
A Symbolic Approach to Bernstein Expansion
for Program Analysis and Optimization

Philippe Clauss1 and Irina Tchoupaeva2

1 INRIA Rocquencourt, A3 Project
78153 Le Chesnay Cedex - France

clauss@icps.u-strasbg.fr
2 ICPS/LSIIT, Université Louis Pasteur, Strasbourg

Pôle API, Bd Sébastien Brant
67400 Illkirch - France

irina@icps.u-strasbg.fr

Abstract. Several mathematical frameworks for static analysis of pro-
grams have been developed in the past decades. Although these tools are
quite useful, they have still many limitations. In particular, integer multi-
variate polynomials arise in many situations while analyzing programs,
and analysis systems are unable to handle such expressions. Although
some dedicated methods have already been proposed, they only handle
some subsets of such expressions. This paper presents an original and
general approach to Bernstein expansion which is symbolic. Bernstein
expansion allows bounding the range of a multivariate polynomial over
a box and is generally more accurate than classic interval methods.

1 Introduction

Static program analysis has received a lot of attention in the past decades as
mathematical frameworks for modeling programs have been developed. For ex-
ample, the polytope model allows modeling nested loops as polyhedra whose con-
tained integer points are associated to iterations. It provides mathematical tools
for quantitative analysis and optimizing transformations. However this model is
limited to loops whose loop bounds are affine functions over the enclosing loop
indices, and array references are affine functions over the loop indices.

Linearity of the considered functions is one of the main limitations in formal
analysis. Many behavior modeling issues where interactions between hardware
and software are considered, as cache behavior of programs, involve nonlinear
expressions. Compilers implementing advanced optimization transformations are
also limited by this fact. In particular, multivariate polynomial functions arise
in many situations resulting from linearized subscripts in array reference func-
tions, or from induction variable recognition, and compilers fail in handling such
expressions.

In this paper, we propose an extension of the theory of Bernstein expansion
[3, 4] to handle parameterized multivariate polynomial expressions. Bernstein
expansion allows bounding the range of a multivariate polynomial considered

over a box [2, 11]. Numerical applications of this theory have been proposed to
the resolution of system of strict polynomial inequalities [12, 13]. It has been
shown that Bernstein expansion is generally more accurate than classic interval
methods [14]. Moreover, Stahl has shown in [17] that for sufficiently small boxes,
the exact range is obtained.

In this paper, we generalize Bernstein expansion by considering parameter-
ized multivariate polynomials for which ranges are bound by polynomials over
the parameters. Sufficient conditions over the parameters for strict parameter-
ized inequalities solutions can therefore be constructed.

Bernstein polynomials are particular polynomials that form a basis for the
space of polynomials. Hence any polynomial can be expressed into this basis
through coefficients, the Bernstein coefficients, that have interesting properties
and that can be computed through a direct formula. Due to the Bernstein convex
hull property [10], the value of the polynomial is then bounded by the values
of the minimum and maximum Bernstein coefficients. The direct formula allows
symbolic computation of these Bernstein coefficients giving a supplementary
interest to the use of this theory. Another main interesting consequence is that
the involved computations have quite low complexity. Moreover an appropriate
instrumentation of this model allows automatic and inexpensive resolutions of
complex program analysis issues.

This paper is organized as follows. Following a short and motivating applica-
tion example in section 2, some notations are introduced and the handled poly-
nomials are defined in section 3. In section 4, basic notions about Bernstein ex-
pansion are recalled as well as the general principles of its numerical application.
Our symbolic approach is presented in section 5 where handled parameterized
multivariate polynomials inequalities over parameterized boxes are considered.
Several application examples are described in section 6: dependence testing be-
tween references with linearized subscripts, dead code elimination of conditional
statements and computation of the minimum memory amount needed for array
contraction. In section 7, we point out some current limits of our framework and
discuss about some further developments. In this section, we also compare our
approach to related works. Conclusions are finally given in section 8.

2 A motivating example

Consider the following loop, where “...” symbolizes some instructions having
no effect on the considered ones:

q=alpha-25 ;
for (i=0 ; i<11 ; i++) {
...
a[q]+=a[i+alpha+1] ;
...
q-=i ;
...
q+=9 ;

...
q-=i ;
... }

In order to determine whether this loop can be parallelized, it has to be deter-
mined if array reference a[q] overlaps reference a[i+alpha+1]. For this, some
induction variable recognition is first achieved [16] in order to get an expression
of q depending on i:

for (i=0 ; i<11 ; i++) {

...

a[-i*i+10*i+alpha-25]+=a[i+alpha+1] ;

... }

By applying conventional value range analysis on both polynomials −i2 +
10i + α− 25 and i + α + 1, we get the following results:

−[0, 10]2 + 10[0, 10] + α− 25 = [α− 125, α + 75]
[0, 10] + α + 1 = [α + 1, α + 11]

It yields the conclusion that the loop cannot be parallelized, since the value
range of i + α + 1 is entirely included in the value range of −i2 + 10i + α− 25.
But since the form in which the polynomial is expressed can affect the result, we
now use the Horner form of the polynomial −i2 +10i+α−25 = α−25+(10−i)i
which gives the more accurate bound [α − 25, α + 75], yielding anyway to the
same conclusion as before.

