
Modeling Program Traces with Nested Loops

Philippe Clauss
INRIA Rocquencourt

A3 Project
78153 Le Chesnay Cedex -

France

clauss@icps.u-strasbg.fr

Bénédicte Kenmei Youta
ICPS/LSIIT, Université Louis

Pasteur, Strasbourg
Pôle API, Bd Sébastien Brant

67400 Illkirch - France

kenmei@icps.u-strasbg.fr

Odile Rousselet
ICPS/LSIIT, Université Louis

Pasteur, Strasbourg
Pôle API, Bd Sébastien Brant

67400 Illkirch - France

rousselet@icps.u-
strasbg.fr

ABSTRACT
Tracing can be an opportune way of analyzing programs
in order to understand their behaviors, to overcome static
analysis limitations and to build some efficient optimiza-
tions. However, it can be difficult to translate traces in a
comprehensive way or to represent them through a model
which can be used for simulations, for predictions and for
optimizations. In this paper, we propose to model program
traces with nested loops by first recognizing some repetitive
and periodic patterns. The generated loop nest can then
be used for all the above mentioned purposes while tak-
ing advantage of all the developments made in the polytope
model.

Keywords
program analysis, feedback-directed optimization, program
behavior, trace analysis, polytope model.

1. INTRODUCTION
Understanding the behavior of a program is the key to many
issues in software and hardware development today. Re-
quirements asked to a system are not limited to its func-
tionalities, but also to the way it satisfies them. This is
particularly emphasized in embedded systems conception.
Real-time constraints, power and memory consumption sav-
ing constraints constitute some current issues. Hence meth-
ods and tools are needed to analyze and control program
behavior.

Static analysis of programs has received a lot of attention
in the last decades and resulted in significant advances in
program performance optimization. But with the growing
complexity of nowadays software and hardware, and with
the growing number of behavior constraints that has to be
considered, the static analysis range is insufficient. The in-
tegration of dynamic information into static analysis offers
promising new opportunities to complement static analysis.

Workshop onExploring the Trace Space for Dynamic Opti-
mization Techniques, held in conjunction with ICS’03, June 2003

In this paper, we consider the analysis of program traces
consisting in some instructive information generated from
code instrumentation. For example, the knowledge of the
memory addresses accessed during the whole run, or partial
run, of a program can be used to understand its memory
behavior, to construct a prediction model for prefetching or
to improve temporal and spatial locality of the accesses. The
main task in analyzing such traces is to elaborate a model
representing them in a “smart way”:

• the model can be used eventually to reproduce the
same data as in the traces,

• it has to include the general behavior in order to be
well-suited for prediction,

• it should constitute a fruitful framework for optimizing
transformations of the analyzed code.

The best known and simplest approach to model numerical
measures is to compute regression or interpolation functions.
However it is not suited for any kind of measures, and overall
does not generally fit the above listed wishes.

In this paper, we only consider constant behaviors, or ”sym-
bolically constant” behaviors. Constant behaviors do not
depend on input variables or intermediary results. “Sym-
bolically constant” behaviors are behaviors that only de-
pend on some program parameters. Constant behaviors can
be identified by observing the same measures from several
runs, or by static analysis of the considered instructions.
”Symbolically constant” behaviors can be identified by in-
terpolating several measures from runs with several param-
eter values. We are currently investigating approaches for
analyzing varying behaviors in order to identify program in-
variants [3].

Analyzing measures is of current practice in many sciences,
where measures are classically considered as time-series, i.e.,
an ordered sequence of observations. For example in eco-
nomics, interest may be focused on the weekly fluctuations
in the stock prices and their relationships to the unemploy-
ment figures. In medicine, systolic and diastolic blood pres-
sures followed over time for a group of patients could be
useful for assessing the effectiveness of a drug used in treat-
ing hypertension. Several well-known mathematical models

and tools are provided for time-series analysis (see for ex-
ample [1] for a general dissertation on the subject).

However, these models are overall mathematical, and pro-
gramming structures model have not yet been considered.
We think that programming structures can be advantageously
used to model time-series in any observation field, since it
can take advantage of all the expression facilities and of all
the program analysis and transformations advances of com-
puter science. Such a modeling process can be seen as writ-
ing another program reproducing the behavior of a program
which was solely written to cover some functionalities.

Such an analysis practice is not usual in computer science for
observing software and hardware behaviors. Current opin-
ions are that numeric systems do not have such a complex
behavior. However due to the growing complexity of sys-
tems, this analysis approach is getting more and more at-
tention.

In this paper, we show that nested loops structures can be
used to model observations from running programs that have
periodic and repetitive behaviors. Most resource consuming
programs have such a behavior and this model can take ad-
vantage of the polytope model [4] to evaluate many quanti-
tative behavior properties and to build efficient optimization
methods.

