
The Journal of Supercomputing, 21, 37–76, 2002
© 2002 Kluwer Academic Publishers. Manufactured in The Netherlands.

Precise Data Locality Optimization of
Nested Loops
VINCENT LOECHNER, BENOÎT MEISTER AND
PHILIPPE CLAUSS �loechner, meister, clauss�@icps.u-strasbg.fr

ICPS/LSIIT, Université Louis Pasteur, Strasbourg, Pôle API, Bd Sébastien Brant,
F-67400 Illkirch France

Abstract. A significant source for enhancing application performance and for reducing power
consumption in embedded processor applications is to improve the usage of the memory hierarchy. In
this paper, a temporal and spatial locality optimization framework of nested loops is proposed, driven
by parameterized cost functions. The considered loops can be imperfectly nested. New data layouts are
propagated through the connected references and through the loop nests as constraints for optimizing
the next connected reference in the same nest or in the other ones. Unlike many existing methods,
special attention is paid to TLB (Translation Lookaside Buffer) effectiveness since TLB misses can take
from tens to hundreds of processor cycles. Our approach only considers active data, that is, array ele-
ments that are actually accessed by a loop, in order to prevent useless memory loads and take advantage
of storage compression and temporal locality. Moreover, the same data transformation is not necessar-
ily applied to a whole array. Depending on the referenced data subsets, the transformation can result
in different data layouts for a same array. This can significantly improve the performance since a priori
incompatible references can be simultaneously optimized. Finally, the process does not only consider the
innermost loop level but all levels. Hence, large strides when control returns to the enclosing loop are
avoided in several cases, and better optimization is provided in the case of a small index range of the
innermost loop.

Keywords: data locality, memory hierarchy, cache performance, TLB effectiveness, spatial and temporal
locality, loop nests, parameterized polyhedron, Ehrhart polynomial

1. Introduction

Efficient use of memory resources is a significant source for enhancing application
performance and for reducing power consumption for embedded processor
applications [19]. Nowadays, computers include several levels of memory hierar-
chy in which the lower levels are large but slow (disks, memory, � � �) while the
higher levels are fast but small (caches, registers, � � �). Hence, programs should be
designed for the highest percentage of accesses to be made to the higher levels of
memory. To accomplish this, two basic principles have to be considered, both of
which are related to the way physical cache and memory are implemented: spatial
locality and temporal locality. Temporal locality is achieved if an accessed mem-
ory location is accessed again before it has been replaced. Since a cache miss or
page fault for a single data element will bring an entire cache line into cache or
page into main memory, if several closely located memory locations are accessed
before the cache line or page is replaced, then spatial locality is achieved. Taking
advantage of spatial and temporal locality translates to minimizing cache misses,

38 loechner et al.

TLB (translation lookaside buffer) misses and page faults, and thus increases
performance.
The TLB usually holds only a limited number of pointers to recently refer-

enced pages. On most computers, this number ranges between 8 and 256. Few
microprocessors have a TLB reach larger than the secondary cache when using
conventional page sizes. Many microprocessors like the MIPS R12000/R10000,
Ultrasparc II and PA8000 use selectable page sizes per TLB entry in order to
increase the TLB reach. For example, the MIPS R10000 processor TLB supports
4K, 16K, 64K, 256K, 1M, 4M and 16M page sizes per TLB entry, which means
the TLB reach ranges from 512K if all entries use 4K pages to 2G if all entries
use 16M pages. Unfortunately, while many processors support multiple page sizes,
few operating systems make full use of this feature [21]. Current operating systems
usually use a fixed page size.
Since a TLB miss can take from tens to hundreds of cycles, the use of large-stride

data accesses must be refrained. For example, a stride of the same size as a page can
generate a TLB miss every access. In order to minimize cache misses, data should
ideally be processed sequentially as it is stored in memory, or conversely, should be
stored in the same order as it is processed. Arrays that are allocated to memory in
a row-major order in C and in a column-major order in Fortran can be processed
with stride-one, taking ideally advantage of spatial locality.
Many recent works have provided advances in loop and data transformation

theory. By using affine representation of loops, several loop transformations have
been unified into a single framework using a matrix representation of these transfor-
mations [25]. These techniques consist either in unimodular [3] or non-unimodular
[15] iteration space transformations as well as tiling [13, 23, 24]. Although there
has been less attention paid to data transformations, there have been some inves-
tigations of the effect of data transformations combined with loop transforma-
tions. However, the only data layouts that have been considered are row-major
or column-major storage [2, 6, 11] and data transformations have been restricted to
be unimodular [14].
More recently, Kandemir et al. [12] and O’Boyle and Knijnenburg [17] have pro-

posed a unifying framework for loop and more general data transformations. In
[17], the authors propose an extension to nonsingular data transformations. Unfor-
tunately, these approaches do not use any symbolic analysis in order to evaluate
the array sizes, the amount of reused data, nor the number of iterations, and do
not derive symbolic transformations. Moreover, the derived data transformations
only consider the innermost loop level and only a single data layout is associated
with each array. Such pre-determined data layouts favor one axis of the index space
over the others and adjacent data in the unfavored directions become distant in
memory [5, 21]. Hence, such layouts can yield large strides generating TLB misses
when control returns to an enclosing loop, and also generate many useless cache
loads. In the same way, loop transformations that are dedicated to temporal locality
optimization in the innermost loop for some references, do not consider the other
references even though temporal localization of reused data sequences could have
been made in outer loop levels, resulting in significant savings in cache and TLB
misses.

precise data locality optimization of nested loops 39

Additionally, when a given data layout is determined by optimizing one reference
in a loop, this layout is propagated to all the other references to the same array
in the program. Other loop transformations may be needed to take advantage of
this layout. But such transformations may not be valid due to data dependences or
may be incompatible with other references. We show that in such cases, it can still
be possible to improve spatial locality if there is a significant subset of iterations
referencing array elements that are not referenced in the originally optimized loop.
In this paper, transformations are expressed as a function of several parameters

such as the size of the data set or the parameterized loop bounds. Spatial locality
is improved by computing new access functions to array elements. Such a function
translates to a parameterized data layout depending on the loop bounds or on the
array sizes. When it has been determined beneficial, different access functions may
be associated with disjoint data subsets for a given array. Since arrays are allocated
to memory as one-dimensional arrays, they are directly represented that way in the
transformed program. Temporal locality is improved by transforming the iteration
space of a loop that can be imperfectly nested in such a way that the innermost
loops will access the same array element. If such optimization is not possible for
all references, then temporal localization of reused data sequences is made at some
outer loops level.
Our techniques use the polytope model [10] with an intensive use of its parametric

extensions [9] and of their implementations in the polyhedral library PolyLib [22].
Some representative examples are presented in Section 2, where some

“classically” optimized loop nests are compared with loop nests optimized using
our approach. Section 3 introduces the general model of loop nests and references.
Then we present in Section 4 our loop transformation framework, dedicated to
temporal locality optimization and to previously defined data layout adequacy. Our
data layout transformation technique is presented in Section 5. Both Sections 4
and 5 are organized by first presenting the case of one unique reference to a given
array and then presenting the more general case of several references. The global
optimization algorithm driven by parameterized loop cost functions is detailed in
Section 6, while the consequences resulting from our optimizations on parallelized
code are discussed in Section 7. Finally, conclusions and future objectives are given
in Section 8.

2. Motivation of our approach

Some motivating examples are given in this section, showing the usefulness of our
approach. Measurements have been made on a 300 MHz R12000 processor with a
32 KB L1 data cache, a 8 MB L2 unified cache and a TLB of 1024 entries tracking
4 MB of memory. Both caches are two-way set-associative and nonblocking. We used
the performance evaluation tool perfex which uses hardware registers to count the
number of primary and secondary cache misses and the number of TLB misses
occurring during an execution. It is shown that loops and references that one would
consider as sufficiently optimized can still be significantly improved.

40 loechner et al.

The original and the transformed versions were compiled with the -O3 option.
Unfortunately, due to its limited optimization range, the compiler is unable to unroll
loops, to take advantage of blocking or data prefetch when loop bounds are not con-
stant and references are not affine. We contend that such automatic optimizations
are still possible for such cases and we expect future compilers (in particular for
EPIC processors) to be able to generate them. In any case, the same optimiza-
tions that are made in the original program can be made in the transformed pro-
gram, giving a similar improvement in efficiency. Hence, from the perspective of
an implementation of the method within a compiler, such optimizations could be
done before our transformations. In order to get comparable executable codes,
the options -LNO:ou=1:prefetch=0:blocking=off were added to the compiling
command line, to prevent loop unrolling, prefetching and blocking in both versions.
In examples given below, the transformations are applied by considering refer-

ences to a given array A. For each loop, we consider that a complete optimization
is made relative to the whole program. The global program optimization process is
presented in Section 6. Performance results were obtained by launching programs
with instantiated loop bounds and array sizes. The choice of these values is deter-
mined by the available memory size and to the wish for a reasonable computation
time. Performance improvements obviously increase as these values become larger.
Let us look at the first example in Figure 1. This example is representative of

cases where the innermost loop is very small compared to the enclosing loop, and
the number of referenced array elements in the innermost loop is also very small
compared to the array size. The original loop seems to be well optimized since
A�j� i� is accessed with stride-one in the innermost loop. But when index i is incre-
mented, the next array element is accessed with stride N − 4. Such a situation can
generate a TLB miss at each iteration of the enclosing loop and also generate cache
misses since useless data are loaded and occupying cache lines that could have been

Figure 1. First motivating example.

precise data locality optimization of nested loops 41

loaded with active data. For this loop, we perform the data transformation defined
by:

A�i� j� → A�i+ 4�j − 1�� for any 1 ≤ i ≤ 4 and 1 ≤ j ≤ N

The resulting data layout is ideal since data are stored in memory in the same order
as they are accessed. The measurements show an important decline of TLB misses,
more than 7 times less secondary data cache misses and half fewer primary data
cache misses.
The second example in Figure 2 is representative of cases where incompatible ref-

erences occur in a loop. Traditional optimization processes would choose to consider
just one of them. The resulting loop would cause useless cache loads, TLB misses
and non-local accesses through the reference that was not optimized. But a further
analysis shows that the data that are accessed by each reference are not the same:
the two sets of referenced data are disjoint and array A can be allocated to memory
using two different data layouts. We derive and perform the data transformations
defined by:

A�i� j� → A�i�i− 1�/2 + j� for any 1 ≤ i ≤ N and 1 ≤ j ≤ i

A�i� j� → A�i+ j�j − 1�/2 +N�N + 1�/2 + 1� for any
{
1 ≤ j ≤ N
0 ≤ i < j

Afterwards, both references yield local accesses in the resulting loop. The measure-
ments show an impressive decline of the number of TLB misses and primary data
cache misses.
In the third example in Figure 3, the data dependences prevent a loop interchange

that could optimize references to array A. Hence, traditional techniques will result

Figure 2. Second motivating example.

