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1. INTRODUCTION

We consider the implementation of a perfect loop nest through software pipelining

on statically-scheduled hardware. The target machines we consider include one

VLIW processor with prescribed hardware, or a prescribed array of such VLIWs,

i.e., a multicluster VLIW. Alternatively, we may be asked to synthesize an array

of customized, irregular VLIW processors that implements the given nest with a

prescribed initiation interval (II). (The II is the number of machine cycles between

two consecutive executions of a given operation in the loop body [Rau 1996].)

Traditionally, software pipelining has been done on inner loops, possibly with a

preliminary loop permutation. We look at two signi�cant generalizations. First, we

consider handling one iteration on each cluster at a time, thereby using loop-level

parallelism as well as instruction-level parallelism to provide enough parallelism to

saturate the hardware resources. Second, we consider arbitrary linear schedules,

which generalizes loop permutation. Doing so allows us to use additional loop-level

parallelism to cope with recurrences that would otherwise limit the achievable II.

Even though we can use an arbitrary linear schedule, we also automatically 
atten

the loop nest into a singly nested loop, improving e�ciency because prologue and

epilogue code executes only once.

Our principle motivation is ASIC synthesis. The consumer electronics indus-

try demands low-cost, high-performance compute hardware to perform image and

signal processing. Cost-e�ective designs often employ embedded general-purpose

computers assisted by ASICs. Such systems are di�cult and expensive to design.

This makes automatic synthesis of application-speci�c hardware accelerators in-

creasingly desirable.

We feel that the synthesis of an array of VLIWs for implementing a loop nest

with prescribed throughput is a central problem in automatic ASIC synthesis. We

use the techniques presented here in the HP Labs PICO1 system [Schreiber, Aditya,

Rau, Kathail, Mahlke, Abraham, and Snider 2000], which automatically synthesizes

the hardware and software for such processor-and-ASIC systems. In PICO, a source

program is compiled into a system consisting of a general-purpose processor and

one or more hardware accelerators (automatically designed and interfaced to the

whole system) using the program as a behavioral speci�cation.

We are concerned here only with synchronous arrays of statically-scheduled pro-

cessing elements; such an array may also be viewed as a single multicluster machine.

The term processor is used in this paper to mean one of the clusters. There is only

one process, or thread of control, regardless of the number of such processors.

This paper addresses two important practical problems. The �rst is to map each

iteration of the nest to a processor and a time step in such a way that all processors

are kept busy at all times, and none is overloaded. Previous theoretical solutions

made it inconvenient to quickly �nd a mapping that accomplishes this. We present

some new theoretical insight into this problem that leads directly to an e�cient

solution.

The second problem is to control the cost of this sort of parallel implementation

of a loop nest. Parallel realizations of sequential algorithms come at some cost: in

our case additional computation { which would lead to additional hardware in an

1Program In, Chip Out



application-speci�c accelerator { needed to control and coordinate the processor.

By exploiting some basic properties of our con
ict-free schedules, we develop a low-

cost technique for control and coordination that is theoretically appealing, and we

give some experimental evidence that it greatly reduces cost in comparison with

expensive, standard approaches.

2. AN EXAMPLE

Example 1. Consider the nest

for (i = 0; i < 100; i++) {

for (j = 0; j < 10; j++) {

x[i+1][j+1] = x[i][j+1] * x[i+1][j];

}

}

Suppose the application demands an implementation that uses about 500 cycles

to do all 1,000 iterations. Both the inner and outer loops are sequential, and there

is a multiplication in the critical path of the recurrence, so neither the inner nor the

outer loop is amenable to software pipelining with low II. Yet, there is considerable

loop-level parallelism: all iterations for which i+j = k can be computed in parallel,

for all k = 2; : : : ; 110. So there are only 109 iterations on the critical path. If the

latency of multiply is three cycles, then this critical path is 327 cycles, so it is not

impossible to get the job done with enough hardware.