The paper is organized as follows. In section 2, some gen-
eral considerations about tracing are discussed. It is also
explained how the programs we consider are instrumented.
Section 3 describes our loop model of nested patterns, while
section 4 presents our pattern recognition procedure. In
section 5, we show how traces depending on some program
input parameters can be modeled symbolically. Section 6
deals with the generation of the loop nest from the recog-
nized patterns and section 7 shows how the model can be
transformed to provide useful information. Finally, some
considerations about optimizations built from the model are
discussed in section 8.

2. TRACING DATA AND INSTRUCTION
ADDRESSES

Between all the memory accesses achieved by a running pro-
gram, a convenient and useful tracing has to focus on some
specific accesses that can help in understanding the scan-
ning of a given data structure from a given procedure, or
in defining the control flow followed during the run. Hence
instrumenting a program can be a difficult task and may
need a preliminary static analysis or even some preliminary
profiling, in order to detect what accesses are relevant to
expensive and representative behavior.

When focusing on a data structure, instrumentation has to
be elaborated according to the structure organization. Ac-
cesses to a structure whose nodes are defined by another
structure are traced on several dimensions: address of the
accessed object of the main structure, address of the ac-
cessed object of the first inner structure, and so on.

Moreover when tracing data accesses, the memory allocation
process has an important impact on the way the obtained
memory addresses can be interpreted and used. Generally,

when structure nodes are created separately with necessary
memory allocated just for one node, it is not guaranteed
that successively created nodes are allocated consecutively
in memory. Hence we must be aware of this fact and eventu-
ally transform the node creation procedure in order to ensure
consecutively allocated nodes. For example, the memory al-
locator ccmalloc proposed by Chilimbi et al. [2] can be
used: the user provides a pointer to an existing object that
is likely to be accessed contemporaneously with the newly
allocated object. Whenever possible, ccmalloc allocates the
new object in the same cache block as the existing object.

int TreeAdd (t,prev)
register tree_t *t;
{if (t == NULL) { return 0;}
else {
int leftval, rightval, value;
tree_t *tleft, *tright;
printf("%d ",((int)t-(int)prev)/16);//<-
tleft = t->left;
leftval = TreeAdd(tleft,t);
if (tleft != NULL)
printf("%d, ",((int)t-(int)tleft)/16);//<-
tright = t->right;
rightval = TreeAdd(tright,t);
if (tright != NULL)
printf("%d, ",((int)t-(int)tright)/16);//<-
value = t->val;
return leftval + rightval + value; } }

Figure 1: treeadd instrumentation.

When the interesting data accesses have been identified,
code instrumentation is simply done by printing the mem-
ory address accessed at each data access instruction. This
address is usually obtained by printing the pointer value.
When focusing on a data structure whose nodes have con-
stant sizes, the memory addresses can be normalized by sub-
tracting the base address of the structure and dividing them
by the node size. Hence obtaining a value q in the measures
means that the q-th node has been accessed.

Tracing instruction addresses is more technical: we use the
debugger GDB to print all the executed instructions ad-
dresses, by giving as input a file with convenient number of
stepi commands.

Example 1 We consider the program treeadd from olden
benchmarks. This program adds the values in a binary tree.
Nodes are first created in RLN mode and then are scanned in
LRN mode. The input parameter is the chosen tree depth.
We observe that all the nodes are allocated in memory in
the same order as they are created. The scanning function
is instrumented in order to print the strides between two
successive node accesses as shown in figure 1. Strides are
normalized since each node is 16 bytes. Running the pro-
gram for a 6 tree depth gives the answer of figure 2.

Although we focus in this paper on memory addresses, many
other information can be useful. For example, power con-
sumption can be measured at regular frequency or at given

32, 16, 8, 4, 2, -2, 1, -1, -4, 1, 2, -2, 1, -1, -1, -8, 1, 4, 2, -2,
1, -1, -4, 1, 2, -2, 1, -1, -1, -1, -16, 1, 8, 4, 2, -2, 1, -1, -4,
1, 2, -2, 1, -1, -1, -8, 1, 4, 2, -2, 1, -1, -4, 1, 2, -2, 1, -1, -1,
-1, -1, -32, 1, 16, 8, 4, 2, -2, 1, -1, -4, 1, 2, -2, 1, -1, -1, -8,
1, 4, 2, -2, 1, -1, -4, 1, 2, -2, 1, -1, -1, -1, -16, 1, 8, 4, 2, -2,
1, -1, -4, 1, 2, -2, 1, -1, -1, -8, 1, 4, 2, -2, 1, -1, -4, 1, 2, -2,
1, -1, -1, -1, -1, -1

Figure 2: Memory strides from running treeadd for
a 6 tree depth.

steps during the run of a program, but it may need some
specific hardware. Cache or branch misses can be measured
at regular frequencies or at given steps as well. Correlation
between several kinds of information can also be analyzed.