42 loechner et al.

Figure 3. Third motivating example.

in optimizing just one reference at best. But, as in the previous example, both
referenced data sets are disjoint, and two different data layouts can be derived:

A�i� j� → A�i�i− 1�/2 + j� for any 1 ≤ i ≤ N and 1 ≤ j ≤ i

A�i� j� → A�i+ j�j − 1�/2 +N�N + 1�/2 + 1� for any
{
1 ≤ j ≤ N
0 ≤ i < j

The measurements show about half fewer cache and TLB misses for the trans-
formed loops.
The fourth example in Figure 4 exhibits two references that any traditional

technique would not transform at all. However, we show that some misses can still
be avoided. Unfortunately, both references are accessing data sets that are not dis-
joint: about half of array A is accessed by both references and the other half is only
accessed by the second reference. Hence, this second half can take advantage of a
better data layout. In such a case, our optimization process results in splitting the
initial loop into two disjoint loops. The second half of the array is only accessed by

precise data locality optimization of nested loops 43

Figure 4. Fourth motivating example.

the second reference in the second loop. This transformation is fully explained in
Section 5.3. The new data layouts are defined by:

A�i� j� → A�i+N�j − 1�� for any 1 ≤ i ≤ N and 1 ≤ j ≤ N

A�i� j� → A�i�i− 1�/2 + j +N2� for any
{
N + 1 ≤ i ≤ 2N
1 ≤ j ≤ N

The measurements show a significant improvement in the number of TLB and L2
data cache misses.
One might think that the original loop of the example in Figure 5 is already opti-

mized: stride-one accesses occur in the innermost loop for array A and references
to array B take advantage of temporal and spatial locality. But this does not take
into account an expensive phenomenon occurring with reference A�j� k�: since a
high number of accessed data yields some unavoidable TLB misses, these misses
are repeated each time index i is incremented. Hence, this reference needs to be
temporally optimized prior to B�i�, in order to minimize the TLB misses. This
optimization is done by interchanging loops such that index i is incremented in
the innermost loop. Stride-one accesses still occur for array A with both enclosing
loops. The new data layout is defined by:

A�i� j� → A��i− 1��i− 2�/2 + j� for any 1 ≤ i ≤ N and 1 ≤ j ≤ i− 1

These experiments have shown an impressive reduction in the number of misses.

44 loechner et al.

Figure 5. Fifth motivating example.

In the sixth example (Figure 6), the original loop seems to be well stated:
temporal locality occurs in the innermost loop for reference A�j� i� and stride-one
access occurs for reference B�k� j�. Even in the outer loops, stride-one accesses
occur for reference A�j� i� in loops j and i. But in this version, no attention is paid
to temporal reuse generated by reference B�k� j�, since it is not possible to opti-

Figure 6. Sixth motivating example.

precise data locality optimization of nested loops 45

mize both references simultaneously in the innermost loop. We argue that temporal
optimization for reference B�k� j� has to be considered at the next loop level: loops
i and j are interchanged in order to optimize the temporal reuse of the smallest
possible data sequence which is B�1� j�� B�2� j�� � � � � B�N� j�. The measurements
we made show significant savings in the number of cache misses.
The access functions generated by our technique are not affine. They are

multivariate polynomials of the loop indices. One could think that the evalua-
tions of such polynomials induce a computation overhead that will significantly
slow down the program. But our many experiments have shown that this is not a
significant issue at all: compilers transform any access function by computing an
increment of the referenced variable index at each loop level. Such an increment is
generally of low complexity and is often a constant integer value. It is equal to one
when spatial locality is achieved.

3. Background

The iteration space of a loop nest of depth d is a d-dimensional convex polyhedron
D where each point is denoted by a d-vector I = �i1� i2� � � � � id�. Each ik denotes
a loop index with i1 as the outermost and id the innermost loop. We will use
�i1� i2� � � � � id� to denote an iteration as well as a point in the iteration space.
We denote by lm�i1� i2� � � � � im−1� (respectively um�i1� i2� � � � � im−1�) the lower

(resp. the upper) bound for the loop of depth m�m ≤ d. Such bounds are defined
by parametric affine functions of the enclosing loop indices. They are of the form:

a1i1 + a2i2 + · · · + am−1im−1 + b1p1 + b2p2 + · · · + bqpq + c

where a1� a2� � � � � am−1� b1� b2� � � � � bq� c are rational constants and p1� p2� � � � � pq

are integer parameters. Thus, the polyhedron corresponding to the iteration space
is bounded by parameterized linear inequalities imposed by the loop bounds. The
iteration space will be denoted by DP with P = �p1� � � � � pq�.
We assume that loops are normalized such that their step is one. A reference to

an array element is represented by the pair �R�o� where R is the access matrix and
o is the offset vector. Elements of R and o are integer numbers. A reference is an
affine mapping f �I� = RI + o. For a reference to an m-dimensional array inside an
n-dimensional loop nest, the access matrix is m× n and the offset vector is of size
m. We are also able to handle parameterized references. Therefore elements of o
can be affine combinations of integer parameters. References can occur in any loop
of the nest since imperfectly nested loops are considered.

4. Loop transformations for temporal locality

This section describes how to perform temporal optimization given one loop. Each
reference in the loop is associated with an accessed set of data, and all references
are ordered by decreasing data set sizes. This choice of sorting criterium is explained
in Section 6.

46 loechner et al.

Notice that each data accessed by a temporally optimized reference can be stored
in a register during the execution of the optimized inner loops. If accessed in
read/write or read only, the data is stored in a register at the beginning of the
temporal usage, and if accessed in write, it is written to memory at the end of the
temporal usage.
Temporal locality is achieved by applying a transformation to the original loop.

In this paper, we consider unimodular transformations, being equivalent to any
combination of loop interchange, skewing and reversal (see [25] for references). In
order to be valid, the transformation has to respect the dependences of the loop.
This is described in subsection 4.1. An algorithm to compute the transformation
matrix for achieving temporal locality is given in subsection 4.2. This subsection
also describes the additional constraints that have to be considered in order to take
advantage of the spatial organization of an array accessed in another loop.

4.1. Definitions and prerequisites

4.1.1. Unimodular transformations. Let T be a unimodular �d + q + 1� × �d + q
+ 1� matrix. This matrix defines a homogeneous1 affine transformation t of the
iteration domain as:

t � DP ⊂ �d → D′
P = t�DP� ⊂ �d

I �→ I ′ = t�I� such that


 I ′

P
1


 = T


 I

P
1




The transformed domain D′
P corresponds to a new scanning loop, obtained by apply-

ing the Fourier-Motzkin algorithm [4] to a perfectly nested loop. This algorithm
computes the lower and upper bounds of each iteration variable I ′k as a function of
the parameters and the variables I ′1 · · · I ′k−1 only. The body of the loop also has to
be transformed in order to use vector I ′: all references to vector I are replaced by
t−1�I ′�.
If the loop nest is not perfect then some more work has to be done. First, we have

to compute the set of iteration domains corresponding to the original loop nest. All
these iteration domains have to be defined in the same geometric space (same
dimension and same variables). This can be done by using a variant of code sinking
[25] presented in the following examples. Then, the transformation is applied to all
these iteration domains. Finally, to get the resulting loop nest we apply Quilleré’s
algorithm [18], which constructs an optimized loop nest scanning several iteration
domains simultaneously.

Example 1 The following loop nest, on the left of Figure 7, is an imperfect loop
nest containing an instruction outside the innermost loop. In order to build the
iteration domains, this instruction S1 has to be put into the same depth of the loop
nest. This is done by creating a new loop, containing only one iteration, to include
instruction S1. The bounds of this new loop is the lower bound of the innermost
loop minus 1. The resulting loop is shown on the right of the figure.

precise data locality optimization of nested loops 47

Figure 7. Transforming a loop into a perfect loop nest, first example.

The final iteration domain is the union of the two iteration domains correspond-
ing to each instruction, since they are disjoint. In this example, it is the convex
domain:

DN =



 i

j
k


 ∈ �3

∣∣∣∣∣∣
1 ≤ i ≤ N
1 ≤ j ≤ N
0 ≤ k ≤ N




Example 2 In this second example Figure 8, we have two innermost non disjoint
loop nests. In order to build two disjoint iteration domains, we have to shift one of
the loops. Let us call l0 and u0 the lower and upper bounds for the first innermost
loop, and l1 and u1 the bounds for the second innermost loop. For the two innermost
loops to be disjoint, we can for example shift the second loop nest by u0 − l1 + 1, so

Figure 8. Transforming a loop into a perfect loop nest, second example.