By applying our symbolic Bernstein expansion approach presented in this
paper, we compute the Bernstein coefficients of −i2 + 10i + α − 25: b0 = α,
b1 = α − 25 and b2 = α. Since the value is bounded by the minimum and
maximum coefficients, it yields the exact value range [α − 25, α]. Moreover, it
yields the conclusion that ranges of both references do not overlap at all and
hence that the loop can be parallelized.

Notice that other more accurate methods recently proposed [5, 6, 9] also
would have failed in this case, since the considered polynomial −i2 +10i+α−25
is not monotonous over the interval [0, 10].

3 Considered polynomials and notations

Let x = (x1, . . . , xlx) denote a lx-dimensional vector of rational variables and
u = (u1, . . . , ulu) a lu-dimensional vector of rational parameters.

Qlx = {x̄ = (x1, . . . , xlx) | xi ∈ Q, 1 ≤ i ≤ lx}
Qlu = {ū = (u1, . . . , ulu) | ui ∈ Q, 1 ≤ i ≤ lu}

Any term xi1
1 xi2

2 . . . x
ilx

lx
is noted x̄Ix , where Ix = (i1, . . . , ilx) is a vector of lx

positive integer values. In the same way, ūIu denotes any term uii
1 . . . ulu

lu
with

Iu = (i1, . . . , ilu). Ix, respectively Iu, is called the multi-index of variable x,

respectively u. The null vector (0, . . . , 0) is noted 0̄. In the following, an inequality
I = (i1, . . . , il) ≤ J = (j1, . . . , jl) means that for each 0 ≤ k ≤ l we have ik ≤ jk.

Let Q[ū] be the set of polynomials defined by:

Q[ū] = {p(ū) | p(ū) =
∑

0̄≤Iu≤Nu

aIu
· ūIu}

where coefficients aIu
∈ Q and Nu = (nu,1, . . . , nu,lu) is called the maximal multi-

degree of u-variables, i.e., the vector of the greatest degrees of the u-variables.

In this work, we consider polynomials over x-variables with coefficients in
Q[ū] and with maximal multi-degree Nx = (nx,1, . . . , nx,lx):

Q[ū][x̄] = {p(x̄, ū) | p(x̄, ū) =
∑

0̄≤Ix≤Nx

pIx
(ū) · x̄Ix , pIx

(ū) ∈ Q[ū]}.

Any polynomial p(x̄, ū) is considered over a box Dx ×Qlu where Dx ⊂ Qlx .
Considered boxes Dx = [a1, b1]× ...× [al, bl] are such that the ai’s or the bi’s can
be polynomials over parameters or variables and such that the knowledge of the
q first variables values determines the parametric values of aq+1 and bq+1, q < l:

Dx = [a2 = pa2(x1, ū), b2 = pb2(x1, ū)]× [a3 = pa3(x1, x2, ū), b3 = pb3(x1, x2, ū)]
×...× [al = pal(x1, x2, ..., xl−1, ū), bl = pbl(x1, x2, ..., xl−1, ū)]

where the pai’s and pbi’s are polynomials over some variables and parameters.
Our aim is to find integer solutions to the inequality:

p(x̄, ū) > 0, where (x̄, ū) ∈ Dx ×Qlu ∩ Zlx+lu

Solutions are expressed as sets D0 and D1, where D = (Dx ×Qlu) = (D0 t
D1 t Dε) such that for all (x̄, ū) ∈ D0 ∩ Zlx+lu p(x̄, ū) > 0, for all (x̄, ū) ∈
D1 ∩ Zlx+lu p(x̄, ū) ≤ 0, and Dε denotes the set where the sign of p(x̄, ū) is
indeterminate.

In this paper we generalize the numerical Bernstein method by applying it
to parameterized polynomials of the set Q[ū][x̄]. We first recall the Bernstein
theory and the numerical method.