3. THE NESTED LOOPS MODEL OF
NESTED PATTERNS

A pattern is defined as a sequence of successive values that
is repeated at least 2 times in the analyzed series. It can
also be defined recursively as a sequence of successive values
and smaller patterns. Hence any pattern can be modeled by
a loop of the form shown in figure 3, where nb occurrences
is the number of times the pattern occurs in the series and
valuesq(i) denotes a sequence of values depending on the
value of index i.

Finally, the whole series is modeled as a pattern represented
by a loop nest, where each inner loop nest represents a sub-
pattern or some surrounding values and so on. Hence this
model can also be seen as a hierarchy of englobing patterns
as shown hereunder:

... values values pattern values pattern

where the innermost patterns are patterns of constant val-
ues, and the other values are changing at each iteration.
This model results in a multi-dimensional indexing of the
values, where each dimension is associated to a pattern level.

A pattern

for i = 1 to nb occurrences{
values1(i)

pattern1

values2(i)

pattern2

values3(i)
...

patternn

valuesn+1(i)}

Figure 3: Loop modeling a pattern.

4. IDENTIFYING REPETITIVE AND
PERIODIC BEHAVIORS

Repetitive and periodic address patterns can be observed on
programs accessing iteratively the same memory addresses.

But repetitive and periodic behavior can also be observed
for more general programs by observing some neighboring
facts: instead of analyzing the sequence of accessed memory
addresses, strides between successive accesses can be even
more informative about memory behavior. Moreover, in the
perspective of temporal and spatial locality improvement, it
is even better suited. Constant behavior can also be more
easily identified from strides.

More generally, periodic behavior is characterized by a value
k such that any q-th measured value such that q mod k = r
can be deduced from the (q − k)-th value by adding a con-
stant value vr ∈ Z. Hence repetitive patterns [v0, v2, ..., vk−1]
are observed on the sequence of strides occurring between
k-spaced accesses: let [a(i)], i = 1..n, be a sequence of n
accessed memory addresses, repetitive patterns of size k are
observed on the sequence [a(i + k) − a(i)]. If such a value
k exists, it can be found by computing the autocorrelation
coefficients of the input sequence:

Let m be the average value in the input sequence: m =∑n
i=1 s[i]

n
where n denotes the number of input values and

s[i] denotes the i-th input value. Let

c(q) =

n−q∑
i=1

(s[i]−m)(s[t + q]−m)

n

The autocorrelation coefficient for value q is defined by r(q) =
c(q)/c(0) ∈ [−1..1]. We compute r(q) for q = 1..n/2. Value
k may be given by the highest autocorrelation coefficient
|r(k)|. The graphic representation of all computed r(q) re-
sults in the correlogram of the analyzed sequence as shown
on figure 4 [1].

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1

5 10 15 20

Figure 4: A correlogram

When focusing on memory objects of constant sizes, strides
indicate the number of objects that are skipped between two
accesses. But since instruction words are of different sizes
on VLIW processors, printing such meaningful steps may
need some additional processing on the obtained memory
addresses.

We developed a tool that identifies repetitive patterns from
a given sequence of measures that can be addresses or strides
between successive accesses. Patterns are identified accord-
ing to the nested loops model described in section 3. The
algorithm works as follows:

The identified patterns are stored in a tree structure whose
root is the whole input sequence s. The search process works

through the following steps:

• for each value in the input sequence, three information
are computed and stored: the sum of all the preceding
values and the current one, the number of elements
(the distance) to the next element with same value,
and finally the number of times the current value oc-
curs in the whole sequence. The sums of all preceding
values will be used as a hash function in order to ac-
celerate sub-sequences comparisons.

• while there exists a value occurring at least 2 times

– search for a value v occurring the minimum num-
ber of times, but at least two times, and whose
distance to the next element vnext with same value
is maximum. Select this value.

– extend the selection to the left element per ele-
ment until one of the following situations occurs:

∗ element at the same position relatively to vnext

is different.

∗ an element occurring strictly less than two
times is encountered.

∗ the number of selected elements is equal to
the distance from v to vnext.

∗ the input sequence extremity has been reached.

– if the number of selected elements is less than the
distance from v to vnext, repeat the same selection
procedure to the right.

– compare the final selection to all possible selec-
tions of the same size with an element equal to
v occurring at the same position in the selection.
In order to accelerate comparisons, use the fol-
lowing: let i be the index of the first element and
j the index of the last element in the initial selec-
tion. Let k be the index of v and l be the index of
another element equal to v. Sequences s[i] to s[j]
and s[l− (k− i)] to s[l + (j − k)] have to be com-
pared. It is rapidly known whether the sequences
are different by checking that sum[j] − sum[i −
1] 6= sum[l + j − k] − sum[l − k + i − 1]. Else,
compare element per element both sub-sequences
in order to ensure that they are equal. Search for
another element equal to v and repeat the pro-
cedure. Create a branch tree with this identified
pattern and store the pattern size, the number of
occurring times, and the first elements positions.