48 loechner et al.

this loop starts at u0 + 1. In this example, we shift the second loop nest by i− j + 1:
The final iteration domain is the union of the two disjoint iteration domains:

DN =



 i

j
k′


 ∈ �3

∣∣∣∣∣∣
1 ≤ i ≤ N
1 ≤ j ≤ N
1 ≤ k′ ≤ N + i− j + 1




4.1.2. Data dependences and validity of loop transformations. From this point, by
‘dependence’ we will mean flow, anti-, and output dependences only. Input depen-
dence does not play a role, since distinct reads of the same memory location can be
done in no particular order. We denote by ≺ the lexicographical lower than opera-
tor and we define in the same way the operators �, �, and �. In the following, we
denote by v⊥ the transpose vector of v.
Let � be the set of distance vectors related to data dependences occurring in the

original loop nest:

δ ∈ �⇔
∃ I� J ∈ DP� with I � J� such that J = I + δ� and there

is a data dependence from iteration I to iteration J.

Notice that all distance vectors are lexicographically non-negative.
The condition for equivalence between the transformed loop nest and the original

loop nest is that [4]: t�δ� � 0 for each positive δ in �. Null dependence vectors
correspond to loop-independent dependences. A distance vector δ in the original
loop nest will become a distance vector t�δ� in the new one: in order for iteration
J ′ = t�J� to be executed after I ′ = t�I�, vector t�δ� = t�J − I� = J ′ − I ′ must be
lexicographically positive.

4.2. Achieving temporal locality

In the first part of this section we describe how to find a transformation matrix
T which optimizes one array reference. The second part extends the method to
handle two references, to the same or to different arrays. Finally, we give a global
algorithm to optimize a loop with multiple references. Our method, compared to
other ones, performs an accurate optimization of all references through a step-by-
step constructive algorithm.

4.2.1. Optimizing one reference. Let us consider an iteration domain DP of dimen-
sion d, referencing one array through a homogeneous reference matrix R of size
�d′ + q+ 1� × �d+ q+ 1�, where d′ is the dimension of the array and q the number
of parameters. There is temporal reuse if the data accessed by the loop has smaller
geometric dimension than the iteration domain. As a consequence, in order for the
reference to be temporally optimized, the rank r of matrix R has to be lower than
�d + q+ 1�.
The algorithm to find a new scanning loop consists of determining a set of

scanning vectors: for each level of the new loop, the associated scanning vector
corresponds to the difference between two successive iterations. Let us call B the

precise data locality optimization of nested loops 49

matrix composed of these column vectors, outermost loop on the first column, inner-
most loop on the last one. This unimodular matrix is a basis of the iteration space.
Its inverse matrix T = B−1 is the transformation matrix to apply to the iteration
domain in order to get the new loop, by the Fourier-Motzkin algorithm.
The inner loops have to scan the iterations accessing one data, and the outer loops

to scan each of the accessed data. The computation of B consists of two steps: first
we compute the basis BT of the space where temporal reuse occurs, then the basis
BD of the space scanning each accessed data. Finally we have B =

(
�BD�BT � 0

0 Id

)

in the homogeneous space: BT corresponds to the inner loops and BD to the outer
loops.
Matrix BT is computed as follows. The image by matrix R of the iteration space

results in a polytope containing all the accessed data, and is called the data space.
Each integer point d0 of the data space, or each data, corresponds to a polytope
to be scanned by the temporal inner loops. This polytope is computed by applying
function preimage2 R−1 to d0, intersected with the iteration domain DP . Let us call
� the affine hull of this polytope. The column vectors of matrix BT are the basis
vectors of � .
The leftmost vectors of matrix B scanning the accessed data, i.e. matrix BD, is

chosen in order for B to be unimodular and full rank, and to satisfy the remaining
dependences. It can be computed using the Hermite normal form of matrix BT .
If another loop, that has already been optimized, accesses the same array and if

the data sets intersect, then spatial organization is constrained. In this case, in order
for the innermost loop of the data iteration space to have stride-one accesses, the
rightmost column vector of BD is also constrained: for the innermost loop scanning
this data space to access the data in the same order as the other loop, it must scan
it along the same direction as the other loop.

Example 3 Consider the following loop nest:

do i = 1, N
do j = 1, N
do k = 1, i

A[i+N, j+k-1] = f(i,j,k)
enddo

enddo
enddo

There is an output dependence for array A, of distance vector δ = �0� 1�−1�⊥. The
reference matrix to variable A, is:

i j k N 1

R =




1 0 0 1 0
0 1 1 0 −1
0 0 0 1 0
0 0 0 0 1




x0
y0
N
1

50 loechner et al.

Each point d0 =
(
x0
y0

)
of the data space corresponds to the scanning of the follow-

ing polytope:

R−1d0 ∩DN =



 x0 −N

y0 − k+ 1
k


 ∈ DN


 �

where DN is the iteration domain. The basis vector of the affine hull of this polytope
is

BT =

 0
−1
1


 �

The dependence is satisfied and B is unimodular by chosing

BD =

 1 0
0 1
0 0


 �

Finally, we get

T = B−1 =




1 0 0 0 0
0 1 −1 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




−1

=




1 0 0 0 0
0 1 1 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


 �

The transformed loop nest is obtained by applying T to the iteration domain.
Let us call I ′ = �u� v�w�⊥ = t�I�. The references to I in the loop nest have to be
replaced by t−1�I ′�. The resulting loop nest is given below. Notice that index w does
not appear in the reference, which means that it has been temporally optimized:

do u = 1, N
do v = 2, N+u
do w = max(1,v-N), min(u,v-1)

A[u+N, v-1] = f(u,v-w,w)
enddo

enddo
enddo

4.2.2. Optimizing two references. Let us consider an iteration domain DP of size
d, referencing two arrays through homogeneous reference matrices R1 of size �d1 +
q + 1� × �d + q + 1� and R2 of size �d2 + q + 1� × �d + q + 1�. Suppose that the
first reference will be optimized prior to the second one. The method for chosing
which reference to optimize first will be described in Section 6.

precise data locality optimization of nested loops 51

Property 1 The number of inner loops that can be temporally optimized for two ref-
erences, is d + q + 1− Rank�(R1

R2

)�, where d is the number of loops, q the number
of parameters, and R1 and R2 the homogeneous reference matrices.

The demonstration is obvious: the rank of
(
R1
R2

)
is equal to the number of required

loops to scan both data spaces plus q+ 1 in homogeneous space. Out of d loops, the
number of remaining loops where temporal reuse can be realized for both variables
is then d + q+ 1−Rank((R1

R2

)�.
An immediate consequence of this property is that both references can be

temporally optimized in the inner loops, if and only if the rank of matrix
(
R1
R2

)
is

lower than �d + q+ 1�.
The method to build matrix T is similar to the algorithm presented in previous

section: it consists of building a basis for the scanning loops represented as matrix
B, from right to left. For both references to be temporally optimized in the inner
loops, the algorithm selects as inner scanning directions the basis of the intersection
of the two affine spaces where temporal reuse occurs. Matrix B is then completed
from right to left, using the remaining directions where temporal reuse is optimal
for one of the references.

1. Compute the parameterized polytopes scanning the loops where temporal reuse
occurs for each reference: Di = R−1i di ∩ DP , where di is a point of the data
space, for i = 1� 2. Compute the affine hulls �1 and �2 of these two polytopes.

2. Compute the intersection �1 ∩ �2 . The basis vectors of this space are used as
innermost scanning directions: they will take advantage of temporal reuse for
both references.

3. Compute the vectors generating �1 −�2 and �2 −�1. Use these vectors alterna-
tively to generate the next vectors of basis B. Each of these vectors will generate a
scanning loop taking advantage of temporal reuse for only one of the references.

4. Complete B by scanning the rest of the iteration space, using the vectors
generating the space: � − ��1 ∪ �2�, where � is the affine hull of DP .

For basis B to be valid, the unimodularity and the dependences have to be
checked. Transformation matrix T is finally obtained as above: T = B−1.

Example 4 Consider the following 4-dimensional loop nest.

do i = 1, N
do j = i, N
do k = 1, N

do l = 1, N
A[k+l,j] = A[k+l,j] + B[i,j-i]

enddo
enddo

enddo
enddo

52 loechner et al.

There is a dependence for array A, of distance vector δ = �0� 0� 1�−1�⊥. According
to Section 6, we choose to optimize temporal reuse for the first reference A�k+ l� j�,
since it has the largest data set (2N2 −N array elements, versus 1

2 �N2 +N� for the
second one).
Let

R1 =




0 0 1 1 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1


 and R2 =




1 0 0 0 0 0
−1 1 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1


 �

�1 is generated by �1� 0� 0� 0�⊥ and �0� 0�−1� 1�⊥, and �2 is generated by
�0� 0� 1� 0�⊥ and �0� 0� 0� 1�⊥.
�1 ∩�2 is generated by vector �0� 0�−1� 1�⊥. This is the direction of the innermost

scanning loop, where both references are optimized.
We choose as second one, the direction optimizing reference R1 since the first

reference has the largest data set: vector �1� 0� 0� 0�⊥. The third one optimizes
reference R2; let us take for example vector �0� 0� 1� 0�⊥. The last one will scan
the data spaces; let us choose for example �0� 1� 0� 0�⊥, in order for B to be full row
and unimodular.
Finally we have

B =




0 0 1 0 0 0
1 0 0 0 0 0
0 1 0 −1 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1




�

and

T = B−1 =




0 1 0 0 0 0
0 0 1 1 0 0
1 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1




�

The dependence is satisfied. Let us call the new loop indices u� v�w� x, with u =
j, v = k + l, w = i, and x = l. The new loop in u� v�w� x optimally scans both

precise data locality optimization of nested loops 53

references. The two inner loops access the same array element by the first reference.
For the second reference the innermost x-loop accesses the same array element, and
the v-loop reuses a subset of the data space corresponding geometrically to a line,
scanned by the w-loop.

do u = 1, N
do v = 2, 2N
do w = 1, u

do x = max(1,v-N), min(N, v-1)
A[v,u] = A[v,u] + B[w,u-w]

enddo
enddo

enddo
enddo

4.2.3. A global algorithm for multiple references optimization. Let us consider an
iteration domain DP of dimension d, referencing n arrays through reference func-
tions Ri, 1 ≤ i ≤ n. The first step of the algorithm is to compute the subspaces
�i where temporal reuse occurs for each reference i, as described in the previous
subsection.
The algorithm consists of building a basis for the scanning loops represented

as matrix B, from right to left. The rightmost scanning vector is chosen so that
it optimizes as many references as possible. The algorithm then selects the next
scanning vectors in order to optimize as many non yet optimized references as
possible. In case of equality, the references having the largest data set sizes are
chosen. After the initialization, an iterative process generates each scanning vector,
from right to left in matrix B:

1. Order the n references in decreasing data set sizes.
2. Compute the linear spaces �i for each reference, 1 ≤ i ≤ n.
3. for col = d downto 1 do
3a. Find the direction � that optimizes as many references as possible, in the set

of references that have been optimized the least. This is done by computing
successive intersections of the subspaces �i.
If there are no more references to optimize choose a direction such that it

takes advantage of the spatial organization of a data if necessary, and such that
B is unimodular.

