EXPERIMENTS IN LOAD BALANCING
ACROSS THE GRID VIA A CODE
TRANSFORMATION

Eric Violard, Romaric David, Benjamin Schwarz
LSIIT-ICPS, CNRS-Université Louis Pasteur

Boulevard S. Brant, F-67400 Illkirch, France
{violard,david schwarz} @icps.u-strasbg.fr

Abstract

We propose a code transformation to adapt a parallel MPI applica-
tion to the grid. It aims at balancing the computational load across the
processors in order to reduce the global execution time. This transfor-
mation may be applied to a rather wide range of parallel codes. It was
originally designed for a Vlasov equation solver, which is particularly
challenging due to the dependencies scheme it involves. Experimen-
tal results show the advantage of our code transformation compared
with others system support approaches. This work is part of the TAG
project.

Keywords: Grid computing, Parallel MPI application, Plasma Physics,
Load balancing, Code transformation.

1. Introduction

Reducing global execution time of applications on a computational
grid is a well-known problem that has often been addressed. Among the
techniques handling this problem two are noticeable: scheduling and load
balancing. Scheduling allows to determine which resources of the grid
are to be used. The AppLeS project [10] mainly relies on the scheduling
technique and demonstrates its interest. Load balancing tries to reduce
the global execution time by assigning statically or dynamically more
workload to the more powerful resources.

Our purpose in the TAG [1] project is to propose techniques and tools
for the end user so as to improve the performances of parallel applica-
tions on computational grids. We thus work on both scheduling and load

2

balancing techniques. Our project is original in the sense that we use
source code transformations to see how it impacts on the performances.
The chosen approach for designing relevant code transformations is to
handle real applications written with MPI and validate code transfor-
mations on a real test grid.

In this paper, we propose a code transformation to enhance load bal-
ancing of parallel MPT applications. This transformation may be applied
to a rather wide range of parallel codes. It was originally designed for a
Vlasov equation solver, which is particularly challenging due to the de-
pendencies scheme it involves. Experimental results show the advantage
of our transformation compared with others system support approaches.

Our technique relies on a static load balancing approach as opposed
to dynamic load balancing. Static load balancing attempts to determine
appropriate shares of work to be distributed to processors at applica-
tion startup, while dynamic load balancing may redistribute part of the
work during the execution to compensate for differences in processors
performance.

Classical dynamic load balancing strategies [9] seem well suitable for
grid environment as computing and network resources always change.
However, such dynamic load balancing strategies may fail because of
the many redistributions they imply. Moreover, data dependencies may
slow down fastest processor to the slowest one [3]. Static strategies may
be very useful when the speeds of the processors are known.

The outline of the paper is as follows: we first present the applica-
tion in Plasma Physics which was used to investigate the load balancing
problem. It is presented here as an illustration for introducing our code
transformation. Then, we describe this transformation and define the
class of applications it can be applied to. Finally, we present experimen-
tal results obtained on a test grid in order to validate our transformation.

2. A motivating example

Our example is an application devoted to the numerical simulation
of problems in Plasma Physics and particle beams propagation. Among
these problems is the study of controlled fusion, which seems to be a
promising solution for future energy production. The set of particles
is described by a particle density f(¢,z,v), depending on the time ¢,
the position z, and the velocity v. The evolution of the particles is
modeled by the Vlasov equation whose unknown is function f. The
application implements the PFC resolution method [5] discretizing the
Vlasov equation on a mesh of phase space (i.e. position and velocity
space).

Experiments in load balancing across the grid via a code transformation 3

The values of the distribution function f at a given time " are stored
in a (large) matrix (F]";) where i represents the index of position and j,
the index of velocity on the space phase mesh.

The PFC method defines the values of F™*! from the values of F™ by
introducing an intermediate matrix F(!) of same size. The PFC method
and its parallelization has been presented in [6].

The parallel code is obtained by using the data decomposition classi-
cal technique. Assuming P identical processors are available, matrices
are split into Px P blocks of equal size. Each processor owns P blocks
on a row of F™ and is responsible for the computation of P blocks on
a row of F"T!. The code for each processor then consists at each time
step in computing local blocks of F®) from local blocks of F™ (this does
not require any communication), communicating blocks of F®) in or-
der to perform a global transposition of matrix F(!), computing blocks

of F*+17 from the received blocks of F(” (without any communica-
tion), and communicating blocks of F 17T i order to perform a global

transposition of matrix Fr1T . These operations are ordered to overlap
communication with computation. As illustrated in [6], overlapping is
required as transposition is very time-consuming.

Maximizing overlapping implies a good scheduling of the computation
of the blocks on each processor. A block is asynchronously sent as soon
as it has been computed and a block on the diagonal is computed last,
as shown in figure 1. Before the next time step, processes synchronize
in order to wait for all the blocks to be received.