We allocate two processors, each of which is to achieve an II of one. We may map

iteration (i; j) to virtual processor j and then to physical processor j � 5. Then

we schedule iteration (i; j) to start at cycle 5i + 3j. Alternatively, we may map

iteration (i; j) to virtual processor i, and then to physical processor i � 50. The

schedule in this case is chosen as 3i + 50j. It is not hard to see that these maps

are con
ict free, causal, and that the recurrences have been covered by loop-level

parallelism so that an II of one is achievable. Clearly, the �rst choice, which has

a total schedule length of 5 � 99 + 3 � 9 = 522, is preferable to the second, with a

schedule length of 3 � 99 + 50 � 9 = 747.

The remainer of this paper shows how such mappings and schedules can be

e�ciently found and e�ectively implemented.

3. ITERATION TO PROCESSOR MAPPING

The iterations of a perfect n-deep loop nest are identi�ed by the corresponding

integer n-vector ~j = (j1; : : : ; jn) of loop indices. The iteration vector lies in some

given polytope, J , called the iteration space. An (n� 1)-dimensional grid of pro-

cessors with rectangular topology is given, and each processor is identi�ed by its

coordinate vector. The mapping problem is to �nd functions � and � such that

processor �(~j) commences computation of iteration ~j at cycle �(~j). We use the

term schedule for the timing function � and mapping for the processor assignment

�. Since we are interested in using software-pipelined processors, the time �(~j) is

the start time for iteration ~j. The set of operations belonging to that iteration are

scheduled relative to this start time. We require that the scheduling function � be

an integer-valued linear function of the iteration vector.



We allow spatial mappings that work, as in Example 1, by a projection � of

the iteration space into an (n � 1)-dimensional array of virtual processors (VPs),

followed by a partitioning of the virtual processors among the given set of physical

processors. We can allow any projection ~v = �~j, where the (n � 1) � n integer

matrix � admits a unimodular extension.

Each physical processor is then assigned the work of a cluster of virtual processors.

A cluster is a rectangular neighborhood in the array of virtual processors. This

amounts to choosing a rectangular cluster shape { a small (n � 1)-dimensional

rectangle { and then covering the (n � 1)-dimensional array of virtual processors

with nonoverlapping clusters. The cluster shape is chosen so that the set of clusters

forms a grid of the same shape as the processor grid.

Note that because the clusters can be as big, in any given dimension, as the

virtual processor grid, the physical processor array can have any dimensionality up

to (n � 1). For example, we would map a 10 � 10 virtual processor array into a

one-dimensional array of two physical processors by using either 10� 5 or 5 � 10

clusters.

Let an (n � 1)-dimensional grid of processors of shape ~P be given: processor

coordinates satisfy 0 � pi < Pi. The virtual processor array is the image of J

under �. Let the smallest rectangle that covers the set of virtual processors have

dimensions ~V , so that if ~v = �~j for some ~j 2 J , then 0 � vi < Vi. (We must apply

a shift, in general, to make the virtual processor coordinates nonnegative.) De�ne

the shape of the cluster, ~C = (C1; : : : ; Cn�1), by Ci � dVi=Pie. The processor

grid of shape ~P , whose processors each cover a cluster of shape ~C, covers the whole

virtual processor space of shape ~V . The VP (virtual processor) coordinates are

vi = piCi + ci ; (1)

where ~c satis�es 0 � ~c � ~C; the cluster coordinates ~c give the position of the VP

within its cluster. The number of virtual processors assigned to a processor is not

more than 
 �
Q

n�1

i=1 Ci.

In Example 1, the �rst mapping was obtained by taking � = (0; 1), which yields

a one-dimensional array of 10 virtual processors. Since we target two physical

processors, ~C = (d10=2e) = (5), and iteration (i; j) maps to processor p = j � 5.

(We dropped the subscript because the processor array has only one dimension.)

For the second mapping, � = (1; 0), ~V = (100), and ~C = (d100=2e) = (50); iteration

(i; j) maps to processor p = i� 50.