3b. Put the vector � in the column col of matrix B. Check the dependences and the
unimodularity of B; if this is not satisfied, go back to step 3a and choose another
direction. Remove � from the subspaces �i so that it will not be considered in
a further step.
The unimodularity of B is checked as follows: at each step of the algorithm,

the d− col vectors generate a subspace; for the final matrix B to be unimodular,
each integer point of this linear space should possibly be generated as an integer
combination of the d− col vectors. In other words, these vectors must generate
a dense lattice subspace. This condition is verified if and only if the gcd of the

54 loechner et al.

subdeterminants of order d − col of these column vectors is 1. This property is
based on a corollary of the Hermite normal form theorem ([20, corollary 4.1c]).

Example 5 Consider the following 4-dimensional loop nest.

do i = 1, N
do j = 1, N
do k = 1, N

do l = 1, N
A[k,j,i] = A[k,j,i] + B[l,j] + B[i,l]

enddo
enddo

enddo
enddo

We choose to optimize temporal reuse for reference A�k� j� i�, since it has the
largest data set (N3). The two references to B have the same data set size (N2).
Let us call R1 the reference to A�k� j� i�, R2 and R3 the references to B�l� j� and
B�i� l� respectively. There is only one dependence, on variable A, of distance vector
�0� 0� 0� 1�⊥.
The first step of the algorithm consists of computing the subspaces of temporal

reuse �i, for i = 1� 2� 3. �1 is generated by vector �0� 0� 0� 1�⊥, �2 is generated by
�1� 0� 0� 0�⊥ and �0� 0� 1� 0�⊥, and �3 is generated by �0� 1� 0� 0�⊥ and �0� 0� 1� 0�⊥.
The algorithm then selects four new scanning vectors in this order:

— vector �0� 0� 1� 0�⊥ is chosen first, since it optimizes both references R2 and R3
(but not R1).

— vector �0� 0� 0� 1�⊥ optimizes then reference R1 which has not been optimized
yet. Notice that reference R1 cannot be better optimized in a further step, since
� ′
1 = �1.

— vector �1� 0� 0� 0�⊥ optimizes reference R2.
— vector �0� 1� 0� 0�⊥ optimizes reference R3.

Finally, we get:

B =




0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1




precise data locality optimization of nested loops 55

The dependence is satisfied The resulting loop is obtained by exchanging indices i
with j, and k with l:

do j = 1, N
do i = 1, N
do l = 1, N

do k = 1, N
A[k,j,i] = A[k,j,i] + B[l,j]+B[i,l]

enddo
enddo

enddo
enddo

Our experimental results show, after spatial optimization in both cases, a huge
improvement of performance: for N = 700, the number of TLB’s is about 232 and
overflows the hardware register for the original loop, versus 8�7 ∗ 106 for the trans-
formed loop, on the R12000 processor. The transformed loop is more than 2 times
faster than the original one.

5. Data layout transformations of active data

In this section, we present our data transformation method. Its objective is to derive
new data layouts for certain references in order to get stride-one access for a
maximum number of loop levels. Such a result is obtained by taking into account
only data that is actually referenced, that is, the active data. The method is based
on a geometric model of loops and array references.

5.1. The active data

Let Y �d0� be any element of an array Y referenced in a loop nest through a homo-
geneous reference matrix R. As presented in the previous section, the set of itera-
tions referencing this array element Y �d0� is defined by:

P�d0� =

I ∈ DP

∣∣∣∣∣R

 I

P
1


 =


d0

P
1




 = DP ∩ PreImage


R�




d0

P
1








If P�d0� is empty, then Y �d0� is never referenced by the loop nest and never
has to be loaded in the cache. Depending on how the data storage process is
implemented in the compiler, it can be useful, for any given array element Y �d0�,
to know if it is effectively accessed and how many times. This information is given
by the number of integer points in P�d0�, that is, the Ehrhart polynomial EP�d0� of
P�d0� [7, 9]. An Ehrhart polynomial is a parametric expression of the exact number
of integer points contained in a parameterized polyhedron. It can be computed

56 loechner et al.

using our program available at http://icps.u-strasbg.fr/Ehrhart/program/. Hence, if
EP�d0� = 0, then Y �d0� is never referenced by the loop nest.
If P�d0� is reduced to a single iteration, then array Y has no temporal reuse.3

Stride-one access for any loop level will then be obtained by indexing any datum
with the position of the iteration that references it, relative to the execution order: if
the qth iteration references Y �d0�, then Y �d0� will be mapped to address b+ q×w
in main memory, where b is the base address of array Y , and w is the size in bytes
of an array element.
If Y �d0� is temporally reused, two cases can occur:

— The innermost loops have been temporally optimized for the reference under
consideration as presented in Section 4: in this case, a new access matrix has
been computed which is only applied to the indices of the outermost loops scan-
ning the data space. Stride-one access is then obtained by indexing any datum
in the same way by considering only those outermost loops, since temporal opti-
mization resulted in stride-zero access for the remaining innermost loops. This
case occurred while optimizing array A of the fifth example in Section 2;

— Not all innermost loops have been temporally optimized for the reference under
consideration: In this case, we choose to consider the first iteration referencing
Y �d0� to compute the new data layout, that is, the lexicographic minimum of
P�d0�. This minimum is computed using our geometric tools as described in
[9]. Then, any datum is indexed in the same way by considering only iterations
that reference such lexicographic minima. Since in the case of temporal reuse,
the same data sequence is accessed several times, this choice ensures stride-one
access each time such a sequence occurs. Moreover, if this data sequence is
small enough to be loaded entirely in the cache, then temporal locality will also
be achieved. This case will be illustrated with Example 7.

Example 6 In order to show the generality of the technique, let us consider the
following example that will result in a rather complicated data layout. It consists in
the following loop nest depending on a positive integer parameter N:

do i = 1, N
do j = i, 2∗i-1
do k = i-j, i+j
X = X + Y(i+j-1, i+k+2, j+k)

enddo
enddo

enddo

Let us focus on array Y . For the reference Y �i+ j − 1� i+ k+ 2� j + k�, we have:

R =



1 1 0 0 −1
1 0 1 0 2
0 1 1 0 0
0 0 0 1 0
0 0 0 0 1




precise data locality optimization of nested loops 57

The set of iterations referencing any array element Y �i0� j0� k0� is defined by

P�d0� = P�i0� j0� k0�
= {�i� j� k� ∈ DN �i+ j − 1 = i0� i+ k+ 2 = j0� j + k = k0

}
=
{
�i� j� k� ∈ DN

∣∣∣∣ i = i0+ j0− k0− 1
2

� j = i0− j0+ k0+ 3
2

�

k = −i0+ j0+ k0− 3
2

}
�

Observe that for a given datum Y �i0� j0� k0�� P�i0� j0� k0� is either empty, when
the resulting values of �i0+ j0− k0− 1�/2� �i0− j0+ k0+ 3�/2 or �−i0 + j0 +
k0 − 3�/2 are not integer or do not belong to DN , or contains a single iteration.
The number of integer points in P�i0� j0� k0� is:

EP�i0� j0� k0� =
{
0 if (i0+j0+k0) mod 2 = 0
1 otherwise

For example, since EP�1� 3� 2� = 0� Y �1� 3� 2� is never referenced by the loop
nest.

The set of active data is defined by:

DataY =

d0

∣∣∣∣∣∣

d0

p
1


 = R


 I

p
1


 � I ∈ DP


 = RDP

These data are associated with the points resulting from the affine transformation
R of the iteration space. We have presented in [8] a method allowing the determi-
nation of the exact count of these active data. This set is generally not a convex
polyhedron containing a regular lattice of points since the affine transformation of
a lattice-polytope is not a lattice-polytope: “holes” may occur irregularly.
In our case however, an exact determination of DataY is not necessary. The

convex hull of DataY , Conv�DataY �, is sufficient in order to restrict the result to
the only considered useful information. Hence data situated outside this set are
assuredly not accessed. For this purpose, we use our parametric vertices finding
program presented in [9, 16]. This program computes the parametric coordinates
of the vertices of a convex parameterized polyhedron defined by some linear param-
eterized inequalities. The result is given as a set of convex adjacent domains of the
parameters associated with some vertices. In order to compute Conv�DataY �, we
compute the parametric vertices of the parameterized polyhedron P�d0�. Hence,
the domains of the parameters computed by the program gives the convex hull of
the values taken by d0, that is, Conv�DataY �.

