaluating this function at x = 1
yields the number of terms, which equals the desired num-
ber of points. The generating function is obviously not con-
structed by enumerating all the integer points in P , but
rather as a signed sum of short rational functions that can
be derived from the description of P .

Example 1. Consider the polytope T shown in Figure 2:
T = {x|x1 ≥ 0 ∧ x2 ≥ 0 ∧ x1 + x2 ≤ 2}. Its generating func-
tion is f(T ;x) = 1 + x1 + x2

1 + x2 + x1x2 + x2
2. Barvinok’s
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Figure 2: Barvinok example
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Figure 3: Barvinok’s decomposition of cone(P,v1).

algorithm, however, will produce this function in the follow-
ing form:

x2
2

(1 − x−1
2 )(1 − x1x

−1
2 )

+
x2

1

(1 − x−1
1 )(1 − x−1

1 x2)

+
1

(1 − x1)(1 − x2)
.

Computing the residue at 1, we can confirm that the number
of integer points in T is indeed f(T ;1) = 6.

To construct the generating function as a signed sum of short
rational functions, we consider the vertices vi of P and the
constraints that it saturates, i.e., the constraints 〈a,x〉 ≥ b
with 〈a,vi〉 = b, where 〈., .〉 is the standard scalar product.
The region in

� d bounded by these constraints for a partic-
ular vi is called the supporting cone cone(P,vi). E.g., the
supporting cone of vertex v1 of the polytope (shaded area)
in figure 3 is shown in thick lines. It can be shown [1] that
the generating function of P is equal to the sum of the gen-
erating functions of its supporting cones. To construct the
generating function of a supporting cone, we use Barvinok’s
decomposition into unimodular cones.

Definition 2. A cone with generators u1,u2, . . . ,uk ∈
� d is a set of the form {

P

i
λiui | λi ≥ 0 }. It is called uni-

modular if its generators form a basis of � d.



Note that using this definition, cone(P,vi) is not a cone
itself, but the sum of vi and some cone K. Barvinok pro-
posed to decompose this cone into a signed “sum” of uni-
modular cones {(εi, Ki)} = B(K), with εi ∈ {−1, 1}, the
sign corresponding to unimodular cone Ki. Here, “sum”
can be interpreted to mean that the generating function of
K is the signed sum of the generating functions of the uni-
modular cones. It can be shown [1] that a simple explicit
formula exists for the generating function of a unimodular

cone: f(Ki;x) =
Qk

j=1(1 − xui
j )−1, with ui

j the generators
of Ki. A key feature of this decomposition is that it takes
polynomial time (for fixed dimensions).

To obtain the final generating function, the generating func-
tions corresponding to the unimodular cones Ki need to be
translated to the vertex v. If v is integer, then we sim-
ply need to add v to all of the exponents in the generating
function, which corresponds to a multiplication by xv. If v
is not integer, however, then we need to find another point

v′ = E(v, Ki) such that xv′

f(Ki;x) generates Ki+v. Since
Ki is unimodular, this point exists and is uniquely defined
as the smallest integer linear combination of the generators
of Ki that lies inside Ki + v [14]. I.e.,

E(v, Ki) =
X

j

dλjeu
i
j , (3)

where λ is the rational solution to v =
P

j
λju

i
j and d.e

is the upper integer part. Note that if v is integer, then
E(v, Ki) = v. The final generating function is then

f(P ; x) =
X

v∈V(P )

|B(Kv)|
X

i=1

εi
xE(v,Ki)

Qd

j=1(1 − xui
j )

. (4)

Example 2. Figure 3 shows a polytope P (shaded area)
and its supporting cone (thick lines) at vertex v1. A possible
signed unimodular decomposition for cone(P,v1)−v1 is the
pair { (1, K1), (1, K2) }.

1 Let v′
1 = E(v1, K1) and v′′

1 =
E(v1, K2). Since both signs are positive, we have

f(cone(P,v1);x) = f(v′
1 + K1;x) + f(v′′

1 + K2;x).

The integer points in v′
1 + K1 are indicated by +, whereas

the integer points in v′
1 + K1 are indicated by +.