4. ITERATION SCHEDULING

We seek a linear schedule �(~j) = ~�:~j. Assume that the physical processor can start

one loop iteration per cycle. Given the mapping, we need to �nd a linear schedule

that schedules, in the steady state, one iteration per clock on each processor. In

Example 1, we used ~� = (5; 3) with the �rst projection and clustering, and ~� =

(3; 50) with the second.

The schedule must be causal; this means that if there is a path in the data
ow

graph of the loop from an operation to the same operation at a later iteration, then

the start times of these iterations must di�er by at least the sum of the latencies of

the operations on the path. This causality requirement amounts to a set of linear



inequality constraints on ~� . In Example 1, we required that each element of �

be three or greater because of the dependence of the multiply on itself at earlier

iterations in the directions (0; 1) and (1; 0), and the latency, three, of the multiply.

Let ~u be a smallest integer null vector of �. Thus, ~u connects the iteration ~j to

the very next iteration, ~j + ~u, that is mapped to the same virtual processor. We

want a schedule with the property that the physical processor visits each of its 


simulated virtual processors once, in some round-robin manner, before returning to

�~j again. Because we need to allow at least 
 cycles between visits,

j~�:~uj � 
 : (2)

The throughput inequality (2) ensures that the physical processor is not overloaded

on average. It remains to ensure that no two iterations start at the same time on

the same processor. The problem we seek to solve here is the following con
ict-

free scheduling problem: given ~C, the mapping � of rank (n � 1) which has ~u

as its smallest integer null vector, and linear inequality constraints on ~� , choose ~�

satisfying these constraint and such that no two virtual processors assigned to a

given physical processor are scheduled to be simultaneously active.

We say that a schedule that satis�es the no-con
ict constraint for the given

cluster \juggles"; imagine a juggling processor with its 
 balls (virtual processors)

in the air, and only one hand, capable of holding only one ball at any given time.

If ~� juggles and satis�es (2) with equality,

j~�:~uj = 
 ;

then we say that the schedule is tight.

Our main result is a construction that produces all tight schedules for a given

cluster ~C . We have not obtained any results concerning nontight, juggling sched-

ules, except for the obvious. If a schedule is tight for cluster shape ~D 6= ~C and
~D � ~C elementwise, then this schedule is a nontight, juggling schedule for ~C.

5. EARLIER WORK

Darte, Delosme, Megson, and Chen have provided partial solutions to this problem.

The idea of Darte's (and initially Darte and Delosme's) solution [Darte and De-

losme 1990; Darte 1991] is to produce a cluster shape ~C compatible with the given

schedule vector ~� . In many practical situations, however, the physical and virtual

processor arrays and thus the set of possible cluster shapes is known. The task is

to �nd a tight schedule for a known cluster shape. Using Darte's approach, this

must be done by an indirect and possibly costly trial-and-error approach, while the

theorem that we later prove leads to a simple method that directly enumerates the

tight schedules.

Darte's theorem and method work this way. The inverse of any unimodular

matrix having �rst row equal to ~� has as its second through n-th columns an

n�(n�1) matrix Q whose columns are a basis for the lattice of iterations scheduled

for time zero. Let A = �Q. Then A is a square, integer matrix of order (n � 1)

whose columns are the coordinates of a set of virtual processors active at time zero.

Darte called A the \activity matrix". Let Ha be the Hermite normal form of A:



A = HaQa with Qa unimodular
2. The columns of Ha generate the lattice of virtual

processors active at time zero, and the diagonal elements of Ha are a cluster shape

for which ~� is a tight schedule. This remains true for the Hermite normal form of

any permutation of the rows of A. Furthermore, this is a necessary and su�cient

condition for tight schedules (the necessity being the di�cult part). Thus, given ~� ,

Darte's method produces all cluster shapes ~C of size j~� :~uj that juggle with ~� . If the

schedule is speci�ed and an appropriate cluster shape is desired, then this method

gives all possible choices.