4 Numerical Bernstein method

Let

CK
N = Ck1

n1
· · · · · Ckl

nl
, where 0̄ ≤ K = (k1, .., kl) ≤ N = (n1, ..., nl), (K, N) ∈ Nl

0,

and Ck
n = n!

k!(n−k)! , 0 ≤ k ≤ n, (k, n) ∈ N0

I − J = (i1 − j1, . . . , il − jl), where I = (i1, . . . , il), J = (j1, . . . , jl), I, J ∈ Nl
0

αI = αi1
1 · · · · · αil

l , where α = (α1, . . . , αl) ∈ Rl

For polynomials with constant coefficients:

p(x̄) =
∑

0̄≤I≤N

aI · x̄I ∈ R[x̄], x̄ ∈ D ⊂ Rl, aI ∈ R

and with maximal multi-degree N , Bernstein polynomials and Bernstein coeffi-
cients are defined in the following way.

In the univariate case, the i-th Bernstein polynomial of degree n on the unit
interval [0, 1] is defined as:

b
[0,1]
n,i (x) = Ci

n · xi(1− x)n−i, 0 ≤ i ≤ n, x ∈ R

In the multivariate case, the I-th Bernstein polynomial on the unit box [0, 1]l,
where I = (i1, . . . , il) and N = (n1, . . . , nl) is defined by:

B
[0,1]l

N,I (x̄) = b
[0,1]
n1,i1

(x1) · · · · · b[0,1]
nl,il

(xl), 0̄ ≤ I ≤ N, x̄ = (x1, . . . , xl) ∈ Rl

Bernstein polynomials are defined on the whole l-dimensional space Rl and define
a basis for polynomials p(x̄):

p(x̄) =
∑

0̄≤I≤N

b
[0,1]l

I B
[0,1]l

N,I (x̄) =
∑

0̄≤I≤N

aI · x̄I ,

where coefficients b
[0,1]l

I are the Bernstein coefficients of the polynomial p(x̄) on
the unit box [0, 1]l. They are determined by:

b
[0,1]l

I =
∑

0̄≤J≤I

CJ
I

CJ
N

aJ , 0̄ ≤ I ≤ N.

Theorem Let p(x̄) be a polynomial of multi-degree N on the unit box [0, 1]l.
For all x̄ ∈ [0, 1]l:

min
0̄≤I≤N

b
[0,1]l

I ≤ p(x̄) ≤ max
0̄≤I≤N

b
[0,1]l

I

Polynomials on any boxes D ∈ Rl of any sizes can also be considered since
without loss of generality, any nonempty box can be mapped linearly onto the
unit box [0, 1]l. Let φ be the linear transformation of the box D onto the unit box
[0, 1]l. As a polynomial p(x̄) is considered on a box D, then the corresponding
polynomial on the unit box is p̃(ȳ) = p(φ−1(ȳ)), ȳ ∈ [0, 1]l, and the Bernstein co-
efficients of the polynomial p on the box D are equal to the Bernstein coefficients
of the polynomial p̃ on the unit box [0, 1]l: bD

I = b
[0,1]l

I .
Transformation φ is defined by:

φ : x̄ = (x1, . . . , xl) → ȳ = (y1, . . . , yl)
[a1, b1]× · · · × [al, bl] → [0, 1]l, ai, bi ∈ R where yi =

xi − ai

bi − ai
, 0 ≤ i ≤ l

Hence the inverse transformation is:

φ−1 : ȳ = (y1, . . . , yl) → x̄ = (x1, . . . , xl)
[0, 1]l → [a1, b1]× · · · × [al, bl], ai, bi ∈ R

where xi = αi · yi + βi, αi = (bi − ai), βi = ai, 0 ≤ i ≤ l, 0 ≤ i ≤ l

And p̃(ȳ) is such that:

p̃(ȳ) =
∑

0̄≤P≤N

ãP ȳP where ãP = αP ·
∑

P≤K≤N

aK · CP
K · βK−P

Note that the maximal multi-degree N is the same for p(x̄) and p̃(ȳ).
To apply the Bernstein method for polynomials over an arbitrary box D, the

mapping φ is constructed and the Bernstein method is applied to the assigned
polynomial p̃(ȳ) over the unit box [0, 1]l.

Using the theorem, an algorithm to find solutions to the inequality p(x̄) >
0, x ∈ [0, 1]l, can be constructed. Using properties of the Bernstein coefficients of
the polynomial on the box D and since bD

I = b
[0,1]l

I for all 0̄ ≤ I ≤ N , we have:

– if min0̄≤I≤N bD
I > 0, then for all x ∈ D, p(x) > 0

– if max0̄≤I≤N bD
I ≤ 0, then for all x ∈ D, p(x) ≤ 0

The complete algorithm can be found in [12, 13].

5 Symbolic approach

Our extension considers polynomials p(x̄, ū) with parametric coefficients over
boxes whose bounds can also be parametric. Moreover these bounds can also
depend on variables.