– set to zero the number of occurring times of all
elements that are included in the recognized pat-
terns. Update this number for all the other ele-
ments.

• repeat the loop for all the recognized patterns in order
to find embedded patterns and until no new pattern is
recognized.

Example 2 Let us run our algorithm with a simple exam-
ple. Consider the input sequence 1, 1, 8, 1, 1, 8, 1, 1, -21.
The recognition procedure must first identify patterns 1, 1,
8 and 1, and then pattern 1 inside pattern 1, 1, 8. At the be-
ginning, some information shown hereunder are computed:

1 1 8 1 1 8 1 1 -21
index 0 1 2 3 4 5 6 7 8
sum 1 2 10 11 12 20 21 22 1
nb occ. 6 6 2 6 6 2 6 6 1
distance 1 2 3 1 2 -1 1 -1 -1

where sum is the sum of all the preceding values and the
current one, nb occ is the number of times the current ele-
ment appears in the sequence and distance is the number
of elements between two successive equal elements.

The first element appearing the minimum number of times is
8 at position 2. Next element with same value is at position
2 + 3 = 5. Element 8 at position 2 is selected and the
selection is extended to the left element per element:

• 1, 8 is selected since 1 is equal to the element at posi-
tion 5− 1 = 4 ;

• 1, 1, 8 is selected since 1 is equal to the element at
position 5− 2 = 3 ;

• selection extension to the left is stopped since the ex-
tremity has been reached ;

• the selection is not extended to the right since the
number of already selected elements, 3, is equal to the
distance to next element equal to 8.

Pattern 1, 1, 8 has been identified. For the so-identified
elements, nb occ is set to zero and updated for the other
elements:

1 1 8 1 1 8 1 1 -21
index 0 1 2 3 4 5 6 7 8
nb occ. 0 0 0 0 0 0 2 2 1

The next element appearing the minimum number of times
is 1 at position 6. Next element with same value is at posi-
tion 6 + 1 = 7. Element 1 at position 6 is selected and since
the number of selected elements is equal to the distance to
next element, no selection extension is done. Pattern 1 has
been identified. nb occ is set to zero for the identified el-
ements and hence there is no more elements appearing at
least two times.

The procedure is now repeated on each previously identified
patterns. All initial information are computed for the input
sequence 1, 1, 8. Pattern 1 is obviously detected in the same
way as before.

On the strides sequence obtained from running treeadd, our
tool finds the following patterns:

• pattern 1 repeated 2 times:

16, 8, 4, 2, -2, 1, -1, -4, 1, 2, -2, 1, -1, -1, -8, 1, 4, 2,
-2, 1, -1, -4, 1, 2, -2, 1, -1, -1, -1, -16, 1, 8, 4, 2, -2,
1, -1, -4, 1, 2, -2, 1, -1, -1, -8, 1, 4, 2, -2, 1, -1, -4, 1,
2, -2, 1, -1, -1, -1, -1

with surrounding values ({32}, {−32}), and ({1}, {−1}).

• pattern 2 repeated 2 times inside pattern 1:

8, 4, 2, -2, 1, -1, -4, 1, 2, -2, 1, -1, -1, -8, 1, 4, 2,
-2, 1, -1, -4, 1, 2, -2, 1, -1, -1, -1

with surrounding values ({16}, {−16}), and ({1}, {−1}).
• pattern 3 repeated 2 times inside pattern 2:

4, 2, -2, 1, -1, -4, 1, 2, -2, 1, -1, -1

with surrounding values ({8}, {−8}), and ({1}, {−1}).
• pattern 4 repeated 2 times inside pattern 3:

2, -2, 1, -1

with surrounding values ({4}, {−4}), and ({1}, {−1}).

5. SYMBOLICALLY CONSTANT
BEHAVIORS

Consider several traces from a ”sufficient number” m of pro-
gram runs with several input parameter values. We denote
by trace(n) the measures obtained from running the pro-
gram with n as input parameter. We classify symbolically
constant behaviors in 3 non-exclusive kinds:

(1) trace(n) is included in trace(n + 1),

(2) the measured values are not the same but are depen-
dent on the parameters values,

(3) the pattern sizes and/or the number of surrounding
values are different in trace(n) and trace(n + 1).

Case (1) is obviously detected and several functions charac-
terizing the added values in trace(n + 1) are computed:

• a function interpolating the number of new englobing
patterns,

• a function interpolating the number of new elements
in the new englobing patterns,

• a function interpolating the number of values surround-
ing the new englobing patterns,

• a function interpolating the number of times trace(n)
is repeated in the new englobing pattern,

• functions interpolating the new values in the new en-
globing patterns: if the number of new values is dif-
ferent in the traces, we consider an additional variable
q denoting the q-th new value in the new englobing
pattern.

