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Abstract. This paper presents a new method for computing the integer
hull of a parameterized rational polyhedron by introducing the concept
of periodic polyhedron. Besides concerning generally parametric combi-
natorial optimization, the method has many applications for the analysis,
optimization and parallelization of loop nests, especially in compilers.

1 DMotivation

For many years, compiler writers have focused on parameterized loop
nests, mainly because of their importance in scientific and multimedia
programs. The polytope model [2] allows to manipulate loop nests whose
bounds are affine functions with integer-valued parameters in the con-
stant part by modeling them as parameterized rational polytopes P. As
the considered loop indices are incremented by a constant integer value,
the values taken by the n-vector of indices belong to a subset of Z": an
integer lattice L. So the values taken by the index vector I € Z", where n
defines the number of nested loops, are given by the so-called Z-polytope
PNL.

Ezample 1. The iterations of the following Gaussian elimination code:

for(i=1;i<=n; i++)
for(j=i+1;j<=n;j++)
for(k=i+1; k<=n; k++)
aljl[kl=aljl[k]l-aljl[il*ali] [k]1/alil[i];

are modeled by the parameterized Z-polytope P N Z3, where
P={1<i<nji+1<j<nji+1<k<n}
and n is an integer parameter. O

As in the general problem of integer linear programming, we are inter-
ested in integer points (i.e., points with integer coordinates) in polytopes
whose vertices may be non-integer.

In a class of code optimization and parallelization methods (e.g. in [20,
12,21, 8, 22]), loop nests are usually transformed by applying an affine
integer transformation to the Z—polytope representing the loop nest [17].
They may also be split into sub-polyhedra as for example in [11]. The



result can then be transformed back into a loop nest by source code
generation.

Several loop optimization and parallelization techniques also need to
compute the indices of the first and last iterations to be executed in a
loop nest (i.e. the lexicographic extrema of the I values). For instance, a
precise dependence analysis may consist in computing the first executed
iteration accessing a variable, among the set of iterations following a
given access to this variable. Another issue is precise liveness analysis of
data accessed in a loop nest, where the first and last iterations accessing
the considered data have to be computed. Liveness analysis can be used
to reduce the maximum amount of memory used by a program, and to
reduce communications while parallelizing loops.

These techniques, as well as integer programming techniques in general,
look for vertices of the integer hull P’ of a parameterized Z-polytope, as
it is known that the solution is one of these vertices. The integer hull is
the convex hull of the integer points in PN L.

Many techniques exist in the literature for finding integer vertices. Fol-
lowing Nemhauser and Wolsey (][9] chap. II) and Aardal et al [1], they
can be classified as follows:

— cutting plane algorithms compute the integer hull of a rational poly-
hedron by adding constraints that cut the non-integer vertices out
of it, so that all its integral points still respect the added constraint.
The performance of this method is strongly related to the choice of
a new cutting plane. The original idea has been proposed by Go-
mory in [10]. Seminal algorithms and complexity studies are due to
Chvatal [3] and Schrijver [18].

— branch and bound algorithms recursively divide P into sub-polyhedra
of which integer vertices are computed. The most commonly used
technique partitions P into two polyhedra by a hyperplane including
the optimal rational vertex of P.

— algorithms based on Lagrangean relaxation give an approximate so-
lution by integrating constraints into the objective function.

— other algorithms that iteratively find vertices of the integer hull (for
example: column generation).

Note that these methods usually do not compute the integer hull of P
but only some of its vertices. Moreover, since we are interested in exact
solutions, the Lagrangean relaxation is not suitable.

In this paper, we present a new way to compute the integer hull P’ of
a rational parameterized polytope P, defined by a set of rational affine
equalities and inequalities on a set of variables I € Z" and integer-
valued parameters N € ZP. Integer vertices are computed by recursively
extracting, from the facets of P, sets of points having one more integer
coordinate at each step.