Note that each term in (4) has a pole at x = 1. We can still
evaluate this function at x = 1 by computing the residue.
De Loera [14] shows that, through a suitable variable sub-
stitution, each term in (4) can be written as

ε′i
N(s)

D′(s)
= ε′i

(s + 1)〈µ,E(v,Ki)〉+c

sdD(s)
, (5)

with x = (s + 1)µ, D(s) a polynomial with integer coeffi-
cients, independent of v, µ some integer vector and c some
integer constant. Evaluating (4) at x = 1 is equivalent to
summing the terms (5) evaluated at s = 0. This in turn
can be accomplished by computing the coefficient of sd in
the Taylor expansion of N(s)/D(s). Note that this only re-
quires the first (d+1) coefficients of N(s). The (signed) sum

1Note that this is not the decomposition that our implemen-
tation would produce, since, like De Loera [14], we perform
the decomposition on the dual cone.

Algorithm 1 Parameterized Barvinok

1. For each vertex vi(p) ∈ V(P )

(a) Determine supporting cone cone(P,vi(p))

(b) Let K = cone(P,vi(p)) − vi(p)

(c) Let {(εj , Kj)} = B(K)

(d) For each Kj

i. Determine f(Kj ;x)

(e) f(cone(P,vi(p));x) =
P

j εjx
E(vi(p),Kj)f(Kj ;x)

2. For each validity domain Dk of P

(a) fDk
(P ;x) =

P

vi∈VDk
(P ) f(cone(P,vi(p));x)

(b) evaluate fDk
(P ;1)

of the coefficients of sd in each of the terms then yields the
desired number of points in the polytope.

3.3 Computing Ehrhart Polynomials
Algorithm 1 shows our extension of Barvinok’s method to
parameterized polytopes. The main idea behind this gener-
alization is to consider Loechner and Wilde’s decomposition
of the parameter space and to apply Barvinok’s algorithm to
the fixed set of (parameterized) vertices that belong to each
validity domain. Thus, one parameterized generating func-
tion is to be computed for each of these validity domains.

Similarly to the non-parameterized case, the generating func-
tion for the parameterized polytope Pp on validity domain
D is the parameterized version of equation (4):

fD(Pp;x) =
X

v(p)∈VD(Pp)

|B(K
v)|

X

i=1

εi
xE(v(p),Ki)

Qd

j=1(1 − xui
j )

, (6)

with εi ∈ {−1, 1} and v(p) a parameterized vertex of the
polytope Pp. Each coordinate of v(p) is an affine function
of the parameters. Ki is the ith unimodular cone in the
signed unimodular decomposition of cone Kv, the transla-
tion to the origin of the supporting cone at v(p). The sup-
porting cone is again defined by the constraints that v(p)
saturates, i.e., the constraints 〈a,x〉 ≥ 〈b, p〉 + c such that
〈a,v(p)〉 = 〈b, p〉 + c. The correctness of (6) follows from
the fact that the generators of K are independent of the pa-
rameters, which means that Barvinok’s decomposition can
be applied without change.

The exponent in the numerators of (6), which corresponds to
the uniquely defined point inside the translated unimodular
cone, is given by the parameterized version of (3):

E(v(p), Ki) =
d
X

j=1

dλj(p)eui
j , (7)

where the λj(p)s are rational affine functions of the param-

eters that solve v(p) =
Pd

j=1 λj(p)ui
j .

Let m be an integer constant such that mλj(p) is an integer



affine function, then [18]

dλj(p)e =

‰

mλj(p)

m

ı

= λj(p) +
(−mλj(p)) mod m

m
. (8)

The second term on the right is a periodic number, say
U ′

j(p), with period at most m [27]. As explained near the
top of Section 3, this periodic number can be represented by
a lookup-table. To construct this table, we simply evaluate
the modulo expression in (8) for a set of fixed parameter
values. Note that, unlike was the case with interpolation,
we need not restrict ourselves to values from the validity
domain since the expression in (8) is valid for all values of
p. Substituting the value of dλj(p)e in (7) we get

E(v(p), Ki) =
d
X

j=1

λj(p)ui
j +

d
X

j=1

U ′
j(p)ui

j = v(p) + U(p),

(9)
with U(p) a vector of periodic numbers.