• functions interpolating the new surrounding values of
the new englobing patterns: if the number of new sur-
rounding values is different in the traces, we consider
an additional variable q denoting the q-th new sur-
rounding value of the new englobing pattern.

Case (2) is detected by computing, for all obtained values
at the same position in each of the m traces, a function
interpolating the parameter values and these values in the
traces: let v1,q, v2,q, ..., vm,q be the q-th values obtained in
the traces from m program runs with respective parameter
values n1, n2, ..., nm. For all q, we compute a function fq in-
terpolating points (n1, v1,q), (n2, v2,q), ..., (nm, vm,q). All the
so-computed functions fq define a symbolic trace f1, f2, ..., fk

where k is the number of values in each trace. Such a sym-
bolic trace is satisfactory if considering any additional pro-
gram run with some other parameter values, the generated
trace fits the symbolic trace.

Case (3) is detected by examining each identified patterns
from the smallest to the largest, and by computing a func-
tion interpolating the parameter values and the pattern sizes.
For example, let s1, ..., sm be the smallest pattern sizes iden-
tified from m program runs with respective parameter values
n1, n2, ..., nm. We compute a function interpolating points
(n1, s1), ..., (nm, sm). This function represents a symbolic
pattern size of the smallest patterns. We do the same for
the next smallest patterns and so on. Such symbolic pattern
sizes are satisfactory if considering any additional program
run with some other parameter values, the generated pat-
tern sizes fits the symbolic sizes.

If none of these cases has been detected, we consider that
there is no symbolically constant behavior and specific mod-
eling is done for instantiated input parameter values.

Example 3 Program treeadd is relevant of case (1). Run-
ning the program with 7 as tree depth results in the measures
of figure 5. The interpolation functions are computed:

• number of new englobing patterns: nep(n) = 1, since
the new englobing pattern is the whole new sequence.

• number of new elements in the new englobing patterns:
nne(n) = 4.

• number of values surrounding the new englobing pat-
terns: nvs(n) = 0.

• number of times trace(n) is repeated in the new en-
globing pattern: ntr(n) = 2.

• new values in the new englobing patterns: vp1(n) =
2n−1, vp2(n) = −2n−1, vp3(n) = 1, vp4(n) = −1.

6. GENERATING THE NESTED LOOPS
The nested loops are built by considering each pattern from
the innermost to the outermost ones. First, the innermost
patterns are composed by a sequence of values. A loop is
generated, whose trip count is equal to the number of times
the considered pattern is repeated in its englobing pattern.

Each pattern is generated by an innermost loop whose trip
count is equal to the number of values occurring in it. In
order for the correct value to be generated at each iteration,
an interpolation function is computed: let p1, p2, ..., pn be
the values composing the pattern, a function interpolating
points (1, p1), (2, p2), ..., (n, pn) is computed.

64, 32, 16, 8, 4, 2, -2, 1, -1, -4, 1, 2, -2, 1, -1, -1, -8, 1, 4, 2,
-2, 1, -1, -4, 1, 2, -2, 1, -1, -1, -1, -16, 1, 8, 4, 2, -2, 1, -1,
-4, 1, 2, -2, 1, -1, -1, -8, 1, 4, 2, -2, 1, -1, -4, 1, 2, -2, 1, -1,
-1, -1, -1, -32, 1, 16, 8, 4, 2, -2, 1, -1, -4, 1, 2, -2, 1, -1, -1,
-8, 1, 4, 2, -2, 1, -1, -4, 1, 2, -2, 1, -1, -1, -1, -16, 1, 8, 4, 2,
-2, 1, -1, -4, 1, 2, -2, 1, -1, -1, -8, 1, 4, 2, -2, 1, -1, -4, 1, 2,
-2, 1, -1, -1, -1, -1, -1, -64, 1, 32, 16, 8, 4, 2, -2, 1, -1, -4,
1, 2, -2, 1, -1, -1, -8, 1, 4, 2, -2, 1, -1, -4, 1, 2, -2, 1, -1, -1,
-1, -16, 1, 8, 4, 2, -2, 1, -1, -4, 1, 2, -2, 1, -1, -1, -8, 1, 4, 2,
-2, 1, -1, -4, 1, 2, -2, 1, -1, -1, -1, -1, -32, 1, 16, 8, 4, 2, -2,
1, -1, -4, 1, 2, -2, 1, -1, -1, -8, 1, 4, 2, -2, 1, -1, -4, 1, 2, -2,
1, -1, -1, -1, -16, 1, 8, 4, 2, -2, 1, -1, -4, 1, 2, -2, 1, -1, -1,
-8, 1, 4, 2, -2, 1, -1, -4, 1, 2, -2, 1, -1, -1, -1, -1, -1, -1

Figure 5: Memory strides from running treeadd for
a 7 tree depth.