Megson and Chen [Megson and Chen 1995] attempt to guarantee a tight schedule

for a given cluster shape ~C by working with the Hermite form of A = �Q directly.

Relying on the fact that the Hermite form of a triangular matrix X has the same

diagonal as X , they choose A to be triangular with the elements of ~C on the

diagonal, and they assume that � is known. They then look at the general solution

Q to the underconstrained linear system �Q = A and, from the solutions, they

infer ~� . They try to choose the unconstrained components of Q and the o�-diagonal

elements of A to obtain an acceptable schedule (via the inverse of a unimodular

extension of Q). Megson-Chen produces tight schedules from the speci�ed cluster

shape, but does not have real advantages compared to Darte's: one will still need

to search for desirable tight schedules indirectly, by manipulating parameters other

than the elements of ~� .

The clear advantage of the method we propose here is that it works directly with

~� . Thus, one has far more control over the resulting schedule, and may quickly

determine a tight schedule that meets other requirements.

6. CONSTRUCTION OF TIGHT SCHEDULES

We now present a way to construct the set of all tight schedules for a given cluster
~C. First, we assume that � consists of the �rst (n� 1) rows of the identity matrix,

so that �u = �en = �(0; : : : ; 0; 1)t = 0. We write x ^ z for the greatest common

divisor of x and z. Then, we have the following result:

Theorem 1. Let ~C be a given cluster shape. If � consists of the �rst (n � 1)

rows of the identity, then ~� is a tight schedule if and only if, up to a permutation

of the elements of ~C and the same permutation of the �rst (n� 1) elements of ~� ,

~� = (k1; k2C1; k3C1C2; : : : ; knC1 � � �Cn�1) (3)

where ki ^ Ci = 1 and kn = �1.

Proof. The if part is easy. For the only if part, we use Haj�os theorem on a

representation of a �nite abelian group as a direct sum [Haj�os 1942], also employed

in [Darte 1991]. The complete proof is available in the extended version of this

paper [Darte, Schreiber, Rau, and Vivien 1999].

The restriction on � is unnecessary. Let S be the inverse of a unimodular ex-

tension of �. The last column of S is the projection vector ~u, and �S = In�1, the

identity matrix of order (n � 1). De�ne the linear loop transformation matrix M

2For more about Hermite forms and lattice theory, we refer to [Newman 1972] and [Schrijver

1986].



to be the matrix whose �rst row is ~� and whose last (n� 1) rows are �:

M �

�
~�

�

�
; thus

�
t

~v

�
=M~j (4)

is the mapping from iteration ~j to time t and virtual processor ~v. We now change

basis in the iteration space: ~j0 = S�1~j are the coordinates of the iteration with

respect to the basis consisting of the columns of S. In this basis, the transformation

becomes �
t

~v

�
=MS~j0 =

�
~� :S

�S

�
~j0 =

�
~�:S

In�1 0

�
~j0

Clearly, ~� is a tight schedule with cluster shape ~C and mapping � if and only if ~� :S

is a tight schedule for ~C with the mapping (In�1 0). Hence, the generalized con-

dition (3) applied to ~� :S is a necessary and su�cient condition for a tight schedule.

The formula does not specify the components of ~� but rather the components of

~� :S, and ~� is recovered through the integer matrix S�1.

Example 2. Let n = 3; let ~C = (4; 5). Assume that e3 is the smallest integer

null vector of the space mapping. From (3), either ~� = (k1; 4k2;�20) or ~� =

(5k1; k2;�20) with ki ^ Ci = 1, for i = 1; 2. For example, ~� = (7; 4; 20) is a tight

schedule (with k1 = 7, k2 = 1, k3 = 1) that corresponds to the activity tableau

below. The tableau represents the 4 � 5 array of virtual processors assigned to

one physical processor. The number in each box denotes the residue modulo 20 of

the times at which the virtual processor that lives there is active. For a juggling

schedule, these are all di�erent. (The c1 axis is the vertical axis.)