As in the non-parameterized case, we can obtain the value
of the parameterized generating function (6) at x = 1 by
computing the residue. Again, the variable substitution pro-
posed by De Loera [14] is independent of the numerator and
hence of the parameters. Substituting (9) in (5), we obtain

Np(s) = (s + 1)〈µ,v(p)+U(p)〉+c = (s + 1)Λ(p),

with Λ(p) an affine function of the parameters with a con-
stant part that may be a periodic number. The coefficients
of Np(s) up to that of sd (i.e., those required to compute
the coefficient of sd in Np(s)/D(s)) are

ni(p) =

 

Λ(p)

i

!

=

Qi−1
j=0(Λ(p) − j)

i!
for 0 ≤ i ≤ d.

Each coefficient ni(p) in the above formula is given by a
product of at most d affine functions of the parameters with
constant parts that may be periodic numbers. This implies
that each of these coefficients is a multivariate polynomial
of the parameters in which the coefficients may be periodic
numbers and for which the sum of powers in each multivari-
ate monomial is at most d. Since the coefficient of sd in
Np(s)/D(s) is a linear combination of these ni(p), it con-
forms to the same property and so does the (signed) sum of
all these terms. That is, the residue of (6), which is equal to
the (parameterized) number of points in Pp, is an Ehrhart
polynomial, as expected. I.e.,

ED(P ;p) = fD(Pp; 1) =
X

0≤i1+i2+···+in≤d

Ui(p)pi,

with the Ui(p)s periodic numbers and d the dimension of Pp.
Note that this Ehrhart polynomial is calculated analytically
and that it can be computed for any validity domain, no
matter its size or shape.

4. CACHE HINT SELECTION BASED ON
REUSE DISTANCE EQUATIONS

In this section, a new compiler optimization enabled by the
analytical calculation of Ehrhart polynomials is described.
The aim of the optimization is to improve the replacement
decisions in the data cache, by communicating the locality
of memory accesses to the processor through cache hints.

a1 a2 a3 a4 a5 a6 a7

r1 r2 r3 r1 r2 r1 r1

A X Z B B A A

(a1,a6)

access:

instruction/reference:

data location:

time
Figure 4: The top row indicates 7 sequential memory ac-
cesses, which are generated by the references in the sec-
ond row. The bottom row shows the corresponding mem-
ory locations A, B, X or Z. The accesses to X and
Z are not part of a reuse pair, since they are accessed
only once in the stream. ADS(a1, a6) = {B, X, Z}, and
RD(a1, a6) = |ADS(a1, a6)| = 3. RD(a6, a7) = 0. FRD(a1) =
3. FRD(a6) = 0.

4.1 Reuse Distance and Cache Hints
Definition 3. A memory reference corresponds to a

read or write instruction, while a particular execution of that
read or write at runtime is a memory access[17]. A reuse
pair (a1, a2) is a pair of memory accesses in a memory ac-
cess stream, which touch the same memory location, without
intermediate accesses to that location. The accessed data
set (ADS) of a reuse pair (a1, a2) is the set of unique mem-
ory locations accessed between a1 and a2 and is denoted by
ADS(a1, a2). The reuse distance of a reuse pair (a1, a2)
is the number of unique memory locations accessed between
accesses a1 and a2. It is denoted by RD(a1, a2), and equals
|ADS(a1, a2)|. The forward reuse distance of a memory
access a1 is the reuse distance of the pair (a1, a2). If there
is no such reuse pair, its forward reuse distance is ∞.

Lemma 1. In a fully associative LRU cache with CS lines,
the memory line referenced by an access a will stay in the
cache until the next use of that memory line if and only if
FRD(a) < CS.

Definition 4. A cache hint is an extra register operand
to a memory instruction, that contains the forward reuse
distance of that memory access.

Example 3. In the instruction ld r7=[r4], frd=r9, reg-
ister r9 is the cache hint. The contents of the register should
be the forward reuse distance of that particular execution of
the load-instruction.

The cache replacement policy uses the cache hints to im-
prove over the LRU replacement policy. When the FRD is
larger than the cache size, the data will probably not be
reused and should be evicted from the cache, so that addi-
tional cache space is available for other data. The LRU+CH
replacement policy is presented in algorithm 2. It is based on
the LRU policy, but gives accesses a for which the FRD(a) ≥
CS a low priority. In [21], Jain et al. proved that this re-
placement policy is guaranteed to perform at least as good
as LRU.