PO| - [} - —
p| | = [-
P2 f a . / '
§ [4
P3 / (A !
1st operation 2nd operation 3rd operation Last operation

in one iteration

—— Asynchronous block send initialization

I:I Element being computed

Figure 1. Matrix transposition in 4 operations with 4 processors

This code has been written for an homogenous parallel machine. We
now consider a simple adaptation of it to an architecture with heteroge-
neous processors, such as a grid.

Since computation time depends on the amount of data to be com-
puted on a given processor, one classical solution to achieve load bal-
ancing is to redistribute data according to the relative power of the
available processors. This would have been possible in the present code,
by parametrizing the data allocated to each processor, i.e., the amount
of data allocated to a processor depends not only on the size of the ma-
trix and the number of processors, but also on the relative power of the
processor. For example, on figure 2(a), we illustrate data repartition of
a 4x4 matrix on three processors, one of them being twice as powerful
as the others.

This code adaptation, illustrated on figure 2(b) without any further
transformation would have led to an unbalanced execution time on each
processor. Indeed, as the computation is achieved in the previously
described order (figure 1), overlapping is lower because blocks are sent at
different times by the processors. In the homogeneous process described
above, blocks are sent concurrently on each processor, thus maximizing
overlapping.

T T
I I
PO o PO | g
1m0 [} [L
Pl P1 P / P
P2 e p2[7|7 vl
1 1
1st operation 2nd operation Last operation
in one iteration
(a) Matrix splitting (b) Unbalanced transposition

Figure 2. Matrix splitting and transposition with an unbalanced data distribution

This example is representative of a class of codes whose data dis-
tribution pattern is dictated by the algorithm and for which a naive
data redistribution is not sufficient to reach an acceptable load balanc-
ing. It is therefore necessary to investigate some other solutions which
can preserve the data distribution pattern. In such applications where
computation can still be divided into any number of processes, a naive
solution to achieve load balancing at runtime is to assign more processes
to the more powerful processors. For instance, given 2 processors, one
being 1.5 faster than the other it is possible to perform a load balance
by executing 3 processes on the fastest machine, 2 on the other one.

Such a procedure implies a lot of system overhead, due to inter-process
communications and time-sharing mechanisms. An idea to avoid this,
is to rewrite the code in such a way that only one process would be
launched on each processor. This process will compute all data given

Experiments in load balancing across the grid via a code transformation 5

to the n processes we intented to run on the given processor, i.e., will
emulate or serialize the parallel execution of the n processes. We followed
this idea to define a code transformation applicable to such applications.

3. The code transformation

We define our code transformation in two steps: first, we give the
characteristics that the parallel code must have, then we list the changes
that have to be done into the code.

3.1 Assumptions

Our transformation applies if the following assumptions are verified:
Assumption 1 The code is SPMD.

Assumption 2 The code works with any number of processes, and for
any given number of processes the workload is evenly spread over the
processes.

The workload is the amount of work, i.e., a mixture of the algorithm
complexity and the data amount. It results in a given computation time
on each processor. If the algorithm complexity is a linear function of the
data size, then workload spreading is equivalent to data spreading.

Assumption 3 The number p of available processors at a given time is
known as well as their speed ratings. We note v; € Qt*, the normalized
measurement of the speed of processor number . For instance, on a grid
composed of 2 processors, one being 2.5 times quicker than the other,
we write p = 2, v1 = 1 and vy = 2.5.

The measurement of processors speed can be obtained with Spec (Stan-
dard Performance Evaluation Corporation) results or by benchmarking
the processors with the application. We use a normalized SpecRate,
where the less powerful processor is rated 1.

3.2 Changes into the code

The transformation is sketched on figure 3. As said previously, it
consists in emulating several processes on a single one. From assump-
tion 1, the initial code of all processes falls into successive computation
and communication sections with calls to MPI communication functions
(arrow (a) of figure 3). The code for the single process can then be
built by combining these sections into a single code (arrow (b) of fig-
ure 3). The computation sections are put together and similarly for the

6

communication sections. The MPI calls in the communication sections
have to be changed in order to map emulated process onto real processes
and perform memory copy instead of communications when sender and
receiver are on the same node.

One processor
One process

One processor Two emulated processes

One process [Compa, | [Compa, |
Comra, |
‘CcmpBl ‘ ‘Camsz ‘

©
oA
. S)

Compp (a) (b) Compp,
- One processor Comppy

Comm Two processes CommB
B
CommBag

Initial code Transformed code

Figure 8. Code transformation

Moreover, blocking point-to-point communications such as MPI_Send
have to be replaced by their non-blocking versions (e.g. MPI_Isend) in
order to avoid deadlock situations by letting the system handle com-
munications. Calls to collective communications have to be performed
only once on a processor, no matter the number of emulated processes
on this node. Some collective communications such as MPI Barrier do
not require any other changes whereas some others do. For instance, a
MPI_Scatter that spreads equally all datas from one node called root to
all others should be replaced by a MPI_Scatterv that allows an hetero-
geneous spreading thus allocating chunks of data proportionnally to the
number of emulated processes on each node.