1 5 9 13 17

14 18 2 6 10

7 11 15 19 3

0 4 8 12 16

We use the following method to construct a tight schedule that satis�es ad-

ditional linear inequality constraints, as explained in Section 4. From the given

linear inequality constraints, we derive bounds (through linear programming) for

the components of ~� . We construct tight schedules of the form given here, and

consistent with these bounds. To do this, we simply enumerate a �nite sequence of

possible values for the parameters ki that satisfy the constraint of relative primality

(ki ^ Ci = 1) and such that the resulting element �i of ~� is within the bounds just

determined. We try all of the allowed permutations of the elements of ~C and ~� .

Every choice of the parameters ki yields a tight schedule. We admit only those

schedules that satisfy the full system of linear inequality constraints; �nally, we

choose one of the admissible schedules according to a criterion that measures total

schedule length and estimates hardware cost.

For later use, we need to record an important property of the mapping matrix

and its Hermite normal form. It is fairly straightforward to show, as a consequence

of Darte's theorem on schedules and the cluster shapes for which they are tight,

that the Hermite normal form of the mapping matrix M (see (4) above) is a lower

triangular matrix whose diagonal is (1; C1; : : : ; Cn�1) (up to the permutation of ~C

used in its construction).



7. REDUCING THE COST OF CONTROL

After transformation into synchronous, parallel form, the loop body serves as a

speci�cation of the special-purpose processor. The nest has a sequential outer loop

over time and a parallel nest over processors. The transformed parallel loop body

contains generated code that we call housekeeping code whose cost we consider here.

Housekeeping code has several forms and functions:

Cluster coordinates. For each time t on the given processor ~p, one may need to

compute the position ~c of the currently active VP within the cluster: 0 � ck < Ck.

Virtual processor coordinates. One may also need the global virtual processor

coordinate vk = pkCk + ck.

Iteration space coordinates. Since the iteration space coordinates ~j may appear

in the loop body, these will sometimes need to be computed. The usual technique

is to use the relation ~j =M�1

�
t

~v

�
.

Memory addresses. When a value is \live-in" to the loop nest, or is \live-out",

it is read from or stored into global memory. The memory address, which is the

location of an array element whose indices are a�ne functions of the coordinates ~j,

must be computed.

Predicates. In a naive approach, many comparisons are used to compute pred-

icates. These comprise cluster-edge predicates (comparison of the cluster coordi-

nates ~c and the cluster shape ~C) and iteration-space predicates (that test the global

iteration coordinates against the limits of the iteration space).

As an example, for a two-dimensional processor array, the loop has the following

form:

for (t = TMIN; t <= TMAX; t++) {

for (p1 = 0; p1 < P1; p1++) in parallel {

for (p2 = 0; p2 < P2; p2++) in parallel {

Calculate the cluster coordinates

c = (c1, c2)

of the active virtual processor;

Calculate the global VP coordinates

v = (p1 C1 + c1, p2 C2 + c2)

of the active virtual processor;

Calculate the iteration space coordinates j

of the iteration mapped to VP v at time t;

if ( j is in the iteration space ) {

Execute the loop body of iteration j;

}

}

}

}

Our �rst experiments with processor synthesis revealed that these housekeeping

computations were so costly that the resulting processor was grossly ine�cient.

The large number of comparisons for predicates was a big contributor. We then

observed that almost all of these repeat on a given processor with period 
, and

that they can therefore be obtained from a 
-bit circular bu�er. We use this



technique in our current implementations with good results. A second and more

important ine�ciency is the method used to compute cluster coordinates. Our

original approach took the rather obvious viewpoint that each processor, at each

time, computes the cluster coordinates of its active virtual processor, which is a

function of the processor coordinates ~p and the time t. We generated the code by

�rst applying standard techniques [Ancourt and Irigoin 1991] for code generation

after a nonunimodular loop transformation (using Hermite form) to generate a loop

nest that scans the active virtual processors for each time. We then inferred the

local processor coordinates ~c from the lower bounds for the virtual processor loops,

which are functions of ~p and t, by taking their residues modulo ~C .