Section 2 gives an intuitive explanation of the method. Section 3 then
presents the class of mathematical objects to be used in this paper. The
problem is then turned into a geometric form in section 4, which is used to
devise an algorithm with some restrictions in section 5. These restrictions
are eliminated in section 6. Finally, application of our method to find the
integer lexicographic maximum is presented in section 7, while section 8
gives concluding remarks and future works.



2 Background and Principle

We assume that the considered polytope P is defined by a set of non-
redundant constraints. This is not a strong assumption, since any poly-
hedron can be defined by such constraints (see [18] chap. 8), which can
eventually be computed [19]. Without loss of generality, we consider
Z—polyhedra whose supporting lattice is Z".

Since P is parameterized, the shape of P depends on the value of the
parameters. Wilde and Loechner have shown in [14, 13] that the parame-
ters space is partitioned into adjacent rational polyhedra, called validity
domains, in which P has a given shape. Therefore, in a given validity do-
main, the coordinates of the vertices of P have a given affine expression.
For simplicity, we first consider a polytope P whose parameters values
belong to a unique validity domain. We show how to deal with the gen-
eral case in section 6. Recall that we are concerned with integer-valued
parameters. To have a better insight of the problem, let us consider the
polytope presented in example 2.

Ezxample 2. The following polytope is represented on figure 1.

Py ={2—3j—1>0;—i+4j—3>0; -2+ 25> 0}
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Fig. 1. P», the false lexicographic minimum, and int(Ps)

Its corresponding loop nest in C, generated by using the Fourier-Moztskin
algorithm, would be:

for (i=ceil(13/5); i<= floor(25/2); i++)
for (j=ceil((i+3)/4);j<=floor((2i-1)/3); j++)
/* statements*/

According to the loop bounds, the minimal integer value for ¢ is [13/5] =
3. The minimal integer value for j seems then to be [(i+3)/4] = [6/4] =
2. But figure 1 shows that point (3,2) does not belong to Ps: it does
not correspond to a loop iteration. This example points out one of the
problems one may encounter when manipulating polyhedra with non-
integer vertices while dealing with integer points. This problem vanishes



if we manipulate the integer hull int(P2) of P> (in gray on figure 1), as
its vertices are integer while it includes all the integer points (iterations)
Of P2.

Let us now consider the maximum integer value of j for a given 7 in
P>. As one can see on figure 2, when i mod 3 = 0, the maximal integer

%i_8j—1—0 j —i44j —5=0

J —i+4j—6=0
2i—3j—2=0 it 4
L]

N—itdj—4a=0 i
—it4j—3=0

Fig. 2. integer minima and maxima for j for a given value of ¢

value jmae is solution to the equation 2i — 35 — 3 = 0. It is solution to
2i — 37 — 1 =0 when ¢ mod 3 = 2, and solution to 2 — 35 — 2 = 0 when
i mod 3 = 1. Similarly, the minimal integer value jmin is solution to
—i4+47—4=0if imod4=0
—i+45—3=0if imod4d=1
—i+4j—6=0if i mod4d=2
—i4+47—-5=0if i mod4=3
in j of an integer point of P is bounded by values which are solutions
to some equations. These equations depend periodically on i. So each
integer point (¢,7) of P is in the convex hull of two integer extremal
points: (%, jmin) and (¢, jmaz ). The convex hull of all these extremal points
is then the integer hull of Ps.
To generalize this idea, consider that any integer point

. For a given value of i, the coordinate

X =(xz1,%2, ..., Tn)
of P belongs to the set of points di(X) of P defined by
dk(X) = {I = (ml,. oy Th—1, Uk Tht1, - ..,xn),ik €eQ,Ie€ P},k S [17’L]

ir has a minimal and maximal value in dx(X), given by two faces (or
constraints) of P: pmin(I,N) > 0 and pmaz(I, N) > 0. Coefficient ax of
ik In pmin(I, N) is positive and it is negative in pmaz(I, N), therefore
we have: ix, > pryin (I, N) and ix < plhar (I, N). These inequalities define
the rational lower and upper bounds for iy in di(X). In other terms, we
have plin (I, N) < 2k < plas(I, N). Furthermore, as Xy is integer, we
have [plhin(X, N)] < 2k < [Phaez(X, N)]. So X belongs to the convex
hull of the integer points Zmin(X, N) and Tmaz (X, N), where