Workload sharing. A workload sharing is defined by a vector
(ni)ie1.p € NP where n; is the number of emulated processes that should
be allocated to the processor F;, 1 € 1..p of the grid. We must provide
the transformed code with a sharing that divides the workload so that
the execution time will be approximately the same on all processors.
This can be achieved by allocating to each processor P; a number n; of
emulated processes proportional to v;.

4. Experimental results

For our experiments, we use our code in Plasma Physics and a test
grid made of 4 processors on two LAN linked by Fast-Ethernet and

Experiments in load balancing across the grid via a code transformation 7

ATM Links. On the first LAN, two PC’s equipped with Athlon XP
1800+ processors are used. The second LAN contains an heterogeneous
Origin 2000 (Mips R10k/195Mhz and R12k/300Mhz). We use Globus
[8] and MPICH-G2 [7] to launch the MPI application on these machines.
We have obtained the speeed ratings by combining the SpecFP for
these three kind of processors. It gives vgior=1, vr12r=2, vxPp=4.
We have measured the wall-clock time of :

1 the initial application without load balancing, i.e., with the same
amount of data on each node.

2 the initial application with a basic load balancing using the system
to launch several processes to a single node. We launched one
process on the R10k, two processes on the R12k, and 4 processes
on each of the two XP.

3 the transformed application with 11 emulated processes according
to the workload sharing defined by the speed ratings.

Note that, in the second case, we checked that, several processes truly
run on one processor. On monoprocessor machines, like the PC’s, this is
obviously true. On the parallel machine Origin 2000, we had to modify
Globus in order to make this feasible.

Experiments was done for 32, 48 and 64 points of discretization. Re-
sults are reported on table 1. We notice that time loss due to system
overhead decreases as data size increases. The modified algorithm is
always better than the non-modified one.

Size | No load balancing | System load balancing | Software load balancing
327 342 525 301
48° 2005 2223 1874
64" 5380 4752 4404

Table 1. Elapsed time (s)

5. Conclusion and future work

In this paper, we presented a transformation that enables some char-
acteristics of the grid to be integrated into the parallel code, thus en-
abling load balancing at runtime. This static workload balancing shows
promising results, as it is significantly more efficient than pure-system
workload balancing, even if the performance model relying only on pro-
cessor speed is quite simple.

An interesting property of our transformation is that it preserves the
code structure. In particular, the communication scheme remains un-
changed. This will allow us to dynamically redistribute data, according
to processor availability or network bandwidth evolution during execu-
tion.

Interesting mesurements may consists in evaluating the loss of per-
formance due to the transformation. Indeed, using a great number of
emulated processes causes an algorithmic overhead. For example, we
could point out the number of emulated processes that can be handled
on a node without loss of performance. This overhead could then be re-
duced by modifying the communication scheme, grouping multiple sends
into one for example. Also, an automation of the rewriting procedure
could save developper’s time.

Last, we advocate the use of specific directives as in HPF [4]. Direc-
tives can summarize code transformations and enable the user to modify
its source code incrementally.

References

[1] TAG Project, Transformation and Adaptation for the Grid,
http://grid.u-strasbg.fr

[2] I. Foster, C. Kesselman, The Grid, Blueprint for a New Computing Infrastruc-
ture, Morgan Kaufmann Publishers, Inc., 1998, ISBN 1-55860-475-8.

[3] J. F. Mehaut, Y. Robert, Algorithms and Tools for (Distributed) Heteroge-
neous Computing: A Prospective Report, ENS-Lyon, LIP Research Report n
1999-36, August 1999.

[4] C. H. Koelbel, D. B. Loveman, R. S. Schreiber, G. L. Steele Jr., M. E.
Zoselem, The High Performance Fortran Handbook, Scientific and Engineering
Computation, January 1994.

[6] F. Filbet, E. Sonnendriicker, P. Bertrand, Conservative Numerical schemes
for the Vlasov equation, J. Comput. Phys. 172 (2001), pp 166-187.

[6] E. Violard, F. Filbet, Parallelization of a Vlasov solver by communication
overlapping, to appear in proceeding of PDPTA’2002, Las Vegas.

[7] 1. Foster, N. Karonis, A Grid-Enabled MPI: Message Passing in Heterogeneous
Distributed Computing Systems, Supercomputing, November 1998.

[8] I. Foster, C. Kesselman, Globus: A Metacomputing Infrastructure Toolkit,
International Journal of Supercomputer Applications, 1997, pp 115-128.

[9] V. Kumar, A. Y. Grama, V. N. Rao, Scalable Load Balancing Techniques
for Parallel Computers, Journal of Parallel and Distributed Computing, 1994

[10] F. Berman, R. Wolski, S. Figueira, J. Schopf, G. Shao, Application-Level
Scheduling on Distributed Heterogeneous Networks, Proceedings of SuperCom-
puting, 1996