For the values surrounding patterns, since the number of
occurring values and the values themselves can vary, two
kinds of interpolation functions have to be computed:

• the varying number of occurring values is obtained
by generating a loop whose trip count is given by
a function on the englobing loop index. This func-
tion is computed by interpolating couples of englob-
ing loop index values and associated number of values:
let 1, 2, .., q be the englobing loop index values and
n1, n2, ..., nq be the number of values that have to oc-
cur, a function interpolating (1, n1), (2, n2), ..., (q, nq)
is computed. This function is used as the upper bound
of the loop.

• The correct values are generated from a function com-
puted by interpolating index values of the above cre-
ated loop and the values that have to be generated.

The same scheme is applied for the next englobing patterns
until the whole measures have been considered. The final
loop nest can be used to generate all the input measures. It
can be schematized as it is shown on figure 6, where:

• a is the upper bound of the preceding loop at the same
pattern (or loop) level ;

• nb occurrencesl,m denotes the number of times the so-
described m-th pattern of level l occurs in its englobing
pattern ;

• bq denotes the upper bound of a loop generating some
surrounding values. This bound can be a function on
i as described above ;

• valueq(j) denotes a function interpolating surrounding
values ;

• patternq(j− bq) denotes either a loop nest of the same
scheme or a function interpolating the values of the
q-th pattern of the current pattern level.

When the values are measured from a partial run, hypothe-
sis of repetitive behavior on the whole run can be considered
by generating an englobing loop whose trip count is param-
eterized.

...
for i = a + 1 to a + nb occurrencesl,m {

for j = 1 to b1

value1(j);
for j = b1 + 1 to b1 + nb occ(pattern1)

pattern1(j − b1);
for j = b1 + nb occ(pattern1) + 1 to b2

value2(j);
for j = b2 + 1 to b2 + nb occ(pattern2)

pattern2(j − b2);
...
for j = bn + 1 to bn + nb occ(patternn)

patternn(j − bn);
for j = bn + nb occ(patternn) + 1 to bn+1

valuen+1(j); }
...

Figure 6: General scheme of the final loop nest.

Example 4 For any value n of the tree depth, the loop nest
modeling the trace is shown figure 7, where occ val denotes
the value occurring in the trace at each step.

for in−1 = 1 to 2 {
for in−2 = 1 to 1
occ val = (1− 2n−1) ∗ in−1 + 2n − 1;

for in−2 = 2 to 3 {
for in−3 = 1 to 1
occ val = (1− 2n−2) ∗ (in−2 − 1) + 2n−1 − 1;

for in−3 = 2 to 3 {
for in−4 = 1 to 1
occ val = (1− 2n−3) ∗ (in−3 − 1) + 2n−2 − 1;

...

. . . for i2 = 2 to 3 {

. . . for i1 = 1 to 1

. . . occ val = −3 ∗ (i2 − 1) + 7;

. . . for i1 = 2 to 5

. . . occ val = −2 ∗ (i1 − 1)3

. . . +31 ∗ (i1 − 1)2/2− 73 ∗ (i1 − 1)/2 + 25;

. . . for i1 = 6 to 6

. . . occ val = 3 ∗ (i2 − 1)− 7; }

.

..
for in−4 = 4 to 4
occ val = (2n−3 − 1) ∗ (in−3 − 1)− 2n−2 + 1; }

for in−3 = 4 to 4
occ val = (2n−2 − 1) ∗ (in−2 − 1)− 2n−1 + 1; }

for in−2 = 4 to 4
occ val = (2n−1 − 1) ∗ in−1 − 2n + 1; }

Figure 7: Loop nest modeling the trace of program
treeadd.

7. MODEL TRANSFORMATIONS AND
INTERPRETATIONS (PREDICTION)

The generated loop nest can be used to reproduce the same
data as in the trace, but it can also be used to get more useful
information through some transformations. For example,
if the loop nest models strides between successive memory
accesses, it can be useful to transform it in order to get

directly the memory address accessed at a given iteration.
The model can then be used to predict accessed memory
addresses:

For any given iteration defined by its indices (i1, i2, ..., in),
the accessed memory address addr is given by the algorithm
shown figure 8.

1. q = n; addr = base address
2. for 1 ≤ t ≤ number of patterns in level q + 1
if bt−1 + nb occ(patternt−1) ≤ iq ≤ bt then

addr+ =
∑t−1

k=1

∑bk
r=1 valuek(r) +

∑iq

k=1 valuet(k)

+
∑t−1

k=1 stridek × nb occ(patternk)
if bt + 1 ≤ iq ≤ bt + nb occ(patternt) then

addr+ =
∑t

k=1

∑bk
r=1 valuek(r)

+
∑t−1

k=1 stridek × nb occ(patternk)
if patternt(iq − b1) is an embedded loop nest then
addr+ = stridet × (iq − bt − 1)
q− = 1 ; go to step 2

else addr+ =
∑iq

k=bt+1
patternt(k − bt)

Figure 8: Algorithm to compute accessed addresses.