Tmin (X, N) = (z1,...,Zk-1, ]—plmm(X, N, Tht1y -+, Tn)



and
Tmaz (X, N) = (21, ..., Th—1, [Pmac (X N) |, Trt1, .oy Tn)-

It follows that:
— the integer hull int(P) of P is the convex hull of all the existing
integer points Tmin (X, N) and Tmaee (X, N),
— the vertices of int(P) are some of these points.

Ezample 3. The existing points min(7) and Tmaz (i) are represented on
figure 3, as well as the integer hull of P> and the different d2 (%, j) (with
i =41 and j = 42). One can see that the convex hull of all these points
is the integer hull of P. O

B

Fig. 3. The extremal integer points of P, and the different da (%, j)

We have seen that the extremal points are periodically solution to an
equality. We explain this periodic character in next section.

3 Periodic Polyhedra

Consider the k" coordinate of Tmaz, Obtained from the inequality

pmacc(-I;N) = Zatit +thnt+cz 0 :
t=1 t=1

n p
Imaz,k = \_p’lmaa:(X7 N)J = I_Z aixt + Z bint + CIJ
t=1 t=1

where a, = 0,a; = ai/(—ax),b; = b /(—ax) and ¢ = c¢/(—ax) (ax
is negative). The common denominator of the rational coefficients of
Prnae (X, N) is —ag.

Let a be an integer and b a positive integer. We have [ ] = & — 2mod b

. o (XN
Let Pjhae = —Qk-Paz- Then we can write: Tiaz,kx = me“_’iik)j

_ p;;mz(Xv N) _ p;;mz(X7 N) mod (_ak)

Tmaz,k =

—agk —agk



—AkTmaz,k = Prax (X7 N) — Pmaz (X7 N) mod (_ak)
AS Diaz(X, N) + ari = Pmaz(X, N), this reduces to:

Pmaz (X, N) — Dmaz (X, N) mod (—ak) = 0 T = Tmaz,k (1)

Similarly, we have:

DPmin (X, N) — pmin (X, N) mod (ar) = 0 < Tk = Tmin,k (2)

Equations (1) and (2) can be summed up into Theorem 1:

Theorem 1. Let p(X,N) > 0 be an inequality with integer coefficients.
The value of xy, that is solution to

Z(p(X, N),ix) = 0, ®3)

for integer values of (x1,x2, -+ ,Tr—1,Tht1, - ,Zn), is the extremal in-
teger value for xy, given by p(X, N) > 0, where Z(p(X, N),ix) = p(X, N)—
p(X,N) mod (|ak|).

So the set of extremal points Zmin(X, N) and ZTmaz(X, N) are integer
solutions to (3) for some constraint p(X, N) > 0 of P. In [16], we have
shown that if f(I) is an affine function with integer coefficients and m
is integer, f(I) mod m is an integer periodic number, with I € Z". A
periodic number is a rational-valued periodic function of I (see [6,4]). It
can be represented by a n-dimensional array whose number of elements
in the k'™ dimension is the corresponding period sy.