Example 6 (continued) The set of active data is defined by DataY = ��i0� j0� k0��
i0 = i + j − 1� j0 = i + k+ 2� k0 = j + k� 1 ≤ i ≤ N� i ≤ j ≤ 2i − 1� i − j ≤ k ≤

58 loechner et al.

i + j�. The convex hull of DataY , Conv�DataY �, is determined by computing the
parametric vertices of P�i0� j0� k0�. The program gives the following answer:

Conv�DataY � =



 i0

j0
k0



∣∣∣∣∣

i0+ j0 ≤ k0+ 2N + 1�
3k0+ 7 ≤ i0+ 3j0� j0 ≤ k0+ 2�
i0+ j0 ≤ 3k0+ 1� j0+ k0 ≤ 3i0+ 5


 �

5.2. Mapping array elements to memory

The lexicographic minimum of the set P�d0� defines the first iteration referencing
any array element Y �d0�. If P�d0� contains one single point, this point defines
the unique iteration referencing Y �d0�. Let Imin be this point. The coordinates
of Imin = �Imin�1� Imin�2� � � � � Imin�n� are affine functions of d0. The position of this
iteration, relative to the execution order, gives the position index in main memory
of the referenced datum Y �d0�, relatively to the base address b of Y . This will
ensure stride-one access since the datum referenced just before or just after Y �d0�
will be contiguous to Y �d0� in memory.
The position of iteration Imin is determined by computing the number of iterations

referencing an array element for the first time and occurring before Imin. The set
of iterations occurring before Imin (included) is defined by:

P�Imin� = �I ∈ DP �I � Imin�
where � denotes the lexicographic order. In order to compute the number of itera-
tions in P�Imin�, the lexicographic inequality has first to be transformed into linear
inequalities. This transformation will result in a decomposition of P�Imin� as a union
of disjoint convex polyhedra in the following way:

P�Imin� = P1�Imin� ∪ P2�Imin� ∪ P3�Imin� ∪ · · · ∪ Pn�Imin�
where

P1�Imin� = �I ∈ DP �i1 < imin� 1�
P2�Imin� = �I ∈ DP �i1 = imin� 2� i2 < imin� 2�
P3�Imin� = �I ∈ DP �i1 = imin� 1� i2 = imin� 2� i3 < imin� 3�
� � �

Pn�Imin� = �I ∈ DP �i1 = imin� 1� � � � � in−1 = imin� n−1� in ≤ imin� n�
Since Imin is defined as an affine function of d0, P�Imin� is a union of polyhe-

dra parameterized by d0. By computing the Ehrhart polynomials EPq�d0� of each
of these polyhedra, and by summing the results, we obtain the number of iterations
defined by P�Imin� and parameterized by d0. This final result provides a mapping
function of any array element Y �d0� to main memory, by giving its position index
relatively to the base address b of array Y . It is expressed as the Ehrhart polynomial
EP�d0� of the union of polyhedra P�Imin�. Hence, any reference Y �d0� is trans-
formed into Y �EP�d0�� where the referenced array Y is now a one-dimensional
array.

precise data locality optimization of nested loops 59

Example 6 (continued) The set P�i0� j0� k0� contains at most one point defin-
ing a unique iteration referencing any array element Y �i0� j0� k0�. This iteration
is defined by Imin=��i0+j0−k0−1�/2� �i0−j0+k0+3�/2� �−i0+j0+k0−3�/2�.
Hence, the number of iterations occurring before Imin is determined by computing
the Ehrhart polynomial of the following union of polyhedra:

P

(
i0+ j0− k0− 1

2
�
i0− j0+ k0+ 3

2
�
−i0+ j0+ k0− 3

2

)

=
{
�i� j� k� ∈ P

∣∣∣∣ i <
i0+ j0− k0− 1

2
� �i0� j0� k0� ∈ Conv�DataY �

}

∪
{
�i� j� k� ∈ P

∣∣∣∣ i = i0+j0−k0−1
2 � j < i0−j0+k0+3

2 �
�i0� j0� k0� ∈ Conv�DataY �

}

∪
{
�i� j� k� ∈ P

∣∣∣∣ i = i0+j0−k0−1
2 � j = i0−j0+k0+3

2 � k ≤ −i0+j0+k0−3
2 �

�i0� j0� k0� ∈ Conv�DataY �
}

On the first set, our program gives the following answer:

EP1�i0� j0� k0� = − 1
8k0

3 + 3
8 j0k0

2 + 3
8 i0k0

2 − 3
4k0

2 − 3
8 j0

2k0− 3
4 i0j0k0

+ 3
2 j0k0− 3

8 i0
2k0+ 3

2 i0k0− 11
8 k0+ 1

8 j0
3 + 3

8 i0j0
2

− 3
4 j0

2 + 3
8 i0

2j0− 3
2 i0j0+ 11

8 j0+ 1
8 i0

3

− 3
4 i0

2 + 11
8 i0− 3

4

on the second, the answer is:

EP2�i0� j0� k0� = i0k0− i0j0+ k0− j0+ 2i0+ 2

and on the third:

EP3�i0� j0� k0� = 3
2k0− 1

2 j0− 1
2 i0+ 3

2

Finally, the memory address of any array element Y �i0� j0� k0� is given by:

EP�i0� j0� k0� ×w + b

= �EP1�i0� j0� k0� + EP2�i0� j0� k0� + EP3�i0� j0� k0�� ×w + b

where b denotes the base address of array Y and w denotes the size of a datum.
Hence, reference Y �i + j − 1� i + k + 2� j + k� is transformed into the reference
Y
(−i�i(52 − i

)+ 1
2

)+ j�j + 1� + k+ 1�.
For example, let us consider 3 successive iterations: �3� 5� 8�, �4� 4� 0� and �4� 4� 1�.

The referenced array elements in the original loop are respectively Y �7� 13� 13�,

60 loechner et al.

Y �7� 6� 4� and Y �7� 7� 5�. Using the array reference evaluation function we have just
determined, it results in contiguous memory addresses for these array elements:

EP�7� 13� 13� = 15+ 16+ 11 = 42
EP�7� 6� 4� = 42 + 0+ 1 = 43
EP�7� 7� 5� = 42 + 0+ 2 = 44

Hence, Y �7� 13� 13�, Y �7� 6� 4� and Y �7� 7� 5� will respectively be mapped to mem-
ory addresses 42 ×w + b, 43×w + b and 44×w + b.
The measurements we made on the R12000 for N = 100 give the following

results:

Original loop Transformed reference

L1 data cache misses 1,012,645 127,155
L2 data cache misses 121,679 31,234
TLB misses 1,042,231 152
Computation time 0.32 s 0.02 s

The resulting mapping function may be used by the compiler during the array
reference evaluation process instead of using its default method of addressing an
array element [1]. The process could be replaced by the evaluation of the previously
computed access function EP .
The array reference function that we produce may seem at first to require

expensive calculations. But our many experiments have shown that this is not at all
a significant issue.

Example 7 Let us consider another example illustrating the case where the loop
has not been temporally optimized for the reference under consideration although
temporal reuse occurs. It consists of the following loop nest:

do i = 1, N
do j = 1, 2*N
do k = 1, N
A(i,j) = A(i,j)+B(i,k)

enddo
enddo

enddo

According to our optimization selection criteria that will be presented in next
section, references to array A prevent the temporal optimization of the reference
to array B. Spatial locality will be improved for this latter reference.
An array element B�i0� j0� is referenced by iterations of the form �i0� j� j0� ∈

P�i0� j0�� i0 ≤ j ≤ 2N . Here, the lexicographic minimum B�i0� j0� is obvious to
obtain: �i0� i0� j0�. Hence, iterations �i� j� k� referencing such lexicographic minima
are such that i = j. The number of such iterations occurring before iteration

precise data locality optimization of nested loops 61

�i0� i0� j0� is determined by computing the Ehrhart polynomial of the following
union of polyhedra:

{
1 ≤ i ≤ N� j = i� 1 ≤ k ≤ N� i < i0� 1 ≤ i0 ≤ N� 1 ≤ j0 ≤ N

}
∪
{
1 ≤ i ≤ N� j = i� 1 ≤ k ≤ N� i = i0� j < i0� 1 ≤ i0 ≤ N�
1 ≤ j0 ≤ N

}

∪
{
1 ≤ i ≤ N� j = i� 1 ≤ k ≤ N� i = i0� j = i0� k ≤ j0� 1 ≤ i0 ≤ N�
1 ≤ j0 ≤ N

}

The computation results in EP�i0� j0� = N�i0 − 1� + j0 and gives the following
transformed loop:

do i=1, N
do j = 1, 2*N
do k=1, N
A(((4*N+1-i)*i)/2+j-2*N)=A(((4*N+1-i)*i)/2+j-2*N)

+B(N*(i-1)+k)
enddo

enddo
enddo

Observe that for the latter reference, the same data sequence is repeatedly accessed
with stride-N each time index j is incremented.

When several references to a same array occur in a loop nest, different data
layouts can be determined for this array as it was shown in the second and fourth
examples of Section 2. It is also the case when references to a same array occur
in different loop nests as it was shown in the third example of Section 2. These
techniques are presented in the following two subsections.

5.3. Allocating arrays with different data layouts

For the sake of clarity, we first describe our technique for cases where only two
references to a same array occur in one loop nest. The more general case where
several references occur in one loop nest is presented at the end of this subsection.
Let us consider two references to an array Y , through the homogeneous access

matrices R1 and R2, R1 �= R2, in the same iteration space DP . We denote by Data1,
respectively Data2, the set of active data for reference R1, resp. R2:

Datai =

d0

∣∣∣∣∣∣

d0

P
1


 = Ri


 I

P
1


 � I ∈ DP


 � i = 1� 2

If Data1 = Data2, only one data layout that optimizes only one of both refer-
ences can be determined. Otherwise, some data accessed by one reference are not

62 loechner et al.

accessed by the other one. In this case, two different data layouts defined by two
Ehrhart polynomials EP1 and EP2 are determined for Data1 ∪ Data2. These data
transformations can be applied in two ways, leading to different solutions:

— EP1 is applied to all the data accessed by reference R1 and EP2 is applied to
the data accessed by R2 that are not accessed by R1. In this case, data that are
accessed by both references are not accessed with stride-one when accessed by
the reference R2.

— EP2 is applied to all the data accessed by reference R2 and EP1 is applied to
the data accessed by R1 that are not accessed by R2. In this case, data that are
accessed by both references are not accessed with stride-one when accessed by
the reference R1.