Example 5 Algorithm to compute accessed addresses for
any tree depth n is shown in figure 9.

if in−2 = 1 then
addr = base address + (1− 2n−1) ∗ in−1 + 2n − 1
if 2 ≤ in−2 ≤ 3 then
if in−3 = 1 then
addr = base address + (1− 2n−1) ∗ in−1

+(1− 2n−2) ∗ in−2 + 7 ∗ 2n−2 − 3
if 2 ≤ in−3 ≤ 3 then
if in−4 = 1 then
addr = base address + (1− 2n−1) ∗ in−1

+(1− 2n−2) ∗ in−2 + (1− 2n−3) ∗ in−3

+17 ∗ 2n−3 − 5
..
.
...if 2 ≤ i2 ≤ 3 then
... if i1 = 1 then

... addr = base address +
∑n−2

k=1 (1− 2n−k) ∗ in−k

... +5 ∗ 2n−1 − 2n− 7

... if 2 ≤ i1 ≤ 5 then

... addr = base address

... +
∑n−2

k=1 (1− 2n−k) ∗ in−k + 5 ∗ 2n−1

... −i41/2 + 37 ∗ i31/6− 53 ∗ i21/2

... +275 ∗ i1/6− 2n− 32

... if i1 = 6 then

... addr = base address +
∑n−3

k=1 (1− 2n−k) ∗ in−k

... +5 ∗ 2n−1 − 2n− 17

...
if in−4 = 4 then
addr = base address + (1− 2n−1) ∗ in−1

+(1− 2n−2) ∗ in−2 + 7 ∗ 2n−2 − 3
if in−3 = 4 then
addr = base address + (1− 2n−1) ∗ in−1 + 2n − 1

if in−2 = 4 then addr = base address + 0

Figure 9: Accessed addresses for program treeadd.

In our model, each memory access is indexed by a tuple
(in, in−1, ..., i1). In order to predict what memory address

is accessed at the m-th access, we have to determine the
tuple corresponding to this m-th access. It is computed
using the algorithm shown in figure 10, where sizeq,k denotes
the number of elements in the k-th pattern of level q. (A.)
is relevant for the case where the m-th reached value is a
surrounding value of level q, while (B.) is relevant for the
case where a value inside a pattern of level q is reached.

#define surround(x)∑x
k=1 (bk − bk−1 − nb occ(patternk−1))

#define pattern(x)∑x
k=1 sizeq,k × nb occ(patternk)

q = n ; end = false
while not end do
for 1 ≤ t ≤ number of patterns in level q + 1
[A.] if surround(t− 1) + pattern(t− 1) < m

≤ surround(t− 1) + pattern(t− 1)
+bt − bt−1 − nb occ(patternt−1) then

iq =
∑t−1

k=1 nb occ(patternk) + m
−pattern(t− 1)

for k = q − 1..1, ik = 0
end = true

[B.] if surround(t− 1) + pattern(t− 1)
+bt − bt−1 − nb occ(patternt−1) < m
≤ surround(t) + pattern(t) then

iq =
∑t−1

k=1 nb occ(patternk) + surround(t)

+bm−surround(t)−pattern(t−1)
sizeq,t

c+ 1

m = (m− surround(t)− pattern(t− 1))
mod sizeq,t

if patternt contains embedded patterns then
q− = 1
else iq+ = m ; end = true

for k = q − 1..1, ik = 0

Figure 10: Algorithm to compute the tuple associ-
ated to an access occurrence.

i5, i4, i3, i2, i1 = 0
i5 = bm

62
c+ 1

m = m mod 62
if 0 < m ≤ 1 then i4 = 1 ; end
if 1 < m ≤ 61 then i4 = m−1

30
+ 2

m = (m− 1) mod 30
if 0 < m ≤ 1 then i3 = 1 ; end
if 1 < m ≤ 29 then i3 = m−1

14
+ 2

m = (m− 1) mod 14
if 0 < m ≤ 1 then i2 = 1 ; end
if 1 < m ≤ 13 then i2 = m−1

6
+ 2

m = (m− 1) mod 6
i1 = m

Figure 11: Algorithm to compute the tuples for pro-
gram treeadd.