This technique is memory e�cient, but computationally expensive. It is a form

of integer triangular system solution. Let M be the mapping matrix of (4), let Hm

be its Hermite form, and let T be a unimodular matrix such that MT = Hm. Then�
t

~v

�
= M~j = HmT

�1~j = Hm
~jT where ~jT is integer. Furthermore, we know (see

end of Section 6) that the (1; 1) element of Hm is unity and that the rest of the

diagonal of Hm consists of the elements of ~C. The requirement that the triangular

system above has an integer solution ~jT completely determines the residues modulo

(1; ~C) � diag(Hm) of ~v, which are the cluster coordinates of the VP active at time

t on processor ~p. This in turn determines ~v. Solving this system, inferring the

cluster coordinates in the process, has O(n2) complexity. By a slightly di�erent

use of the special form of a tight schedule (see [Darte, Schreiber, Rau, and Vivien

1999]), we reduced this cost to O(n). From the viewpoint of generating hardware,

however, the method still has a few disadvantages since it involves a quotient and a

remainder for each dimension, and it does nothing to assist with addresses, iteration

space coordinates, or predicates.

7.1 A general updating scheme

We now discuss methods for making a major reduction in the cost of housekeeping

computations; tests will show that once these techniques are employed the cost

of the resulting processor is close to the minimum possible. We examine two al-

ternatives. Both of them trade space for time. Both use temporal recurrences to

compute coordinates.

First note that with a tight schedule, the cluster and virtual processor coordi-

nates, and all but one of the global iteration space coordinates, are periodic with

period 
, as are all predicates de�ned by comparing these periodic functions to one

another and to constants. The remaining iteration space coordinate satis�es

jn(t) = jn(t� 
) + 1 :

(These assertions apply when � consists of the �rst (n � 1) rows of the identity;

things are only slightly more complicated in general.) Any quantity that depends

linearly on jn can be updated with a single add. Quantities (such as predicates) that

depend only on the other coordinates are similarly periodic. This is the cheapest

approach possible in terms of computation; its only disadvantage is in storage. We

need to store the last 
 values of any coordinate or related quantity that we wish

to infer by this 
-order recurrence. When 
 is fairly large (say more than ten or

so) these costs become signi�cant.



The alternative technique allows us to update the cluster coordinates ~c(t; ~p) from

their values at an arbitrary previous cycle but on the same processor: ~c(t; ~p) =

R(~c(t � �t; ~p)) (here R stands for the recurrence map that we now explain.) We

may choose any time lag �t (provided that �t is not so small that the recurrence

becomes a tight data
ow cycle inconsistent with the schedule that we have already

chosen.) The form of R is quite straightforward. Using a binary decision tree of

depth (n�1), we �nd at the leaves of the tree the increments ~c(t; ~p)�~c(t��t; ~p). The

tests at the nodes are comparisons of scalar elements of ~c(t� �t; ~p) with constants

that depend only on �t, ~C and the schedule ~� . They are thus known at compile

time and can be hard coded into the processor hardware.

These cluster coordinates are the key. The global virtual processor coordinates

~v, the global iteration space coordinates ~j, and the memory addresses are all linear

functions of them. If we know the change in ~c then we also know the changes in all

of these derived values, and these changes appear as explicit constants in the code.

Only one addition is needed to compute each such value. We have thus reduced

the problem of cost reduction to that of the update of the cluster coordinates. We

now explain how we can automatically generate this decision tree.