Ezxample 4. A 2-dimensional periodic number of period S = (;) de-

pending on (N,M)EZQ,WhOSQ value is :
— 1 for Nmod 2 =0, M mod 3 =0
— 2for Nmod2 =1, M mod 3 =0
— 3for Nmod2 =0, M mod 3 =1
— 4for Nmod2 =1, M mod 3 =1
— 5 for N mod 2 =0, M mod 3 =2
— 0 for Nmod 2 =1, M mod 3 = 2

can be represented as: B i (5)] O
N,M

Consider A(i) = ¢ mod 3,7 € Z. Its value is periodically 0, 1, and 2,
depending on i. Hence it is a periodic number of period 3. In a more
general way, if f(I) = Y J_, arix + ¢ is an integer affine function of
I € Z™ with ag,c € Z, and m € N, f(I) mod m is a periodic integer
number of period S = (si) with s = Fedtm T

Ezample 5. With f(I) = 3i + 44, and m = 6, it gives:

o 042
(3i + 47) modﬁ:[012345}(3i+4j):{315] 0
2y

We can then give an explicit form of the equalities yielding the extremal
points by using periodic numbers.



Ezample 6. According to theorem 1, the j coordinate of the extremal
points of P» is given by one of the two equations:

—i+4j—4—(—i+4j—3)mod4d=—i+4j-3-[1032], =0
2i—3j—1-(2i-3j—1)mod2=2i—3j—1-[10] =0,
which is concordant with our preliminary observations. d

These equalities depend on a periodic number: their definition is periodic.
As a classical equality defines a hyperplane, i.e. a polyhedron, an equality
whose definition is periodic defines then a periodic polyhedron. In [16],
we present a general class of mathematical objects depending periodically
on multiple parameters, which are called periodics.

Definition 1. A n-dimensional periodic polyhedron M of period S =
(81 S92 ... sn)T € N" is given by:
— g =581 X 82 X ... X $p polyhedra My, indezed by:

I=(iriz...in)" €Z" with 0 <ix < sy, k € [1..1]

— their respective definition domain Dy : the integer lattice defined by:

510... 0
0ss 0 0
, J+1,J€ez"
S0 L
0 OSm

U;Dr =Z": any element X € Z" is mapped to a unique M by the
relation I = X mod S. O

Notice that each M7 is then the intersection between an integer lattice
and a polyhedron (i.e. a Z—polyhedron).

Ezample 7. A 2-dimensional periodic over polyhedra (made of one in-

equality) of (4,7, k) € Z* depending on (i,5) € Z*, whose value is :
—i+2j—3k+7>0forimod3=0,jmod2=0
—2i—j+k>0forimod3=1,jmod2=0
—3j—5>0forimod3=2,jmod2=0
— —i—27>043k-7forimod3=0,jmod2=1
—i—2k4+1>0forimod3=1,jmod2=1
—1>0forimod3=2,jmod2=1

can be represented as:
i+2j—-3k+7>20—-i—-2j+3k—-72>0

20—j+k>0 i—2k+12>0 , and can also be written:
3j—-52>0 1>0 i
1-1 2 -2 -3 3 T =7
21 i+ |[—-10 j+| 1 =2 kE+(0 1]>0
00 i 3 0 y 0 0 i -5 1
(we call this form factorized form, as the constant form of an affine
function of (4, j, k) is extracted). O

Using the knowledge of periodic polyhedra, we show in the next section
new geometric tools that will allow to give an algorithm for computing
the integer hull of a polyhedron.



4 Pseudo-facets

We have seen that extremal points of P are integer solutions to an equal-
ity Z(p(X, N),ir) = 0 where p(X, N) > 0 is one of the inequalities that
define P. As well as the inequality p(X, N) > 0 defines a facet of P (with
its adjacent faces), we say that the solutions to Z(p(X, N),ix) = 0 belong
to a pseudo-facet of P.

Definition 2. The ¢'" facet f,(P) of a polyhedron P can be defined by:
{I € P | py(I,N) = 0}. Similarly, the ¢'" pseudo-facet for(P) of P
w.r.t. iy is defined by: {I € P | Z(pg(I,N),ix) = 0}.