5.1 Parameterized multivariate polynomials

The transformation of any polynomial:

p(x̄, ū) =
∑

0̄≤Ix≤Nx

pIx
(ū) · x̄Ix , x̄ ∈ Dx, ū ∈ Qlu

into the polynomial:

p̃(ȳ, ū) =
∑

0̄≤Ix≤Nx

p̃Ix(ū) · ȳIx , ȳ ∈ [0, 1]lx , ū ∈ Qlu

can also be found in the case of parameterized coefficients pIx(ū) since the for-
mulas are the same:

p̃Ix
(ū) = αIx ·

∑
Ix≤Kx≤Nx

pKx
(ū) · CIx

Kx
· βKx−Ix

where like above Dx = [a1, b1]× · · · × [alx , blx], αi = (bi − ai), βi = ai, 0 ≤ i ≤ lx.
Hence parameterized Bernstein coefficients can be computed by:

b
[0,1]l

Ix
=

∑
0̄≤J≤Ix

CJ
Ix

CJ
Nx

p̃J(ū), 0̄ ≤ Ix ≤ Nx.

and the inequality p(x̄, ū) > 0, x̄ ∈ Dx, ū ∈ Qlu holds if min0̄≤Ix≤Nx
bDx

Ix
> 0.

But since the Bernstein coefficients are polynomials over the parameters ū, the
minimum of these coefficients is generally difficult to determine. Verifying that
all the coefficients are strictly positive is equivalent and the following system is
considered: bDx

Ix
> 0, for all 0̄ ≤ Ix ≤ Nx.

Moreover, if coefficients pIx(ū) are linear functions over the parameters ū, the
Bernstein coefficients of the polynomial p on the box Dx are also linear functions
of the parameters and the latter system is a system of linear inequalities. Such a
system is handled by several tools manipulating linear functions like for example
the Polyhedral library PolyLib [1].

Example 1. Consider the polynomial p(x̄, ū) = (N + M)x1x2 + Nx1 + Mx2

with x̄ = (x1, x2), ū = (N,M) and x̄ ∈ Dx = [0, 100] × [0, 100]. Hence multi-
degree Nx = (1, 1). Box Dx is mapped onto the unit box [0, 1]2 by transforma-
tion φ defined by φ(x̄) = ȳ = (y1 = x1/100, y2 = x2/100). Hence polynomial
p̃(ȳ, ū) = (10000N +10000M)y1y2+100Ny1+100My2 with ȳ ∈ [0, 1]2. Bernstein
coefficients are computed for all (0, 0) ≤ Ix ≤ (1, 1):

– for Ix = (0, 0): bDx

(0,0) = C0
0C0

0
C0

1C0
1
0 = 0 ;

– for Ix = (0, 1): bDx

(0,1) = C0
0C0

1
C0

1C0
1
0 + C0

0C1
1

C0
1C1

1
100M = 100M ;

– for Ix = (1, 0): bDx

(1,0) = C0
0C0

1
C0

1C0
1
0 + C1

1C0
0

C1
1C0

1
100N = 100N ;

– for Ix = (1, 1): bDx

(0,1) = C0
1C0

1
C0

1C0
1
0 + C0

1C1
1

C0
1C1

1
100M + C1

1C0
1

C1
1C0

1
100N + C1

1C1
1

C1
1C1

1
(10000N +

10000M) = 10100N + 10100M ;

Inequality p(x̄, ū) ≥ 0 holds when all these Bernstein coefficients are positive. In
this example, it can be easily deduced that it holds for N ≥ 0 and M ≥ 0.

5.2 Parameterized boxes

Since Dx has bounds that can depend on parameters or variables, transformation
φ to map Dx onto the unit box is no more linear and is defined from variables
and parameters: yi = xi−ai

bi−ai
where ai and bi can be polynomials over variables

and parameters. Hence, φ is valid if and only if bi − ai 6= 0, which means that
ai < bi. So a valid mapping on the unit box can only be defined for Dx where
parameters and variables values such that bi − ai = 0 have been excluded. We
note this reduced set D∗

x which is generally a union of disjoint boxes:

D∗
x = Dx − {x̄ ∈ Dx | ∃ 1 ≤ i ≤ l, xi = Root of(bi − ai)}

When the ai’s and bi’s are affine functions of variables and parameters, the roots
of (bi − ai) are easily computed. Otherwise, roots can also be easily computed
for univariate polynomials of degree at most 4. Transformation φ is then defined
and applied on D∗

x in the following way.
At first, the polynomial p̃(ȳ, ū) is computed as described above. Then an

additional transformation consisting in propagating the new variables in p̃(ȳ, ū) is
necessary. Finally, the Bernstein coefficients are computed from this polynomial
on [0, 1]l. A specific value-per-value analysis is finally done for all roots of the
(ai − bi)’s polynomials.