Algorithm 2 LRU+CH Replacement Policy

1. if l is not present in the cache, replace the cache line
at the bottom of the stack with line l.

2. if FRD(a) < CS, move l to the top of the stack, else if
FRD(a) ≥ CS, move l to the bottom of the stack.

4.2 Reuse Distance Equations
The reuse distances of the individual references in the pro-
gram are calculated in 3 steps:

1. The reuse pairs in the memory access stream are cal-
culated. For every two references (r, s), a set of poly-
topes reuse (r → s) is generated, which represent all
reuse pairs for which the first access is generated by
an execution of reference r, and the second access is
generated by s.

2. For each set of reuse pairs, a set of polytopes is con-
structed which describes the accessed data set (ADS)
of the reuse pairs in the set.

3. The number of different memory locations in the ADS
is counted, which equals the reuse distance of the reuse
pair.

In the reuse distance equations, the following notations are
used.

Definition 5. The set of all the references in a pro-
gram is denoted by R. The set of variables in a program
is denoted by V. The iteration space of the statement in
which a reference r occurs is denoted by IS(r). The mem-
ory location which is accessed by r at iteration point i is
denoted by r@i. The fact that iteration point i of reference
r is executed before iteration point j of reference s is ex-
pressed as ir <· js. The set of the program parameters is
denoted by P.

4.2.1 Reuse pair formulas
Every memory access is uniquely defined by the reference
r which generates the access and the iteration point Ir at
which the access occurs.

All reuse pairs (x, y) for which the first access x originates
from reference r and the second access y originates from ref-
erence s, are combined into the set of reuse pairs denoted by
reuse (r → s), which contains the iteration points Ir and Js

that generate a reuse. These iteration points are described
by the following simultaneous equations:

∀r, s ∈ R : reuse (r → s) =

{ (Ir, Js) ∈ Z
n : subject to conditions (10a)–(10d) }

Ir ∈ IS(r) ∧ Js ∈ IS(s) (iteration space) (10a)

Ir <· Js (execution ordering) (10b)

r@Ir = s@Js (same location) (10c)

∀t ∈ R : ¬ (∃Kt ∈ IS(t) : Ir <· Kt <· Js ∧ t@Kt = r@Ir)

(no intervening access) (10d)

IS( )A(i,j)

IS( )A(k,l)

for i := 1 to N

for j := 1 to i

A(i,j) := ...

endfor

endfor

for k := 1 to N

for l := 1 to k

A(k,l) := ...

endfor

endfor

(a)

j

i

l

k

(b)

reuse (A(i,j) → A(k,l)) =
{(i, j, k, l) :

1 ≤ i ≤ N ∧
1 ≤ j ≤ i ∧
1 ≤ k ≤ N ∧
1 ≤ l ≤ k ∧

i = k ∧ j = l}

(c)
Figure 5: The reuse pairs for a simple program. In (a),
the example program is shown. In (b), the reuse pairs are
shown as arrows between the iteration points of the two
different references. In (c), the reuse pairs are described by
parameterized integer polytopes.

The above formula gives the constraints which must be sat-
isfied before a reuse occurs between r@Ir and s@Js. Equa-
tion (10a) expresses that Ir and Js are part of the iteration
space of respectively r and s. (10b) demands that Ir must
be executed before Js; (10c) encodes that the same memory
location must be accessed and (10d) ensures that no inter-
vening memory access touches the same memory location.

An example of the above equations for a simple program is
shown in Figure 5.

4.2.2 Accessed data set of a reuse pair
The function mapA

r maps an iteration space to the elements
of array A accessed by r, while iterst(Ir, Js) is the set of
iterations of reference t executed between iteration Ir and
iteration Js:

map
A
r = {I → r@I : I ∈ IS(r)} (11)

iterst(Ir, Js) = {Kt ∈ IS(t) : Ir <· Kt <· Js} (12)

Now ADSA (reuse (r → s)), the elements of A that are in
the ADS of the reuse pairs in reuse (r → s), is expressed as
follows:

ADS
A (reuse (r → s)) =

[

t∈R

map
A
t (iterst(reuse (r → s))),

(13)

Equation (13) expresses that the ADS of a reuse pair can



be found by first calculating the iterations between use and
reuse. Then, the ADS is simply all the data locations which
are touched by the accesses in the iterations between use
and reuse. The calculation of the ADS for a reuse pair of
the program in figure 5(a) is shown in figure 6.