The best solution is the one where the defavourable case occurs less: we compute
for each solution the number of iterations where stride-one access does not occur
for one of the references, and then choose the solution having the minimum number
of these iterations. This computation is presented hereunder.
Let us call Ti�I� the affine transformation defined by homogeneous transforma-

tion matrix Ri, for i = 1� 2. Then we have Datai = Ti�DP�. The set of iterations
for which the data accessed by R2 are also accessed by R1 (for some other set of
iterations) is defined by:

S12 = T−12 �T1�DP�� ∩DP

Since T2 is not necessarily invertible, T
−1
2 denotes the preimage, that is, the inverse

operation of image: given a domain D′, T−12 �D′� is the domain which, when trans-
formed by T2, gives D′. This operation is implemented in the polyhedral library
Polylib [22]. In the same way, S21 = T−11 �T2�DP�� ∩DP is the set of iterations for
which the data accessed by R1 are also accessed by R2 for some iterations.
Both sets S12 and S21 are the iterations for which stride-one access does not occur

for one of the references. Hence, the best solution is characterized by the smallest
of these sets. For each set, we compute the Ehrhart polynomial giving its number of
elements. Suppose that #S12 < #S21. The best solution is the one where stride-one
access always occurs for the first reference and occurs for the second reference only
when it accesses data that are never accessed by the first reference.
In order to compute both different data layouts and the new loop nest, the

original loop has to be split into two different loops L1 and L2: L1 scans the set of
iterations S12 and L2 scans the set DP − S12. The data layout defined by EP1 is com-
puted from the original loop with the first reference, and the data layout defined by
EP2 is computed from L2 with the second reference. EP1 is then applied to both
references in L1 and to the first reference in L2, and EP2 is applied to the sec-
ond reference in L2. Moreover, in order to allocate consecutively in memory data
accessed by EP1 and data accessed by EP2, the biggest index of the data accessed
by EP1 is added to EP2. Let us now detail the fourth example of Section 2.

Example 8 Let T1�i� j� = �k� i� and T2�i� j� = �j + k� j�. We have:
DN = ��i� j� ∈ �2�1 ≤ i ≤ N� 1 ≤ j ≤ N� 1 ≤ k ≤ N��

precise data locality optimization of nested loops 63

The set of iterations for which the data accessed by A�j + k� j� are also accessed
by A�k� i� is defined by:

S12 = T−12 �T1�DN�� ∩DN

= {�i� j� ∈ �2�1 ≤ i ≤ N� 1 ≤ j ≤ N� 1 ≤ k ≤ N − j
}

In the same way, the set of iterations for which the data accessed by A�k� i� are
also accessed by A�j + k� j� is defined by:

S21 = T−11 �T2�DN�� ∩DN

= {�i� j� ∈ �2�1 ≤ i ≤ N� 1 ≤ j ≤ N� i+ 1 ≤ k ≤ N
}

Computations of the Ehrhart polynomials of each set give the following answer:

#S12 = #S21 = 1
2N

3 − 1
2N

2 +N

Therefore, both solutions are equivalent. Let us choose the one characterized by
S12. The resulting loop nest is obtained by splitting the innermost loop indexed by
k into two loops where index k ranges from 1 to N − j for the first one and from
N − j + 1 to N for the second one.
The new data layout for reference A�k� i� is computed from the original loop as

described in the previous subsections: EP1�i0� j0� = N�j0− 1� + i0. The new data
layout for reference A�j + k� j� is computed from the second innermost loop of
the new loop nest: EP2�i0� j0� = i0�i0− 1�/2 + j0. Since the data with the biggest
index accessed by the first reference is A�EP1�N�N�� = A�N2�, N2 is added to
EP2�i0� j0�. The resulting loop nest is shown in Figure 4 of Section 2.

It is important to mention that such a loop splitting can always be done without
altering the data dependences, since the initial order of the iterations is not affected
at all: any loop inside a considered loop nest is split into several successive loops
such that the included instructions are executed in the same order as in the original
loop, and without modifying any of the enclosing loops.
We consider now the case where a given array is accessed by r �r > 2� references

in the loop nest. For each reference to an array Y through access matrix Ri, the
active data set is Datai, i = 1��r, with Ri �= Rj for any i �= j. In order to present our
algorithm, we first define the notion of split pattern of a loop nest.
Let us consider imperfectly nested loops. Such a nest can be seen as a fusion

of many perfectly nested loops. We consider here that these perfect loop nests Li

scan disjoint but contiguous convex iteration spaces Di and that the union of these
spaces D is convex.4 Hence, the Di’s define a partition of the iteration space D. Let
us now consider any other partition of the same iteration space D defined by con-
vex, disjoint and contiguous subsets Sj . The mapping of this last partition onto the
partition defined by the Di’s defines a new partition with smaller subsets. The scan-
ning of these smaller subsets following the same initial iteration directions allows
to generate a new imperfectly nested loop nest which results from the splitting of
the original one following the split pattern defined by the Sj ’s (see Figure 9).

64 loechner et al.

Figure 9. An initial iteration space D1 ∪D2 ∪D3, a split pattern S1 ∪ S2 ∪ S3 and the corresponding final
iteration space D′

1 ∪D′
2 ∪D′

3 ∪D′
4 ∪D′

5.

In the following, we will denote by Di the iteration space of reference i, that
is, the set of iterations of the loop nest that enclose the ith reference. Moreover,
if reference i has been temporally optimized as described in Section 4, innermost
loops acessing the same data are not considered. For example in the following loop
nest:

do i = 1, N
do j = 1, N

� � � A(i)� � �
do k = 1, N

� � �
enddo

enddo
enddo

the iteration space of reference A�i� is D1 = �1 ≤ i ≤ N�, since this loop nest
would rather be written in the following way in order to improve register usage:

do i = 1, N
r = A(i)
do j = 1, N

� � � r� � �
do k = 1, N

� � �
enddo

enddo
enddo

Using these notions, our algorithm consists in the following: the first part of the
algorithm finds the best solution where the defavourable case occurs the least: each
set S

q
ij defines iterations for which at least one of the references j �j �= i� accesses

data also accessed by the ith reference. These iterations represent the defavourable
case where stride-one access would not occur for references j if the associated data
layout and loop splitting would have been selected. In order to minimize the number
of times this case occurs, we choose reference i associated with the smallest sets S

q
ij

such that stride-one access will occur the most.

precise data locality optimization of nested loops 65

% Part I: Finding the best data layouts
1. let E = �� q = r and Q = �1� 2� 3� � � � � r�
2. compute all the sets S

q
ij , �i� j� ∈ Q×Q, defined by S

q
ij = T−1j �Ti�Di� − E� ∩Dj

3. select reference iq associated to the smallest sets S
q
ij , that is, iq such that:

∑
j∈Q�j �=iq

#S
q
iqj
= min

i∈Q

(∑
j∈Q�j �=i

#S
q
ij

)

4. let E = E ∪Dataiq
, q = q− 1 and Q = Q− �iq�

5. if q > 1 go to step 2
% Part II: Code generation
6. let q = r, Q = �1� 2� 3� � � � � r�, L denotes a set containing the original loop nest

and D denote the iteration space of L
7. compute the new data layout defined by EPq from L with the iqth reference as

described in the previous subsections
8. split L following the split pattern defined by the sets S

q
iqj

� j ∈ Q� j �= iq
9. for all the loops scanning subsets s ⊂ ⋃

j∈Q�j �=iq
S

q
iqj
, apply EPq to all references

jk such that k ≤ q and s ⊂ S
q
iqjk

10. for all the remaining loops, apply EPq to the iqth references
11. let q = q − 1�Q = Q − �iq�� L denotes the loops scanning sets s such that

s ⊂ �D− S
q
iq+1iq� and D denotes the iteration space of L

12. if q > 1 go to step 7
13. compute the new data layout defined by EP1 from L with the iqth reference
14. apply EP1 to the ipth references in L

Let us look at an example with three references to a same array.

Example 9 Consider the following loop nest:

do i = 1, N
do j = 1, N
A(j,i)=A(i,i+j)+A(i,i)

enddo
enddo

Let DN = ��i� j� ∈ �2�1 ≤ i ≤ N� 1 ≤ j ≤ N�� T1�i� j� = �j� i�� T2�i� j� = �i� i + j�
and T3�i� j� = �i� i�. For q = 3, the above algorithm computes the following sets:

S321 = ��i� j� ∈ �2�2 ≤ i ≤ N� 1 ≤ j ≤ i− 1�
S312 = ��i� j� ∈ �2�1 ≤ i ≤ N − 1� 1 ≤ j ≤ N − i�
S331 = ��i� j� ∈ �2�1 ≤ i ≤ N� i = j�
S313 = D

S332 = �
S323 = �

66 loechner et al.

The size of each set is given by their respective Ehrhart polynomials:

#S321 = N�N − 1�/2
#S312 = N�N − 1�/2
#S331 = N

#S313 = N2

#S332 = #S323 = 0

The third reference is selected since �#S331 + #S332� is minimal: Data3 = ��i� j� ∈
�2�1 ≤ i ≤ N� i = j� is added to E and Q = �1� 2�. For q = 2, the algorithm
computes:

S212 = ��i� j� ∈ �2�1 ≤ i ≤ N − 1� 1 ≤ j ≤ N − i��
#S22 = N�N − 1�/2�
S221 = ��i� j� ∈ �2�2 ≤ i ≤ N� 1 ≤ j ≤ i− 1��
#S21 = N�N − 1�/2

Either the first or the second reference can be selected. Let us choose the second
one. The first part of the algorithm ends.
The code generation starts with q = 3. Since the third reference has been selected,