A pseudo-facet fy(P) can be decomposed into:
— a (supporting) pseudo-hyperplane, defined by Z(pq(I,N),ix) = 0,
— a projected pseudo-facet, which is the projection of the pseudo-facet
along iy by using the equality Z(pq(I, N),ir) = 0.
The projected pseudo-facet defines the values of all the variables but i
for which the solution of Z(pq(I, N),ir) = 0 belongs to the pseudo-facet

far(P).
Ezxample 8. Consider the parameterized polyhedron Ps defined by:

Py = {—2iy + 3iy —n > 0; —2iy + 21 > 0;4iy +is — 13 > 0}

Figure 8 shows the facet of P defined by :

—2i1+3i2—n =0 —2i1 4+ 312 —n =0
—2i24+212>0 = 20 +21 >0
4i1 +12—13>0 Tia—2n—13 >0

and the corresponding pseudo-facet w.r.t. ii:

T(—2i1 + 3ia — n,i1) = —2i1 + 3iz —n — {0 1} =0
i2,M

10
—2i5+21 >0
4i1 +j2 —13 >0
‘ ‘ 01
—241 4+ 3is —n — LOLGO
- . . 1315
{=2iy + 21 > 0; iy — 2n — [15 3 imzo}

O

This allows a more geometrical expression of the theorem 1, as the integer
points whose convex hull is the integer hull of P belong to the pseudo-
facets of P w.r.t. iy.

Theorem 2. The convex hull of the integer hulls of the pseudo-facets of
P w.r.t. i is the integer hull of P.

Proof. Any (integer) extremal point belongs to the integer hull of a
pseudo-facet of P w.r.t. ix. The convex hull of all the existing integer
hulls is then the integer hull of the extremal points, that is to say the
integer hull of P.



7
projected facet (for2i1 = @rojected pseudo-facet 1(?01‘ i1 = 0)

Fig. 4. A facet of Ps and its corresponding pseudo-facet w.r.t. i;.

The determination of the integer hull of P therefore requires to compute
the integer hull of each of the pseudo-facets of P w.r.t. ix. But a pseudo-
facet is a periodic polyhedron. We have shown in [15] that the pseudo-
facet of a periodic polyhedron P’ w.r.t. variable iy is computed by taking
into account the period of P along ix. The supporting hyperplane is given
by:

I(Z @iy + ¢, i) = Zam +c— ((Z ayiy + ¢) mod |axsk|),
1 1 1

where s is the period of P’ along ix. Computing pseudo-facets for
pseudo-polyhedron allows us to compute the integer hull of a pseudo-
facet. This is used by the algorithm for computing the integer hull of a
parameterized rational polyhedron, as presented in the next section.

5 integer hull

Theorem 2 states a relation between the integer hull int(P) of polyhedron
P and the integer hull of its pseudo-facets w.r.t. variable ij:

int(P) = conv(Uint(f;,k(P)))

The problem is now to compute int((f; ,(P))). Similarly to the integer
hull of P, the integer hull of f; , is the integer hull of its pseudo-facets
w.r.t. another variable i;/, k" € [1..n] \ k as the points of f; , correspond
already to an integer bound of ix. Thus we have:

int((fg.1)) = conv((Jint(f37 10 (f3.1)) (4)

This establishes a recurrence relation between the integer hull of a
pseudo-facet and the integer hull of its own pseudo-facets. According
to theorem 1, a property of a pseudo-facet w.r.t. iy is that iy is integer
if the other variables and the parameters are integer. A pseudo-facet f”



w.r.t iy of a pseudo-facet f’ w.r.t. ir, belongs to f’: iy is integer if the
other variables and the parameters are integer. Moreover, it is a pseudo-
facet w.r.t. 45/, S0 iy is integer if the other variables and the parameters
are integer. Then i, and iy are integer if the other variables are integer.
Recursively, taking n times a pseudo-facet of a pseudo-facet leads to a
pseudo-facet f such that all the variables are integer when the parameters
are integer. Since a pseudo-facet of a periodic polyhedron of dimension m
is (m—1)-dimensional, f is of dimension 0. The two latter sentences state
that f is an integer point. The integer hull of P is then the convex hull of
all the f’s. The relations among P, its pseudo-facets and recursively the
pseudo-facets of the pseudo-facets are given by a tree, the pseudo-facet
tree P. The vertices of int(P) are obtained by scanning this tree from
its root P to its 0 — dimensional pseudo-facets (the vertices), called the
pseudo-vertices. We can devise an algorithm from the recurrence relation
among P and its pseudo-facets to obtain the pseudo-vertices of P.