4.2.3 Reuse distance of a reuse pair
In order to find the reuse distance of a reuse pair, the number
of different memory locations in its ADS needs to be counted:

RD(reuse (r → s)) =
X

A∈V

E
“

ADS
A (reuse (r → s)) ; Ir, Js,P

”

(14)

ADSA (reuse (r → s)) is a set of parameterized integer poly-
topes. Besides calculating the reuse distance of a reuse pair,
it is also possible to compute the forward reuse distances of
a memory reference r, denoted by FRD(r):

FRD(r) =
X

s∈R,A∈V

E
“

ADS
A (reuse (r → s)) ; Ir,P

”

(15)

Examples of the above equations are given in figure 7.

4.3 Experiments
The reuse distance equations have been implemented in the
FPT[38] compiler. The equations (10a)-(13) may consist
of integer linear inequalities, the logical connectives ¬,∨,∧
and the quantifier ∃. Such formulas are called Presburger
formulas. The Omega library[22] is used to simplify them
into a union of disjoint polytopes, which are counted using
the method described in Section 3.

After the reuse distances have been calculated, FPT writes
out an instrumented version of the source code, which pro-
duces a function call to a cache simulator for each memory
access. The function call takes as arguments the address of
the accessed variable and the calculated forward reuse dis-
tance. For example, the reuse distance j(m − j − 1) + N
calculated in section 2 for reference A(m,j) would show up
in the instrumented code as:

...

do m = j+1, N

CALL ACCESS(A(m,j), j*(m-j-1)+N)

A(m,j) = ...

enddo

...

The calculated reuse distances were compared with reuse
distances measured by profiling[5] and were found to be iden-
tical in all cases, indicating the exactness of our method.

For a number of programs from the NAS and SPEC bench-
marks and Livermore loop kernels, this instrumentation has
been performed. The number of polytopes that were enu-
merated are listed in table 1. It shows that for 3 programs,
the previous method[11] fails to find the solution for all poly-
topes. Furthermore, the proposed method computes the
number of points in a polytope about 3.7 times faster than
the previous method.

j

i

l

ItersA(i,j)(i=7,j=4,k=7,l=4)

ItersA(k,l)(i=7,j=4,k=7,l=4)

array A

mapA(i,j)

mapA(k,l)

map )A(i,j) (7,4,7,4)(ItersA(i,j)

map )A(k,l) (7,4,7,4)(ItersA(k,l)

k

Iteration domain Data domain

a

b

a'

b'

7

7

4

4

(a)
ADSA (reuse (A(i,j) → A(k,l))) =
˘

(x, y) :
`

1 ≤ i ≤ N∧1 ≤ j ≤ i ∧ IS(A(i,j))

1 ≤ k ≤ N∧1 ≤ l ≤ k ∧ IS(A(k,l))

i = k ∧ j = l
´

∧ same location
`

x < k ∨ x = k∧y < l ∨ data accessed be-

x > i ∨ x = i∧y > j
´¯

tween use and reuse

(b)
Figure 6: Graphical representation of the calculation of
ADS(reuse (A(i,j) → A(k,l))), for the program in fig-
ure 5(a). A single reuse pair is shown (from refer-
ence A(i,j) at iteration point (i=7, j=4) to the access
made by reference A(k,l) at iteration point (k=7, l=4)).
On the left hand side, itersA(i,j)(i=7, j=4, k=7, l=4) and
itersA(k,l)(i=7, j=4, k=7, l=4) are indicated in the iteration
spaces of the references as areas α and β. After applying the
mapping functions mapA

A(i,j) and mapAA(k,l), the parts of ar-
ray A that are accessed by the iterations between (i=7, j=4)
and (k=7, l=4), are shown as α′ and β′.



N

N

(a)

• RD(reuse (A(i,j) → A(k,l))) =

E
`

ADS
A (reuse (A(i,j) → A(k,l))) ; i, j, k, l, N

´

=

N2 + N

2
− 1

• FRD(A(i, j)) =
N2 + N

2
− 1

(b)
Figure 7: In figure (a), the accessed data elements of array
A between use and reuse for the reuse in figure 6 is shown

graphically. The amount of data in this set is N2+N
2

− 1,
which equals the reuse distance of that reuse. In figure (b),
reuse distance and the forward reuse distance are described
in function of matrix size N , using the equations (14)- (15).