EP3 is computed from this reference in the original loop: EP3�i0� j0� = i0. The loop
is split such that iterations where i = j are scanned separately. EP3 is applied to all
third references and to the first reference in the loop where i = j:

do i = 1, N
do j = 1,i-1
A(j,i) = A(i,i+j) + A[i]

enddo
A[i] = A(i,i+i) + A[i]
enddo
do j = i + 1,N
A(j,i) = A(i,i+j) + A[i]

enddo
enddo

For q = 2 and since the second reference has been selected, EP2 is computed from
the second reference in all the loops: EP2 = N�i0 − 1� − i0 + j0 +N . In order to
allocate consecutively to memory the data accessed by EP3 and the data accessed by
EP2, the biggest index of the data accessed by EP3, that is, N , is added to EP1. EP2
is applied to all second references and to the first reference in the loop scanning

precise data locality optimization of nested loops 67

S221, that is, the first loop:

do i = 1, N
do j = 1, i-1
A[N*(j-1)+i-j+N]=A[N*(i-1)+j+N]+A[i]

enddo
A[i]=A[N*(i-1)+i+N]+A[i]
enddo
do j = i+1, N
A(j,i)=A[N*(i-1)+j+N]+A[i]

enddo
enddo

Finally, the algorithm ends by computing EP1 from the first reference in the last
loop: EP1 = �2N − j0��j0 − 1�/2 + i0 − j0 +N�N + 1�. In order to allocate con-
secutively to memory data accessed by EP2 and data accessed by EP1, the biggest
index of the data accessed by EP2, that is, N�N + 1�, is added to EP1. Hence, the
final optimized loop is:

do i = 1, N
do j = 1, i-1
A[N*(j-1)+i-j+N]=A[N*(i-1)+j+N]+A[i]

enddo
A[i]=A[(N+1)*i]+A[i]
do j = i+1, N
A[(2*N-i)*(i-1)/2-i+j+N*(N+1)]=A[N*(i-1)+j+N]+A[i]

enddo
enddo

Measurements have been made for N = 5000 giving the following results:

Original loop Transformed reference

L1 data cache misses 28,272,270 17,371,446
L2 data cache misses 1,677,582 1,484,270
TLB misses 15,935,741 7,936,117
Computation time 5.20 s 2.95 s

A main disadvantage is the software overhead that can generate this loop splitting
process. The number of resulting loops depends on the number of references to a
same array that occur in the original loop. However, this process can be interrupted
when the remaining references that have not yet been considered by our algorithm
do not represent significant improvements: if, at step 11 of the algorithm, the weight
of the remaining references defined by �#D×#Q−∑j∈Q�j �=iq

#S
q
iqj
� is negligible as

compared to the weight of all references defined by �#Dorig × r�. This is measured
by the ratio:

-�iq� =
#D×#Q−∑j∈Q�j �=iq

#S
q
iqj

#Dorig × r

68 loechner et al.

where Dorig denotes the iteration space of the original loop nest. This ratio measures
the weight of the optimized references relatively to the weight of all the references
in the initial loop nest. In some of our experiments, we observed that it was still
worth to split loops as -�iq� > 1/100.
The splitting process is stopped in the following way: for all remaining references,

the convex hull of the accessed data is computed. For this data set, a data layout is
determined by computing a new access function. This access function is computed
by considering a loop scanning the data set with the same iteration directions as in
the original loop, and by considering the same initial access function as one of these
remaining references. Stride-one access is then obtained in the innermost loop for
at least this remaining reference. The resulting program performance relatively to
these references cannot be worse than the performance obtained from a classically
optimized program.
All the cases presented in this section are relevant to the global optimization

strategy given in Section 6. While considering a whole program with several loop
nests accessing some common arrays, data layouts that were determined from a
given loop nest will have to be propagated to some other loop nests that access the
same arrays. This process is explained in next subsection.

5.4. Data layout propagation

Consider two loop nests L1 and L2 accessing an array Y . Consider also that a new
data layout has been determined for Y while optimizing L1. Since optimizing L1
can result in splitting the original loop nest, several different data layouts could
have been determined for Y . Let us consider only one of the innermost included
loops as the same process would be repeated for any of them. This data layout has
to be propagated to the reference in L2. In the same way, optimizing L2 can also
result in splitting the original loop nest while improving references to some other
arrays. So we also consider only one of the innermost included loops. Let T1�I�,
resp. T2�I�, denote the original access function in L1, resp. L2. We denote by D,
resp. D′, the iteration space of L1, resp. L2.
The set of iterations of D′ for which the data accessed by R2 in L2 are also

accessed by R1 in L1 is defined by:

S12 = T−12 �T1�D�� ∩D′

Hence, references to Y made while executing these iterations must use the same
access function as the one used in L1: L2 has to be split according to the split
pattern defined by S12 and the access function used in L1 has to be applied to the
reference in the loop nest L2 scanning S12.
In a general way, this new reference in L2 will not take advantage of the corre-

sponding data layout as in L1. Unchanged references made in the loop scanning
D′ − S12 can also be improved as presented in the previous subsections.
However, it can be possible to transform the loop scanning S12 such that the

new reference will take advantage of the data layout: the new loop must scan S12
following the same iteration vectors as in L1. But such a transformation is not

precise data locality optimization of nested loops 69

always possible since it must not alter the data dependences and since it is closely
related to temporal optimization (see subsection 4.1).
In this case, in order to prevent software overhead, the splitting process can be

interrupted: the convex hull of Data1 ∪ Data2 is computed. A new access function
is computed by considering a loop scanning this data set with the same iteration
directions as in L1 and with the access function T1. Then the new access function
is applied in both loops to both references.

6. Cost criteria driven optimizations of nested loops

While considering a whole program, our optimization process is based on precise
indicators and on several benchmark experiments. Some of the main strategies are
discussed in this section.
In general, temporal locality must be improved as much as possible, since it opti-

mizes register use and no cache misses are generated in the innermost loops access-
ing the same data element. Moreover, while data layout transformation has an effect
on all loop nests accessing array elements, temporal optimization only concerns one
loop nest.
Optimization of a whole program is driven by the cost of the program’s memory

accesses. This cost can be evaluated on either a per referenced array basis, or per
loop nest basis. An array driven approach would be the best approach if loop nests
of a program often access different subarrays. But this is not the case in most
programs. Therefore, a loop nest cost driven approach will generally give better
results.
The cost of a loop nest L is the number of memory accesses occurring during

the execution of L: C�L� = ∑r
i=1 #Di where r denotes the number of different

references occurring in L and Di denotes the set of iterations of the loop nest
enclosing the ith reference. All loop nests of a program are ordered according to
this value. This cost function is similar to the one defined by Kandemir et al. in
[12], except that our evaluation tools allow to compute exact symbolic values.
Loop nests are optimized from the costliest to the less costly nest. When consid-

ering one loop nest, the best combination of loop and data transformations depends
on previous optimizations made on costlier nests and on the cost of the occurring
references. In comparing several possible solutions, the best ones are characterized
by the smallest strides generated by their references. For example, let us consider
four different possible solutions for scanning the loop nest presented in Figure 10.
For each loop nest and each reference, we compute the number of strides of any size
occurring while incrementing the loop indices. The results are given in Figure 11.
For example, in the first loop nest, strides of size O�N2� occur N3 times while
accessing memory by reference B�i� l�.
Since the objective is to minimize the number of large strides, the solution

corresponding to loop nest 2 can be eliminated: N2 strides of size O�N3� occur
while accessing memory by reference A�k� j� i�. Looking at strides of size O�N2�,
solution 1 is eliminated since it yields more such strides than solutions 3 and 4.
Comparing these latter solutions, solution 4 is selected since strides of size O�N2�

70 loechner et al.

Figure 10. Four different ways to scan the loop nest.

occur while accessing an array of size N2, while in solution 3, strides of size O�N2�
occur while accessing an array of larger size, that is, N3. Hence the best solution is
the one associated with loop nest 4. This result was validated by our performance
measurements.
The best solution should be determined directly without enumerating all possible

solutions. But such a direct approach can only be built using heuristics. The largest
stride that a reference i may generate is the size of the set of accessed data Datai.
In general, strides larger than one are generated by reusing the same sequence
of contiguous data several times. Such a reuse corresponds to a temporal reuse
vector associated with the reference. In order to prevent these large strides, the
innermost loop should scan data along this vector to maximize temporal reuse.
Conversely, the further out (in the nesting order) the reuse loop, the larger the
strides occurring while incrementing its index are, and the larger the reused data
sequences are. Hence, minimizing stride sizes consists in scanning data in the reuse
direction with the most inner possible loop, where temporal reuse will occur on the
smallest possible data sequence. Notice that the most favourable case corresponds
to the classical temporal optimization where the reused data sequence is reduced to
one unique data. All these facts culminate in the general concept of data sequence
localization.
Several references in a loop nest have to be simultaneously considered with

several temporal reuse directions. As presented in Section 4, if there exist reuse
directions that are common to several references, the best solutions are char-

precise data locality optimization of nested loops 71

Figure 11. Number of occurring strides of any size for each loop nest and reference.

acterized by innermost loops scanning along these directions. The largest data
sets are more likely to induce large strides resulting in the most cache and TLB
misses. Hence, the best solutions are such that the different reuse directions are
associated with loops ordered from the innermost to the outermost loop, following
the descending size of the associated sets of accessed data #Datai. Our temporal
optimization algorithm presented in Section 4 is based on these observations.
For any given reference i and its associated iteration space Di, the size of its data

set #Datai is given by the Ehrhart polynomial of the affine transformation Ri of
Di, where Ri is the reference matrix [8].
Finally, stride-one access is obtained as often as possible by computing new data

layouts as presented in Section 5. In the above example, this approach would have
lead to the fourth nest which is the best solution.
The general algorithm can be presented as follows:

1. For all l loop nests Li, compute the cost functions as presented at the beginning
of this section: C�Li� =

∑r
i=1 #Di.

2. Order them from the most to the least costly nest, that is, L1� L2� � � � such that
C�L1� ≥ C�L2� ≥ · · · ≥ C�Ll�.

3. For i = 1 to l do
3a. For all references j occurring in Li, compute the sizes of the data sets #Dataj .
3b. Temporally optimize Li using the algorithm of Section 4.

72 loechner et al.

3c. For each reference accessing arrays that have already been accessed by some
references occurring in costlier nests, propagate the data layouts as presented
in subsection 5.4.

3d. For all remaining references, compute new data layouts for the accessed data
in order to minimize stride sizes.