Example 2. Consider the polynomial p(i, j) = (i2 + i)/2 + j defined on the box
Dx = [0, N]× [0, i]. Transformation φ is such that φ(i, j) = (i′ = i/N, j′ = j/i)
which is not valid for N = 0 and i = 0. Hence point (0, 0) is excluded from Dx:
D∗

x = Dx − {(0, 0)} = [1, N]× [0, i].
On D∗

x, the polynomial p(i, j) is first transformed into (N2i′2 + Ni′)/2 + ij′.
Variable i′ is then propagated and p̃(i′, j′) = (N2i′2 + Ni′)/2 + Ni′j′, (i′, j′) ∈
[0, 1]× [0, 1].

We use this symbolic approach to get sufficient conditions for any considered
parameterized multivariate polynomial to be strictly positive or negative. We
show with some examples in next section how an appropriate instrumentation
of this model allows automatic and inexpensive resolutions of complex program
analysis issues.

6 Applications

A typical application of our mathematical framework is dependence testing be-
tween references with linearized subscripts. Linearized subscripts can result from
optimizations like spatial data locality improvement [7]. Let us first consider an
example given by Maslov and Pugh in [15] in order to show how our method can
handle linearized subscripts. Although this example is also handled by Maslov
and Pugh, we show in the following some cases that could not, because of the
limitations of their method explained in section 7.

Example 3. The first example shown on figure 1(a) is a loop nest from the oil
simulation program BOAST in the RiCEPS benchmark suite. Anyway this kind
of loop nest is quite typical and met quite often in programs.

To be able to parallelize or to transform any of the i, j and k loops, it must
be checked whether the flow dependence from the first statement to the second
statement is loop-independent. Compilers fail to prove that this dependence is
loop-independent.

We instrument our model in the following way: consider both iterations
(i1, j1, k1) and (i1 + α, j2, k2). If we prove that:

MNi1 + Nj1 + k1 < MN(i1 + α) + Nj2 + k2 for any α ≥ 1

do i=p,p+L-1

do j=q,q+M-1

do k=r,r+N-1

A(M*N*i+N*j+k)=...

...=A(M*N*i+N*j+k)

enddo

enddo

enddo

(a) First typical exam-
ple of loop nest with lin-
earized references.

do i=2,N

do j=1,i-1

if 4*i*i+j>=3*i*j+5*i+1

...

else

...

endif

enddo

enddo

(b) Second example with a
complex conditional statement
which can be eliminated.

do i=1,N

do j=i+1,(N-i)/2

A(i,j)=A(j-1,N+i-j)

enddo

do j=(N-i)/2+1,N

A(i,j)=A(i-1,j-i)

enddo

enddo

(c) Third example of
loop nest for which ac-
cessed array A has to be
compacted.

Fig. 1. Examples.

then we prove that MNi1+Nj1+k1 can never be equal to MN(i1+α)+Nj2+k2

and so that the dependence is independent of loop i. We use our method to get
sufficient conditions for:

p(x̄, ū) = MNi1 + Nj1 + k1 − (MN(i1 + α) + Nj2 + k2)
= Nj1 + k1 −Nj2 − k2 −MNα < 0

with x̄ = (j1, k1, j2, k2) and ū = (α, N,M, p, L, q, r). Variables are considered on
the box Dx = [q, q + M − 1]× [r, r + N − 1]× [q, q + M − 1]× [r, r + N − 1].

Transformation φ to map Dx on the unit box is defined by:

ȳ = (
j1 − q

M − 1
,
k1 − r

N − 1
,

j2 − q

M − 1
,
k2 − r

N − 1
)

which is valid for any variables values and for any parameters values strictly
greater than one. It transforms polynomial p(x̄, ū) into p̃(ȳ, ū):

p̃(ȳ, ū) = N((M − 1)j′1 + q) + (N − 1)k′1 + r −N((M − 1)j′2 + q)
−((N − 1)k′2 + r)−MNα

= (NM −N)j′1 + (N − 1)k′1 − (NM −N)j′2 − (N − 1)k′2 −MNα

with ȳ = (j′1, k
′
1, j

′
2, k

′
2) ∈ [0, 1]4, M > 1 and N > 1. We use our software to

compute the Bernstein coefficients of p̃(ȳ, ū) and get the following answer:

p(x̄, ū) < 0 if



NMα > 0
NMα + N − 1 > 0
NMα + NM −N > 0
NMα + NM − 1 > 0
NMα−N + 1 > 0
NMα + NM − 2N + 1 > 0
NMα−NM + N > 0
NMα−NM + 2N − 1 > 0
NMα−NM + 1 > 0

It can be easily checked that all these conditions are equivalent to α ≥ 1, since
we are only concerned with integer values. Hence we have proved that the depen-
dence is independent of loop i which can be parallelized. In the perspective of
a fully automated framework, Bernstein expansion could be used again to check
the nonlinear conditions.

We now consider an example showing our framework usability for dead code
elimination of conditional statements.