The resulting program was linked with a cache simulator
that simulates both the LRU and LRU+CH replacement
policies. Table 2 shows the cache miss reduction for a 16KB
4-way set associative cache, resulting from the LRU+CH re-
placement policy, with the cache hints based on the forward
reuse distance equations. After cache hint insertion, about
10% less cache misses occur.

5. IMPLEMENTATION DETAILS AND RE-
LATED WORK

In Section 3, we assumed that P is full-dimensional. If P
is of dimension d − l, with l ≥ 1, then its description con-
tains an equality 〈a,x〉 = 〈b,p〉 + c. Let a′ = a/g, with
g the gcd (greatest common divisor) of the elements in a.

miss rate miss rate miss rate
program LRU LRU+CH reduction
vpenta 31.56% 25.57% 18.99%
mxm 3.20% 3.20% 0.00%
liv18 68.46% 61.91% 9.57%
cholesky 19.81% 17.94% 9.43%
jacobi 14.32% 14.32% 0.00%
gauss-jordan 11.90% 7.81% 34.37%
tomcatv 9.22% 9.22% 0.00%
average 22.64% 20.00% 10.34%

Table 2: The cache miss rates for a 4-way set associative
16KB cache with 32 bytes per line. The first column indi-
cates the program name; the second column the miss rate
with LRU replacement; the third column the miss rate of
the LRU+CH replacement algorithm; and the fourth col-
umn shows the reduction in number of misses due to cache
hints.

a′T can be extended to a unimodular matrix U [6].2 Let
P ′ = UP . Since U and U−1 are unimodular, E(P ′) = E(P ).
Furthermore, gx′

1 = 〈b, p〉 + c by construction of U and so
P ′ is the cross product of P ′′ = {(〈b,p〉 + c)/g} and some
P1 ∈ � d−1. Therefore E(P ) = E(P ′) = E(P ′′) · E(P1). The
number of integer points in P ′′ is zero or one depending on
the parameters and can be represented by a periodic num-
ber. Repeating the above l times, yields a Pl ∈ � d−l of full
dimension.

Even if P is full-dimensional, then we may in some cases still
be able to write it as a cross product of two or more sets [19].
Since the dimension of each set is smaller than that of P , we
can greatly reduce the computation time by calculating the
number of points in each factor separately and multiplying
the results afterward. Note that we also need to “multi-
ply” the validity domains, i.e., the validity domains of the
product are the intersections of the corresponding validity
domains in the factors. Furthermore, if P or one of its fac-
tors is one-dimensional then it has two vertices l(p) ≤ u(p)
and we simply calculate bu(p)c − dl(p)e + 1 (again a peri-
odic number) in each validity domain rather than using the
algorithm of Section 3.

Our procedure for calculating Barvinok’s decomposition into
unimodular cones is an independent reimplementation of
the corresponding procedure in LattE [12] as described in
[14]. Like LattE, we use Shoup’s implementation [34] of
Lenstra Lenstra and Lovasz’ basis reduction algorithm and
GMP [16] for computing in exact long integer arithmetic. Un-
like LattE, however, we use PolyLib [25] for performing
polyhedral operations, since this allows us to reuse the pro-
cedures for subdividing the parameter space into validity
domains [26]. The disadvantage of using PolyLib is that it
incurs a speed penalty by insisting on maintaining the dual
representation for all polytopes and by its non-optimal use
of the GMP library. Furthermore, the worst-case running time
of our algorithm is exponential in the input size, which is
defined as the number of bits needed to represent the input
[32]. The root cause of this behavior is that the number of
elements in each periodic number is linear in the period of
the Ehrhart polynomial, which is in turn bounded only by
the value of the coefficients in the input. We are working on
a different representation of periodic numbers that should
alleviate this problem [37]. Our implementation is available
from http://freshmeat.net/projects/barvinok/.

Two methods are often cited for counting the number of
points in a parameterized polytope: Clauss and Loechner
(1998) [11] and Pugh (1994) [29]. The main differences and
similarities between our technique and the first have already
been highlighted. The technique of Pugh consists of a set of
simplification rules and the application of a set of standard
summation formulas for some base cases. If he cannot find
an explicit formula, he resorts to “splintering” the polytope.
In contrast to our technique and that of Claus and Loechner,
his technique does not appear to have been implemented yet.