Back to Example 2. By examining the activity tableau, we see that to move

forward in time by one cycle, c1 increases by 3 (if this is possible, i.e., if we start

with c1 = 0) or else decreases by 1. In the former case, the move is always straight

up, that is, c2 remains unchanged. In the latter case, the change to c2 is either 2 or

�3. Note that the two potential changes to a coordinate always take opposite signs

and have magnitudes that sum to the cluster shape, so that for any given position

in the cluster, only one of them will lead to another point in the cluster.

It remains to show that these observations are true in general. Again assume

for simplicity and without real loss of generality that � consists of the �rst (n� 1)

rows of the identity.

The activity times on some arbitrarily chosen processor ~p are shifted by a constant

(equal to ~� :(p1C1; : : : ; pn�1Cn�1)) compared with the times on processor zero. This

implies that for a given �t, the path through the activity tableau is the same on all

processors, and the same decision tree may therefore be used. This is vital, because

software pipelining and hardware synthesis are simpli�ed when there is one loop

body common to all processors. We can therefore now restrict our attention to the

processors whose coordinates are equal to 0.

Let ~j be any iteration mapped to processor zero. Suppose it is scheduled at time

t and mapped to the virtual processor whose cluster coordinates are ~c. We are

given the time lag �t. Since the schedule is tight, there is a unique vector �~j such

that iteration ~j + �~j is scheduled �t cycles after iteration ~j on processor zero, i.e.,

M(~j + �~j) = (t+ �t;~c+ �~c)t where ~c+ �~c is \in the box:"

0 � ~c+ �~c < ~C : (5)

It follows that the cluster coordinate change vector satis�es

�~C < �~c < ~C:

Recall the Hermite normal form of M , that is, MT = Hm. The columns of T

are a unimodular basis. Since the �rst row of MT is (1; 0; : : : ; 0), the �rst column



~t1 of T connects an isochrone (a hyperplane of iterations scheduled for the same

time) to the next isochrone, and the remaining columns ~t2; : : : ;~tn are a basis for

the lattice of iterations in an isochrone.

Because a move in the iteration space in the direction �~j moves time forward by

�t cycles, �~j is the sum of �t � ~t1 and a linear combination of ~t2; : : : ;~tn. In the

shifted lattice generated in this way, there is a unique point that maps to processor

zero. We now show how it is determined.

We make a change a variables using the basis given by the columns of T , de�ning

~jT = T�1~j :

Then �
�t

�~c

�
=M�~j = Hm� ~jT :

Now we exploit the structure of Hm discussed above. It is lower triangular, having

one in the (1,1) position and the elements of ~C along the remainder of the diagonal.

The elements to the left of the diagonal have smaller absolute value than the diago-

nal element to their right. Clearly, the �rst element of � ~jT must be �t. We proceed

to solve the lower triangular system by using the bounds (5). As ~c varies over the

whole cluster, there can be only two possible choices for the second component of

� ~jT , because the (2; 2) element of Hm is C2. For each of these two choices, there

can be at most two choices of the third component, and so on. This is how the

decision tree is generated.

Having generated all the possible moves in the transformed coordinates ~jT , we

may apply T to get the possible moves in the iteration space coordinates ~j, and

then multiply by � to get the potential moves in the virtual processor space.

Back to Example 2. We take �t = 1 again. The Hermite form of the mapping

(MT = Hm) is 0
@ 7 4 20

1 0 0

0 1 0

1
A
0
@ 3 4 0

0 3 5

�1 �2 �1

1
A =

0
@ 1 0 0

3 4 0

0 3 5

1
A

Recall that the cluster size is C(1) = 4 and C(2) = 5. From the �rst column

of T , we read that a move along move along ~t1 = (3; 0;�1) in the iteration space

moves to the next isochrone. (This corresponds to requiring the �rst element of ~jT
to be �t.) Because of the structure of �, this move corresponds to the move (3; 0)

in the cluster. If c1 + 3 � 4, i.e., we have c1 > 0, then this move would take us

outside the cluster; in that case, we subtract the second column of T , i.e., (4; 3;�2);

this yields the change (�1;�3; 1) in the iteration space and a cluster coordinate

change vector �~c = (�1;�3). (Thus, there were two possibilities for the second

element of ~jT , namely 0 and -1.) If c2 � 3 < 0, i.e., then this move takes us out

of the cluster. The correct move in that case is found by adding the last column:

(3; 0;�1)� (4; 3;�2) + (0; 5;�1) = (�1; 2; 0).