7. Consequences on parallel optimizations

Although our method is devoted to improving savings in cache and TLB miss rates,
it also has an important impact on processor locality: when a processor brings a
data page into its local memory, it will reuse it as much as possible due to our
temporal and spatial optimizations. This yields significant reductions in page faults
and hence in network traffic.
We can also say, as mentioned by Kandemir et al. in [12], that optimized pro-

grams do not need explicit data placement techniques on shared memory NUMA
architectures: when a processor uses a data page frequently, the page is either repli-
cated onto that processor’s memory or migrated into it. In either cases, most of the
remaining accesses will be local.
Unlike other methods, our data layout transformations also prevent processors

from bringing pages containing useless data that could have been accessed by other
processors. This is due to the fact that only active data are considered in our
optimizations.
Temporal optimizations presented in Section 4 often generate outer loops that

carry no reuse and no data dependences. Hence, these outer loops are perfect
candidates for parallelization since they do not share any data.
All these facts allow the generation of data-parallel code with significant savings

in interprocessor communication.
Our splitting process presented in subsections 5.3 and 5.4 allows us to extract

more and different kinds of parallelism, that is, control parallelism, from a pro-
gram. Consider two successive loops nests, L1 and L2, that share the same array in
an initial sequential program, where the first nest reads some array elements and
the second nest writes some other array elements. If the second nest accesses a sig-
nificative set of array elements that are not accessed by the first nest, it is split into
two loop nests L21 and L22 such that L22 accesses elements that are not accessed
by the other nests. This latter nest L22 can then be computed in parallel with L1
since it does not share any of the same array elements.

Example 10 Consider the following two loop nests:

!$ Nest L1
do i = 1, N

do j = 1, N
Y = Y+A(j,i)

enddo
enddo

precise data locality optimization of nested loops 73

!$ Nest L2
do i = 1, N

do j = 1, N
A(i+j, i) = B(i)+C(j)

enddo
enddo

The updating of some array elements A�i + j� i� in L2 prevents the paralleliza-
tion of both nests L1 and L2. We compute the set of iterations in L2 for which
the data accessed by A�i + j� i� are also accessed by A�j� i� in L1: let T1�i� j� =
�j� i�� T2�i� j� = �i + j� i� and D1 = D2 = ��i� j� ∈ �2�1 ≤ i ≤ N� 1 ≤ j ≤ N�� S12 =
T−12 �T1�D1�� ∩ D2 = ��i� j� ∈ �2�1 ≤ i ≤ N� 1 ≤ j ≤ N − i�. Hence, iterations of
L2 defined by D2 − S12 access elements that are not accessed by L1. We split L2
into two loop nests: L21 scanning S12 and L22 scanning D2 − S12. The final parallel
program simultaneously computes L1 and L22. When computation of L1 has been
completed, computation of L21 can start.

!$ PARALLEL REGION

!$ PARALLEL SECTION
!$ Nest L1
!$ PARALLEL DO
do i = 1, N

do j = 1, N
Y = Y+A(j,i)

enddo
enddo
!$ END PARALLEL DO
!$ Nest L21
!$ PARALLEL DO
do i = 1, N

do j = 1, N-i
A(i+j, i) = B(i)+C(j)

enddo
enddo
!$ END PARALLEL DO
!$ END PARALLEL SECTION

!$ PARALLEL SECTION
!$ Nest L22
!$ PARALLEL DO
do i = 1, N

do j = N-i+1, N
A(i+j,i) = B(i)+C(j)

enddo
enddo
!$ END PARALLEL DO

74 loechner et al.

!$ END PARALLEL SECTION

!$ END PARALLEL REGION

8. Conclusion

All the geometric and arithmetic tools used by our method are implemented in
the polyhedral library PolyLib.5 Some parts of our precise data locality optimization
process have already been implemented, but some important program developments
are still necessary. This paper shows that significant performance improvements
can be obtained in programs, even if traditional optimizations have already been
applied.
Systematically applying such precise optimizations can be seen as being too expen-

sive a process for a general purpose compiler. However, several responses can be
given to justify these optimizations:

— the continuously growing power of today’s processors allows one to consider the
feasibility of more complex compilers, since the associated computation times
become more and more acceptable;

— the significant improvements brought by such precise optimizations can reduce
computation times by several months for some essential and very complex prob-
lems that are considered nowadays, and whose computations are taking several
years;

— in order to take full advantage of future processoring potential, compilers will
need to generate executable codes explicitly stating the best way for compu-
tations to be performed (memory behaviour, instruction level parallelism, � � �).
This can only be obtained from a precise analysis of the program source;

— code generation for embedded processors requires longer analysis and compiling
times. Optimized memory usage and computational efficiency are required for
applications for several reasons: slower and less expensive processors are often
used, memory significantly contributes to system cost, and power consumption
must be minimized as more and more functionality is embedded.

Some further improvements can be expected by considering architectural parame-
ters characterizing the target architecture: cache size, cache associativity, cache line
size, TLB reach, etc. In addition to data locality optimization, some other impor-
tant issues related to efficient memory use can be considered, such as array padding
and cache set conflicts. We are currently investigating these ideas.

Acknowledgment

We are grateful to Doran K. Wilde for his helpful remarks and corrections on an early version of this
paper.

precise data locality optimization of nested loops 75

Notes

1. In the homogeneous space including the index variables, the parameters, and the constant, of dimen-
sion �d + q + 1�. This is very useful in the later computations since only one matrix is needed to
operate on variables as well as parameters and the constant.

2. Preimage is the inverse function of image. It is implemented in the PolyLib.
3. This is not the way temporal reuse is detected in our technique (see Section 4).
4. This is not a restriction in the scope of the paper. This situation characterizes the results of splitting

loops in our algorithm presented in the following.
5. The PolyLib is freely available at http://icps.u-strasbg.fr/Polylib.

References

1. A. Aho, R. Sethi, and J. Ullman. Compilers: Principles, Techniques and Tools. Addison Wesley,
Reading, Mass., 1987.

2. J. M. Anderson, S. P. Amarasinghe, and M. S. Lam. Data and computation transformations for
multiprocessors. In A. Press, ed., Proceedings, Principles and Practice of Parallel Programming, 1995.

3. U. Banerjee. Unimodular transformations of double loops. In Advances in Languages and Compilers
for Parallel Processing, 1991.

4. U. Banerjee. Loop Transformations for Restructuring Compilers—The Foundations. Kluwer Academic
Publishers, Norwell, Mass., 1993.

5. S. Chatterjee, V. V. Jain, A. R. Lebeck, and S. Mundhra. Nonlinear array layouts for hierarchical
memory systems. In Proceedings of the ACM International Conference on Supercomputing, Rhodes,
Greece, 1999.

6. M. Cierniak and W. Li. Unifying data and control transformations for distributed shared-memory
machines. In Proceedings Programming Language Design and Implementation, 1995.

7. P. Clauss. Counting solutions to linear and nonlinear constraints through Ehrhart polynomials: appli-
cations to analyze and transform scientific programs. In 10th ACM International Conference on Super-
computing, Philadelphia, 1996.

8. P. Clauss. Handling memory cache policy with integer points countings. In Euro-Par’97, Passau,
pp. 285–293, 1997.

9. P. Clauss and V. Loechner. Parametric analysis of polyhedral iteration spaces. Journal of VLSI Signal
Processing, 19: 179–194, 1998.

10. P. Feautrier. Automatic parallelization in the polytope model. In G. -R. Perrin and A. Darte, eds.
The Data Parallel Programming Model, Vol. 1132 of Lecture Notes in Computer Science, pp. 79–100.
Springer-Verlag, Berlin, 1996.

11. Y.-J. Ju. and H. Dietz. Reduction of cache coherence overhead by compiler data layout and loop
transformations. In Proceedings of the 4th International Workshop on Languages and Compilers for
Parallel Computing, 1992.

12. M. Kandemir, A. Choudhary, J. Ramanujam, and P. Banerjee. A matrix-based approach to global
locality optimization. Journal of Parallel and Distributed Computing, 58: 190–235, 1999.

13. M. Lam, E. Rothberg, and M. Wolf. The cache performance of blocked algorithms. In International
Conference on ASPLOS, 1991.

14. S.-T. Leung and J. Zahorjan. Optimizing data locality by array restructuring. Technical Report 95-
09-01, University of Washington, Department of Computer Science and Engineering, 1995.

15. W. Li. Compiling for NUMA parallel machines. Ph.D. thesis, Department of Computer Science,
Cornell University, Ithaca, NY, 1993.

16. V. Loechner and D. K. Wilde. Parameterized polyhedra and their Vertices. International Journal of
Parallel Programming, 25: 525–549, 1997.

17. M. O’Boyle and P. Knijnenburg. Nonsingular data transformations: definition, validity, and applica-
tions. International Journal of Parallel Programming, 27: 131–159, 1999.

18. F. Quilleré, S. Rajopadhye, and D. Wilde. Generation of efficient nested loops from polyhedra.
International Journal of Parallel Programming, 28: 469–498, 2000.

76 loechner et al.

19. J. M. Rabaey and M. Pedram. Low Power Design Methodologies. Kluwer Academic Publishers,
Norwell, Mass., 1995.

20. A. Schrijver. Theory of Linear and Integer Programming. John Wiley and Sons, New York, 1986.
21. M. R. Swanson, L. Stoller, and J. Carter. Increasing TLB reach using superpages backed by shadow

memory. In Proceedings of the 25th Annual International Symposium on Computer Architecture,
pp. 204–213, 1998.

22. D. Wilde. A library for doing polyhedral operations. Master’s thesis, Oregon State University,
Corvallis, 1993.

23. M. Wolf and M. Lam. A data locality optimizing algorithm. In Proceedings of ACM SIGPLAN 91
Conference Programming Language Design and Implementation, Toronto, Ont., pp. 30–44, 1991.

24. M. Wolfe. More iteration space tiling. In Proceedings of Supercomputing’89, pp. 655–664, 1989.
25. M. Wolfe. High Performance Compilers for Parallel Computing. Addison Wesley, Reading, Mass.,

1996.