Although LattE initially only counted the number of points
in non-parameterized polytopes, it has been extended to
compute Ehrhart series by what the authors call the ho-

2A unimodular matrix is an integer matrix with determinant
1 or −1.



program nr. of not handled by exec. time exec. time
polytopes interpolation interpolation Barvinok

vpenta 3513 0 126.18s 58.95s
mxm 70 0 6.49s 1.24s
liv18 3052 6 255.37s∗ 47.60s
cholesky 77 0 3.48s 1.33s
jacobi 167 4 22.36s∗ 2.74s
gauss-jordan 238 0 12.64s 4.06s
tomcatv 5091 36 336.86s∗ 87.77s
total 12210 46 763.38s 203.69s

Table 1: Number of polytopes that are counted while calculating forward reuse distances for the different programs. For 46
polytopes, the interpolating method cannot find the solution. Furthermore, the presented analytical calculation is about 3.7
times faster than the interpolation method.

mogenized Barvinok algorithm [13]. An Ehrhart series is
a formal power series that is closely related to an Ehrhart
polynomial; they are in fact polynomially interconvertible.
The main difference is that in an Ehrhart series the num-
ber of points in the dilatation pP is equal to the coefficient
of the term tp. It does not appear to be as directly usable
in our context, but it has interesting mathematical proper-
ties. They apparently only handle simple dilatations with
a single parameter, which means that they cannot handle
problems with parameter spaces that need to be partitioned
into validity domains.

Recently some advances have been made towards automata-
based counting [7, 28]. Although these techniques handle a
larger class of problems (solutions to Presburger formulas),
they do not support symbolic parameters.

6. CONCLUSION
In this work, we have presented a new counting method
targeted at arbitrary parameterized polytopes. It consists
in computing Ehrhart polynomials using a novel analyti-
cal technique, based on Barvinok’s decomposition. In con-
trast to the previously known interpolation method, our
method always produces a solution, eliminating any degen-
eracy problem. We have used this method for computing
reuse distances, which can be represented as the number of
integer points in unions of parameterized polytopes. Com-
municating this information to the processor through cache
hints leads to an improved cache replacement policy.

Although our current implementation is already faster than
the previous one, we still expect long computation times
for problems that result in large periods. We are therefore
working on an alternative representation of periodic num-
bers [37]. Furthermore, extending our reuse distance for-
malism to caches with a longer line size and limited associa-
tivity may lead to Presburger formulas that cannot be sim-
plified to unions of polytopes. In particular, we will need to
handle sets with descriptions containing existentially quan-
tified variables. Counting the number of points in such sets
is equivalent to counting the number of points in integer
projections of parameterized polytopes. To the best of our
knowledge, this problem has only been solved for special
cases (e.g., projecting out a single dimension [33]) or, for
the non-parameterized case, with a mathematical algorithm
that does not appear to be practically implementable [3].
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[9] Michel Brion and Michèle Vergne. Residue formulae,
vector partition functions and lattice points in rational
polytopes. J. Amer. Math. Soc., 10:797–833, 1997.

[10] Siddhartha Chatterjee, Erin Parker, Philip J. Hanlon,
and Alvin R. Lebeck. Exact analysis of the cache
behavior of nested loops. In Proceedings of the ACM
SIGPLAN 2001 Conference on Programming
Language Design and Implementation, pages 286–297.
ACM Press, 2001.



[11] Philippe Clauss and Vincent Loechner. Parametric
Analysis of Polyhedral Iteration Spaces. Journal of
VLSI Signal Processing, 19(2):179–194, July 1998.

[12] J. A. De Loera, D. Haws, R. Hemmecke, P. Huggins,
J. Tauzer, and R. Yoshida. A user’s guide for latte
v1.1, November 2003. software package LattE is
available at http://www.math.ucdavis.edu/∼latte/.

[13] Jesus De Loera, David Haws, Raymond Hemmecke,
Peter Huggins, Bernd Sturmfels, and Ruriko Yoshida.
Short rational functions for toric algebra and
applications, July 2003.
http://arxiv.org/abs/math.CO/0307350.
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