get_pseudo_vertices(periodic polyhedron P) {
n = dimension(P)
if n = 0 return P
= empty set of periodic polyhedra
k = rank of the variable to be processed for n
= the kth variable of V
for each inequality £(I) >= 0 of P
with a nonzero coefficient for i do :
compute P’ by replacing f(I) >= 0 in P
by f(I) — (f(I) mod |a]) = 0
=P = {p | f(I) — (f(I) mod [a]) = 0}
P_proj= P’ projected pseudo-facet of P’
add get_pseudo_vertices(P_proj) to U
for each element u of U
add ({ f(I) — (f(I) mod |a]) = 0} N w) to P’
endfor
endfor
return P’’

}

By opposition to cutting planes algorithms, our algorithm adds no con-
straint to the original problem, but constraints are replaced by periodic
constraints. It adds neither variables nor parameters to the problem.
Moreover, the pseudo-facet tree of P is n-deep, so a given pseudo-vertex
is obtained in computing a pseudo-facet n times.

However, it handles periodic numbers, which can have large periods if
the coefficients of the constraints of P are large. An upper bound of the
number of elements of the computed periodics is M™ P, where M is the
maximal value of a coefficient that can be obtained by row elimination
of the constraints of P, and n and p are the number of variables and
parameters. One can still consider the use of the symbolic expression of a
periodic number, especially when M is large, to achieve the computation.
Computing the pseudo-vertices of a n-dimensional simplex requires (n +
1)! computations of a pseudo-facet, which gives a lower complexity bound.
Notice that the algorithm is highly parallel: the processing of subtrees
can be distributed, and the only data to be communicated is the pseudo-
facet corresponding to the subtree root.



6 Generalization

6.1 Unbounded polyhedra

Unbounded polyhedra can be used to model nested while and for loops
with the polytope model, as for instance in [5]. Nemhauser and Wolsey
have proved in [9](part I, section 6) that the integer hull S of an un-
bounded polyhedron P defined by its Minkowsky representation:

P:{xER”|1’:Z>\kvk+Zujrj,Z)\kzl,uj >0Vj5}
k j k

where the v* € R™ are the extreme vertices of P and 77 its extreme rays,
is given by:

S={zeZ'e=3 Mg"+> mr’,> A =1p; >0V}
k J k

where the ¢ are the extremal vertices of the integer hull of conv(v®).
Thus, computing the integer hull of an unbounded polyhedron P amounts
to compute the integer hull of its extreme vertices.

6.2 Polyhedron with multiple validity domains

In the general case of a parameterized polyhedron, the computed pseudo-
vertices will actually belong to the polyhedron for only some values of
the parameters. Loechner has given in [13] an algorithm to compute the
values of parameters for which a given rational vertex belongs to a ratio-
nal polyhedron. The parameters space is then partitioned into polyhedral
domains in which a given set of vertices belong to P. This method can
be adapted directly to compute pseudo-vertices: we can partition the
parameter space into periodic polyhedra in which a given set of pseudo-
vertices belong to P. This is translated into the following algorithm:

get_integer_hull(Polyhedron P) {
IH = empty list of periodic polyhedra
PX = empty list of periodic polyhedra
PX = get_pseudo_vertices(P)
(V, X) = lists of validity domains and
the corresponding valid pseudo-vertices from PX
for each (V_i, X_i) in (V, X)
H_i = convex hull of the pseudo-vertices X_i
add H_i to H
endfor
return (V, H)

6.3 Non-fully-dimensional polyhedra

The geometric dimension of a polyhedron P defined in a n-dimensional
variable space by a non-redundant system of e equalities and e’ inequal-
ities is given by d(P) = n — e. A polyhedron is fully-dimensional if
d(P) = n, so if P has no equalities. Integer solutions to a system of e
equalities belong to a (n — e)-dimensional integer lattice, whose deter-
minant may be greater than 1 and which depends on the parameters.
Methods to deal with this case will be presented in a further work.