Example 4. Consider the loop nest shown on figure 1(b). It contains a complex
conditional statement that can be the result of induction variable recognition
[16]. We use our tool to check whether the condition is either always true or
always false in order to eventually eliminate some dead code.

Checking if 4i2 +j ≥ 3ij +5i+1 is equivalent to check if p(x̄, ū) = 4i2−3ij−
5i+ j−1 ≥ 0. Here we have x̄ = (i, j), ū = N and Dx = [2, N]× [1, i−1]. Hence
φ is defined by ȳ = (i−2

N−2 , j−1
i−2) which is valid only if N is strictly greater than

two and for all points excepting point (2, 1): D∗
x = [3, N]× [1, i−1]. It comes that

N has to be strictly greater than three since φ is redefined as ȳ = (i−3
N−3 , j−1

i−2).
We compute p̃(ȳ, ū):

p̃(ȳ, ū) = 4((N − 3)i′ + 3)2 − 3((N − 3)i′ + 3)((i− 2)j′ + 1)− 5((N − 3)i′ + 3)
+ ((i− 2)j′ + 1)− 1

= 4((N − 3)i′ + 3)2 − 3((N − 3)i′ + 3)((((N − 3)i′ + 3)− 2)j′ + 1)
− 5((N − 3)i′ + 3) + (((N − 3)i′ + 3)− 2)j′

= (−24N + 36 + 4N2)i′2 + (−27− 3N2 + 18N)i′2j′ + (−48 + 16N)i′

+ (−11N + 33)i′j′ − 8j′ + 12

with ȳ = (i′, j′) ∈ [0, 1]2 and N > 3. We compute the Bernstein coefficients of
p̃(ȳ, ū) and get the following answer:

p(x̄, ū) > 0 if { 12 > 0, 4 > 0, 8N − 12 > 0, 5N−7
2 > 0,

4N2 − 8N > 0, N2 −N − 2 > 0}

It can easily be checked that all these conditions always hold when N > 2. For
point (2, 1) which was excluded, we observe that p(x̄, ū) = 0. Hence p(x̄, ū) is
always positive on Dx, the condition and the “else” parts of the code can be
eliminated.

Example 5. This example aims to show that our polynomial evaluation method
is also useful to achieve complex analysis and optimizations. Array contraction
is an optimization that transforms an array into a smaller array within a loop
in order to save memory and to increase locality. It is particularly useful for
embedded systems.

Consider the loop nest shown on figure 1(c). We want to achieve contraction
of array A assuming that A is a temporary array not further accessed in the rest
of the program. An array element is alive when it has been accessed through read

or write at least once and will be accessed again in the future. The minimum
amount of memory needed is given by the maximum number of simultaneously
alive array elements. Contraction of array A to this amount can be achieved by
defining new access functions and data layout.

Determining the maximum number of simultaneously alive array elements
generally translates in maximizing a parameterized multi-variate polynomial. It
is shown that such objective can be reached by our method.

We first compute the live range of any array element A(x,y), i.e., the num-
ber of iterations occurring between the first and the last references to A(x,y).
The maximum live range will also be the maximum number of simultaneously
alive array elements, and also the minimum amount of memory needed, since at
each iteration an array element is accessed for the first time and another one is
accessed for the last time. Moreover, each array element is referenced at most
once by each reference.

The live range of A(x,y) is computed in the following way: for each reference
A(i,j), A(j-1,N+i-j) and A(i-1,j-1), we compute the number of iterations
occurring before the one where the considered reference resolves in A(x,y). For
example, considering reference A(i,j), A(x,y) is referenced when i = x and
j = y. Hence we compute the number of iterations occurring before iteration
(x, y) included. When all the references have been considered, the live range of
A(x,y) is given by the largest difference between these iteration counts.

These iteration counts are given by the Ehrhart polynomials of some appro-
priately defined polytopes [7]. We get the following results:

Reference Last Iteration Iteration count
A(i,j) (x, y) ic1 = (N − 1

2)x− 1
2x2 + y −N

A(j-1,N+i-j) (x + y −N + 1, x + 1) ic2 = − 1
2x2 − xy + (2N − 1

2)x− 1
2y2

+(2N − 3
2)y − 3

2N2 + 3
2N

A(i-1,j-i) (x + 1, y + x + 1) ic3 = xN − 1
2x2 − 1

2x + y

Since A(j-1,N+i-j) and A(i-1,j-i) do not reference the same array ele-
ments, since reference to A(x,y) through A(j-1,N+i-j) occurs before reference
to A(x,y) through A(i,j), and since reference to A(x,y) through A(j-1,N+i-j)
occurs after reference to A(x,y) through A(i,j), we compute the differences
ic1 − ic2 + 1 and ic3 − ic1 + 1:

ic1 − ic2 + 1 = xy −Nx + 1
2y2 + (5

2 − 2N)y − 5
2N + 3

2N2 + 1
ic3 − ic1 + 1 = N + 1

The maximum number of simultaneously active array elements that are refer-
enced through A(i-1,j-1) is ic3 − ic1 + 1 = N + 1. But in order to deter-
mine the maximum number of simultaneously active array elements that are
referenced through A(j-1,N+i-j), we need to determine the maximum value
of ic1 − ic2 + 1 for any value of x and y. It is given by the largest Bernstein
coefficient of p(x̄, ū) = ic1 − ic2 + 1, where x̄ = (x, y) and ū = N .