With this technique, we get the following decision tree:



if (c(1) + 3 < 4) { /* out in dim. 1? */

c(1) = c(1) + 3;

/* c(2) is unchanged, c(2) = c(2) + 0 */

}

else {

c(1) = c(1) - 1;

if (c(2) + 2 < 5) { /* out in dim. 2? */

c(2) = c(2) + 2;

}

else {

c(2) = c(2) - 3;

}

}

The technique works the same way for arbitrary �t. You begin with the change

�t� ~t1, and \correct" it as necessary with the remaining columns of Hm in order to

�nd the tree of changes. This gives the necessary tests in the decision tree directly,

as well as the corresponding changes in the cluster coordinates and the original loop

indices. However, the decision-tree recurrence has a certain computational latency.

To be usable, we need that �t times the desired II be at least equal to this latency;

to minimize the required storage, we take the smallest usable �t.

7.2 Measuring the cost of housekeeping code

We show here the results of loop transformation with our e�cient recurrence scheme

for cluster coordinates and those parameters that depend on them linearly. We

show three loop nests as test cases here. The �rst, from an application in digital

photography, is a nest of depth six, in which the loop body contains only a simple

multiply-accumulate statement. The second, from a printing application, is a much

more complicated loop body. The third is matrix multiplication. We transformed

the loop nests using the mechanisms described in this paper. In [Darte, Schreiber,

Rau, and Vivien 1999], we present the original and the transformed loop nests for

matrix multiplication as an illustrative example. In the table, we show the number

of inner-loop integer operations in the original and the fully transformed loop nests.

In addition, for the photography application, we show the same statistics for the

code as transformed by the naive methods that we have earlier described. The

counts were obtained by examining the code.

Photography Printing Matrix

Op. orig. transf. naive orig. transf. orig. tranf.

+ 5 7 52 22 31 5 6

� 1 1 34 1 1 1 1

� 0 0 4 0 0 0 0

= 1 6 35 18 18 1 3

It is clear from this data that the housekeeping, due to parallelization and 
at-

tening the loop nest with a general linear schedule, has added to the computational

cost of the loop body. The number of operations increased by seven in the simple

photography loop, nine in the more complicated printing loop, and only three in

the matrix product loop. The ratio of the added operation count to the original



operation count is 3 : 7 for the matrix multiply loop, 1 : 1 for the photography

loop, and 9 : 41 for the more complicated loop. The photography loop has a deeper

decision tree than matrix multiply because of the deep loop nest; this accounts for

the di�erent costs. Evidently, with optimization, housekeeping costs are not trivial,

but they are manageable. The naive method, however, produces intolerably costly

code for calculation of coordinates, predicates, and memory addresses.

8. CONCLUSION

The �rst part of this paper provided a simple characterization of all tight syn-

chronous, parallel schedules, solving a longstanding problem in processor-array

synthesis. The characterization allows a synthesis system to directly enumerate

all the tight schedules in any desired region of the space of schedules, which can be

very useful in generating tight schedules in, e.g., a polyhedron de�ned by recurrence

constraints. The second part proposes a new technique for generating e�cient par-

allel code that takes full advantage of our characterization of tight schedules. Our

experiments have shown that the specialized processors we generate are highly e�-

cient in their gate count and chip area. We conclude that the added computational

cost due to parallelization and the use of a general linear schedule can be controlled

to the point where it is not overly burdensome, especially for loop nests that have

more than a handful of computations in the innermost loop. The techniques of this

paper provide new, powerful tools for synchronous processor-array synthesis and

for software pipelining of nested loops on a single or multicluster VLIW.
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