7 An application: computing the integer
lexicographic extremum of a polytope

The lexicographic order is a total order on the elements of a n—dimensional
space. It is noted < and defined by:

I'=(iriz...in) €Z" 9T = (j1j2...jn) €L"

< Jk € [1..71] D :j1,i2 :jz...ik,1 :jkfl,ik <jk
For loop nests in computer programs, the integer lexicographic minimum
(resp. maximum) in PNZ" corresponds to the first (resp. last) iteration to
be executed. Feautrier presents in [7] a method to find the lexicographic
extrema of a parameterized loop nest, based on parameterized versions of
Gomory’s fractional cutting planes approach and the lexicographic dual
simplex algorithm.
Both integer lexicographic maximum or minimum are obtained in a sim-
ilar way, roughly by inverting comparison and extrema operators. So we
focus on the computation of the integer lexicographic maximum. The
integer lexicographic maximum of P belongs to the set of integer points
X1 of Z™ N P having the maximal existing integer value for i;. If such a
set contains several points, the integer lexicographic maximum is in the
subset of X; having the maximal integer value for iz, and so on. As for
any solution to a linear integer programming problem, we know that the
lexicographic maximum is a vertex of the integer hull of P.
A straightforward way to compute the integer lexicographic maximum
of P would therefore be to compute its integer hull P’ and then to find
the lexicographic rational maximum in P’, for example by using the
lexicographic dual simplex algorithm (see [7] or [9] chap. II section 4).
But this approach yields the computation of every vertex, which is costly
and in general useless as some vertices can never be the lexicographic
maximum. So, as it is generally done in integer linear programming, we
must compute only a subset of the vertices of P’, containing the integer
lexicographic maximum of P. We can equivalently compute the set of
vertices of P’ that excludes a maximal number of vertices that cannot
be the lexicographic maximum. The efficiency of the method depends on
the selection of the pseudo-facets that will contain the candidate vertices.
The maximal rational values of i1 are those of the faces of P which are
upper bounds for i1: those whose coefficient on i1 is negative. Candidate
vertices therefore belong to the corresponding pseudo-facets f of P w.r.t.
i1, which eliminates the vertices that are in the other pseudo-facets.
From now on, we will call min-pseudo-facet (resp. maz-pseudo-facet) of
a periodic polyhedron P w.r.t. iy a pseudo-facet corresponding to an
integer lower (resp. upper) bound of i; in P.

Ezample 9. The lexicographic maximum of Pz belongs to its only max-
pseudo-facet w.r.t. i1, defined by:

. . 01
LN _%Hm_n_[”]ign_o
13 15 >0}

1513, —
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n

{—2i2 +21 > 0;7i2 — 2n — {
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Let a1i1 + a2i2 + . .. anin + a0 = 0 be the associated supporting pseudo-
hyperplane. For a given value of the parameters, maximizing i, is equiv-
alent to maximize g(I) = az2i2 + ... anin, since i1 = —W and
a1 < 0. This is a second elimination criterion, which allows to keep the
pseudo-facets of f that can contain the integer points with a maximal
value for g(I). Let us see two ways to select relevant pseudo-facets of f.
First, we can consider the variation of g(I) w.r.t. the sign of ay. g(I)
increases with variables ¢in. with ar > 0. Thus, the candidate vertices
belong to pseudo-facets that maximize such in.. But g(I) also decreases
with variables i4.. with a negative coefficient and is constant for i.s; with
a zero coefficient. In the same way, we will also consider pseudo-facets
that minimize i4... Besides, we have to include max-pseudo-facets as well
as min-pseudo-facets w.r.t. icst.