Since 1 ≤ i ≤ N and i + 1 ≤ j ≤ (N − i)/2, and since x = j − 1 and
y = N + i − j, it comes that 1 ≤ x ≤ (N − 3)/2 and (N + 1)/2 ≤ y ≤ N − 1.

Hence we have x̄ = (x, y), ū = N and Dx = [1..(N − 3)/2]× [(N + 1)/2..N − 1].
Transformation φ to map Dx on the unit box is defined by ȳ = (2x−2

N−5 , 2y−N−1
N−3)

which is not valid for N = 5 and N = 3. Let us consider N > 5. Mapping φ
transforms polynomial p(x̄, ū) into p̃(ȳ, ū):

p̃(ȳ, ū) = (1
4N2 − 2N + 15

4)x′y′ + (− 1
4N2 + 3

2N − 5
4)x′ + (1

8N2 − 3
4N + 9

8)y′2

+(17
4 N − 6− 3

4N2)y′ − 5
2N + 15

8 + 5
8N2 + 1

with ȳ = (x′, y′) ∈ [0, 1]2 and N > 5. We compute the Bernstein coefficients
of p̃(ȳ, ū) which are: 5

8N2 − 5
2N + 23

8 , 1
4N2 − 3

8N − 1
8 , N − 2, 3

8N2 − N + 13
8 ,

1
8N2 + 1

8N + 1
2 , 1

2N + 1
2 .

The largest coefficient is obviously 5
8N2 − 5

2N + 23
8 . Hence the maximum

number of simultaneously active array elements that are referenced through
A(j-1,N+i-j) has been found, and the total number of simultaneously active
array elements is 5

8N2 − 5
2N + 23

8 + N + 1 = 5
8N2 − 3

2N + 31
8 . Finally, array A

can be contracted to 5
8N2 − 3

2N + 31
8 elements.

7 Limits, further developments and related works

Two main problems may arise when applying our symbolic Bernstein method:

1. The program output can be a complex system of multivariate polynomial
inequalities from which it is impossible to conclude immediately whether
the initial polynomial inequation always holds or not, or what are the cases
when it holds.

2. It can be impossible to conclude whether the initial polynomial is always
positive or negative over the box Dx, since the output system of inequations
has no solution.

In the first case, we propose to iterate our method on the most complex
polynomials composing the output system, by setting a box for some parameters
becoming the variables of a new problem. Solutions found by this way can then
be propagated into the other polynomials forming the system. After several
such iterations, solutions of the whole system should be found. We are currently
investigating this approach.

In the second case, the initial box Dx needs to be cut in order to find solu-
tions on some sub-boxes. Garloff presents in [12] a procedure to cut boxes in an
opportune way. But since we consider parameterized polynomials, this procedure
can not apply in our case. We will first try the approach of bisecting boxes into
sub-boxes of equal volumes, and then think about a more elaborated strategy.

Another direction consists in elevating the degree of the polynomial p̃(ȳ, ū)
over the unit box to make the Bernstein bounds tighter and get a system of
inequations having some solutions.

Maslov and Pugh present in [15] a technique to simplify polynomial con-
straints. It is based on a decomposition of any polynomial constraint into a
conjunction of affine constraints and 2-variable hyperbolic and elliptical inequal-
ities and equalities that can later be linearized. Hence their approach is not

general and can only handle those polynomials that can be decomposed in this
way.

In [6], Blume and Eigenmann propose to test dependences between itera-
tions of a loop, in the presence of nonlinear expressions, by verifying whether
the ranges of such an expression does not overlap between successive iterations.
However their technique is only valid if the expressions are monotonically in-
creasing or decreasing with the loop index, and if symbolic lower and upper
bounds can be easily determined. We are not concerned with such limitation.

Same authors in [5] present a expression-comparison algorithm consisting in
replacing each variable in expressions with their range. Their technique needs the
use of rewrite rules for simplifying expressions containing ranges. Two variable
replacing methods are described. A first one that can generate overly conservative
lower and upper bounds, and a second one, giving more accurate bounds, but
that only applies on expressions that are monotonic over the considered range.
Moreover, monotony has first to be proved by use of the first method. Since
overly conservative bounds can be generated, some monotonic expressions can
improperly be evicted.