Example 6 For program treeadd and n = 6, computation
of (i5, i4, i3, i2, i1) from a value m runs as shown in figure 11.
Any m-memory access can now be predicted. For example,
let m = 88. The corresponding tuple computed by the above
algorithm is (2, 2, 3, 3, 3). Since n = 6, the 88-th accessed
memory address is:

base address

+
(∑4

k=1(1− 26−k) ∗ i6−k + 5 ∗ 26−1 − 34/2 + 37

∗33/6− 53 ∗ 32/2 + 275 ∗ 3/6− 2 ∗ 6− 32
)× 16 bytes

= base address + 19× 16 bytes

for i5 = 1 to 2 {
for i4 = 1 to 1
occ val = −31 ∗ (3− i5) + 63 = 31 ∗ i5 − 30;
for i4 = 2 to 3 {
for i3 = 1 to 1
occ val = −15 ∗ (5− i4) + 46 = 15 ∗ i4 − 29;
for i3 = 2 to 3 {
for i2 = 1 to 1
occ val = −7 ∗ (5− i3) + 22 = 7 ∗ i3 − 13;
for i2 = 2 to 3 {
for i1 = 1 to 1
occ val = −3 ∗ (5− i2) + 10 = 3 ∗ i2 − 5;

for i1 = 2 to 5
occ val = −2 ∗ (7− i1)3 + 31 ∗ (7− i1)2/2

−73 ∗ (7− i1)/2 + 25
= 2 ∗ i31 − 53/2 ∗ i21 + 227/2 ∗ i1 − 157;

for i1 = 6 to 6
occ val = −3 ∗ i2 + 5; }

for in−4 = 4 to 4
occ val = −7 ∗ i3 + 13; }

for in−3 = 4 to 4
occ val = −15 ∗ i4 + 29; }

for in−2 = 4 to 4
occ val = −31 ∗ i5 + 30; }

Figure 12: Loop nest simulating the new trace.

8. FROM THE MODEL TO PROGRAM
OPTIMIZATION

Optimization transformations of the analyzed program can
be built from the model. For example, temporal data local-
ity can be improved by re-ordering memory accesses such
that accesses to the same address are closer. However such
transformation has to take care of the dependences and has
to be validated through static analysis, while data layout
transformations can be applied without any restriction in
order to improve spatial data locality.

Any change of memory allocation can be immediately simu-
lated through the model in order to be evaluated. The new
allocation has to be carefully defined such that two differ-
ent objects are not allocated to the same address. This can
be ensured by modifying the reference functions in the loop
nest through a bijective substitution of the loop index tuple.

Example 7 For n = 6, tuple (3−i5, 5−i4, 5−i3, 5−i2, 7−i1)
can be substituted to (i5, i4, ..., i1) in the functions defining
occurring steps. The resulting loop simulating the new trace
is shown figure 12. Running the simulation yields the strides
given on figure 13. This induced data layout transformation
is equivalent to creating the nodes in LRN mode.

1, 1, 1, 1, 1, -1, 2, -2, -1, 4, 1, -1, 2, -2, -4, -1, 8, 1, 1, -1,
2, -2, -1, 4, 1, -1, 2, -2, -4, -8, -1, 16, 1, 1, 1, -1, 2, -2, -1,
4, 1, -1, 2, -2, -4, -1, 8, 1, 1, -1, 2, -2, -1, 4, 1, -1, 2, -2, -4,
-8, -16, -1, 32, 1, 1, 1, 1, -1, 2, -2, -1, 4, 1, -1, 2, -2, -4, -1,
8, 1, 1, -1, 2, -2, -1, 4, 1, -1, 2, -2, -4, -8, -1, 16, 1, 1, 1, -1,
2, -2, -1, 4, 1, -1, 2, -2, -4, -1, 8, 1, 1, -1, 2, -2, -1, 4, 1, -1,
2, -2, -4, -8, -16, -32

Figure 13: Simulated new memory strides from run-
ning treeadd for a 6 tree depth.

9. CONCLUSION

The model has been successfully applied on several traces
from different programs as fir2dim from olden benchmarks
or mcf from spec2000 benchmarks, either for data or in-
struction addresses. The pattern recognition procedure has
been implemented while the loop generation procedure is
currently being implemented.

Although it is already well-suited for prediction or simula-
tion, the next step is now to systematically build some op-
timization transformations from this model. We are also in-
vestigating approaches for analyzing varying behaviors and
identifying program invariants [3].

10. REFERENCES
[1] C. Chatfield. Time-Series Forecasting. Chapman &

Hall, 2000.

[2] T. M. Chilimbi, M. D. Hill, and J. R. Larus.
Cache-conscious structure layout. In SIGPLAN
Conference on Programming Language Design and
Implementation, pages 1–12, 1999.

[3] M. D. Ernst, J. Cockrell, W. G. Griswold, and
D. Notkin. Dynamically discovering likely program
invariants to support program evolution. In
International Conference on Software Engineering,
pages 213–224, 1999.

[4] P. Feautrier. The Data Parallel Programming Model,
volume 1132 of LNCS, chapter Automatic
Parallelization in the Polytope Model, pages 79–100.
Springer-Verlag, 1996.