FEzample 10. In our example, i2 increases in function of i1, so the lexico-
graphic maximum belongs to the max-pseudo-facets of f(I, N) w.r.t. i2:
{—%1+&2—n—{?é} = 0;—2i> + [20 18], = 0}. The candidate

2,1

d t 'th~(")—((—+3029 )/2,[109] ). F
pseudo-vertex is then: (i1,i2) = n 2% 27 . , ;) For
each value of n, the maximal value of ¢ is reached for i2 mod 2 = 0. The
integer lexicographic maximum is then: (i1,i2) = (—n+ [30 29]n)/2, 10)
O

This pseudo-facet selection method can be written as an algorithm, de-
tailed in [15].

In general, each pseudo-vertex depends periodically on the variables and
the parameters. But there is always one optimal value of the variables
for each value of the parameters, which must be selected.

Ezxample 11. Let us make a sketch of the process to find the candidate
vertices for a lexicographic maximum with the following example (also
considered by Feautrier in [7]): P={—i+m >0;:>0;7 >0;—j +n >
0;2i + 7 — k = 0} where k,n,m are the parameters. Since there is an
equality, for a given (maximal) i, j is determined, so we can eliminate
j. The coefficient in j is 1, so j is integer for any integer value of the
variables and the parameters. Therefore, the problem presented in section
6.3 does not occur here.

b %+j—k=0
T {—i+tm>0;i>0;-2i+k>0;2i —k+n >0}

The candidate vertices belong to two max-pseudo-facets of P w.r.t. i:

2i+j—k=0 2i+j5—k=0
—i4+m =0 —i+m=0
A= i >0= m >0
—2t4+k >0 k—2m >0

2i—k+n>0 —k+2m+n>0



2i+j—k=0 20+j—k=0

—i+m >0 —2i+k—-[01], =0
B = i >0= —k+2m+[01], >0
—2i+k — (—2i+ k)mod2 = 0 k—[o1], >0
2i—k+n >0 n—[01], >0

Here, A and B are the pseudo-vertices we are looking for:

A T\ m f m >0
“\j/)  \k-2m TVom<k<2m+n

HOE <ﬁ> o {[01], £x22mt [01),

In the general case, the domains of parameters are unions of polyhedra.
As the algorithm computes extrema one variable at a time, the result
can take the form of a quasi-affine syntax tree (as in Feautrier’s PIP) or
of a union of polyhedra.

Another pseudo-facet selection method would be to select the pseudo-
facets corresponding to faces of equation aii1 + aoiz + ...Qnin + Qo

O

such that (0 a2 ...an). (01 2 ... an )T < 0. Such faces are rational
maximal bounds for g(I), which is easily figured out by a rational linear
transformation.

8 Conclusion

We have defined a new method for computing the integer hull of a ra-
tional parameterized polyhedron, which has many applications in loop
nests analysis and optimization. This geometric method also yields new
ways to solve parametric integer programming problems. In particular, it
can help solving integer lexicographic extrema, which is an omnipresent
problem in loop nest analysis, optimization and parallelization. One of
our objectives was to provide a method based on the underlying concepts
of the polyhedral library Polylib [19]. While considering this objective,
we particularly generalized the concept of periodic numbers to periodic
polyhedra. The presented algorithms are being implemented in the li-
brary. Their performance will be compared with the existing solvers.
Other problems can also be tackled using our method: the domain of
parameters for which an integer point exists in a polyhedron, the number
of integer points in the projection of a Z-polyhedron, and alternative ways
to compute Ehrhart polynomials are currently worked on. We also plan
to write a generic parametric integer solver, by finding better pseudo-
facet elimination criteria, and to compare our methods in silico with the
existing ones.
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