Van Engelen et al. in [9] propose to obtain accurate bounds of a polynomial
over the parameterized box [0, n − 1] by computing its Newton series. However
their method is limited to univariate and monotonically increasing or decreasing
polynomials.

8 Conclusion

It has been shown that the symbolic use of Bernstein expansion for the analysis
of multivariate polynomials has several advantages:

– it is generally more accurate than classic interval methods, and even exact
in many cases ;

– it handles any multivariate polynomial without restriction ;
– complexity of the output system of inequations directly depends on the com-

plexity of the parameterized coefficients. If these coefficients are linear com-
bination of parameters, the output is a system of linear equations that can
be solved easily.

The main drawback is its need of computing time and memory which grows
exponentially with the number of variables. However, most problems arising in
static analysis involves only a few variables. Moreover, some very recent devel-
opments have shown the opportunity of a linear complexity algorithm [8].

Our symbolic approach has been implemented for the field of coefficients in
Q. The software uses the GNU-MP library for arbitrary precision arithmetic.
For the future we plan to integrate our tool with the polyhedral library PolyLib
in order to be able to directly solve the involved linear equation systems and to
extend Polylib to handle multi-variate polynomials.

When considering nonlinear expressions in program analysis, propositions
of non-exhaustive techniques become more and more current: program tracing,

heuristics, rough approximations, dynamic or run-time analysis, genetic algo-
rithms, ... We argue that results obtained by these ways can never be as accurate
as the ones obtained by static analysis using general mathematical frameworks.
Moreover, correctness is becoming of paramount concern in more and more areas
such as safety-critical systems or compilation into silicon.

References

1. The polyhedral library polylib. http://icps.u-strasbg.fr/PolyLib.
2. Jakob Berchtold and Adrian Bowyer. Robust arithmetic for multivariate bernstein-

form polynomials. Computer-aided Design, 32:681–689, 2000.
3. S. Bernstein. Collected Works, volume 1. USSR Academy of Sciences, 1952.
4. S. Bernstein. Collected Works, volume 2. USSR Academy of Sciences, 1954.
5. W. Blume and R. Eigenmann. Symbolic range propagation. In 9th Int. Parallel

Processing Symposium, April 1995.
6. W. Blume and R. Eigenmann. Non-linear and symbolic data dependence testing.

IEEE Transactions on Parallel and Distributed Systems, 9(12):1180–1194, Decem-
ber 1998.

7. Ph. Clauss and B. Meister. Automatic memory layout transformation to optimize
spatial locality in parameterized loop nests. ACM SIGARCH Computer Architec-
ture News, 28(1), March 2000.

8. J. Delgado and J.M. Peña. A linear complexity algorithm for the bernstein basis.
In IEEE Int. Conf. on Geometric Modeling and Graphics (GMAG’03), pages 162–
167, July 2003.

9. R. Van Engelen, K. Gallivan, and B. Walsh. Tight timing estimation with the
newton-gregory formulae. In 10th Workshop on Compilers for Parallel Computers,
CPC 2003, Jan. 2003.

10. G. Farin. Curves and Surfaces in Computer Aided Geometric Design. Academic
Press, San Diego, 1993.

11. R.T. Farouki and V.T. Rajan. On the numerical condition of polynomials in
bernstein form. Computer Aided Geometric Design, 4:191–216, 1987.

12. J. Garloff. Application of bernstein expansion to the solution of control problems.
In J. Vehi and M. A. Sainz, editors, Proceedings of MISC’99 - Workshop on Ap-
plications of Interval Analysis to Systems and Control, pages 421–430. University
of Girona, Girona (Spain), 1999.

13. J. Garloff and B. Graf. The Use of Symbolic Methods in Control System Analysis
and Design, chapter Solving Strict Polynomial Inequalities by Bernstein Expansion,
pages 339–352. Institution of Electrical Engineers (IEE), London, 1999.

14. R. Martin, H. Shou, I. Voiculescu, A. Bowyer, and G. Wang. Comparison of
interval methods for plotting algebraic curves. Computer Aided Geometric Design,
19:553–587, 2002.

15. Vadim Maslov and William Pugh. Simplifying polynomial constraints over integers
to make dependence analysis more precise. In CONPAR 94 - VAPP VI, Int. Conf.
on Parallel and Vector Processing, Sept. 1994.

16. Sébastian Pop. Analysis of induction variables using chains of recurrences: exten-
sions. Master’s thesis, Université Louis Pasteur, Strasbourg, July 2003.

17. V. Stahl. Interval Methods for Bounding the Range of Polynomials and Solving
Systems of Nonlinear Equations. PhD thesis, Johannes Kepler University Linz,
Austria, 1995.

