Parallel Seismic Ray Tracing in a Global
Farth Model

Marc Grunberg®, Stéphane Genaud! and Catherine Mongenet?

*marc.grunberg@eost.u-strasbg.fr, tel (+33) 390240033 / fax : (+33)390240101
EOST, 5 rue R. Descartes, F-67084 Strasbourg
tgenaud@icps.u-strasbg.fr, tel (+33)390244542 / fax : (+33) 390244547
‘mongenet@icps.u-strasbg.fr, tel (+33)390244536 / fax : (+33) 390244547
LSITT-ICPS, Bd S. Brant, F-67400 Illkirch

Abstract— A major research topic in geo-
physics deals with the modelization of the
Earth interior, and seismic tomography is
a mean to improve knowledge in this field.
In order to improve the accuracy of ex-
isting methods however, huge quantities
of information must be computed. We
present in this paper the design of a soft-
ware program implementing a fast seismic
ray-tracing in a Earth mesh. We show
that massively parallel computational re-
source may be used to process huge quan-
tity of data.

Keywords— Parallel MPI application,
geophysics, tomography, ray-tracing, mesh.

I. Introduction

One of the main domains in geophysics con-
cerns seismic tomography. Its objective is to
build a global seismic velocity model. In such
a model any point in the Earth interior (defined
by its latitude, longitude and depth) is charac-
terized by its velocities (V,, V;) which give in-
formation about the physical rock properties at
that point.

In order to build such a model we use seis-
mic events information recorded in databases by
international organizations such as ISC (Inter-
national Seismic Center). Seismic events are
recorded by networks of stations (or seismic cap-
tors) located all around the world. After such
event, the seismogram data are analyzed in or-
der to localize the earthquake hypocenter. Each
database record corresponds to one event and
lists all the waves arrival times at the differ-
ent stations. These databases contain a huge
amount of information: for instance, the ISC
catalog contains several millions of such arrival
times.

A seismic wave is modelized by a set of rays.
Each ray represents the wavefront propagation
from the hypocenter (source) to one station.

The final objective of the seismic tomography
process is to build an accurate velocity model
from an initial one, given ray travel times com-
putations. The first step is therefore to trace
these seismic ray paths using information ex-
tracted from the databases and then to compute
their travel times. These computed times are
then compared with the measured ones (from
the databases). In the second step, the initial
velocities model is refined in order to get a bet-
ter fit between the computed and the measured
travel times.

The ray tracing algorithm is an iterative pro-
cess that builds the ray path step by step us-
ing linear segment increments. Thus the ray
path is a set of discretized points with appro-
priate information (incidence angle, phase). In
a global Earth model a ray path is usually dis-
cretized using several hundred to several thou-
sands points depending on the ray length and
its nature. Since the ISC database contains mil-
lions of such rays and because of these discretiza-
tions, we have to compute billions of information
items. Therefore parallel computation is highly
required.

The final objective of our project is to build
an adaptive mesh of the Earth given a set of seis-
mic rays. The size of a cell in the mesh will be
adapted depending on the "illumination" qual-
ity, that is a region with few crossing rays will
be modelized with large cells whereas a region
sampled by many rays in various directions will
yield small cells.

In this paper we only focus on ray-tracing
and propose an efficient solution to implement
this problem on parallel systems. Section IT ex-
plains the requirements of the ray tracing pro-
cess, while section III shows how parallelization
of the computation can be implemented. Exper-
imental results as well as comparisons to related

work are given in section IV, concluding remarks
and future work are discussed in the last section.

II. The seismic ray tracing process

The ray path modelization represents seismic
wave front propagation from one source (seis-
mic hypocenter) to one receiver (station). Each
time a ray reaches an interface (lower mantle-
outer core, outer core-inner core, ...) it can
be either transmitted or reflected. Moreover its
phase can change from P-phase to S-phase (con-
verted phases) and vice-versa. A P wave is a
compression wave while a S one is a shear wave.

The seismograms recorded at stations are an-
alyzed to pick the different arrival times of the
waves and to identify the corresponding ray by
a precise label (or signature) such as P, S, PcP,
PKP,SKS , etc. (see table I).

= receiver

Fig. 1. Visualization of 27 seismic ray paths.
Each ray path is computed given an initial an-
gular incidence iy and ray signature from ta-
ble I (diffracted rays Pdif and Sdiff were not
computed). Blue paths symbolize compression
waves, while the red ones are shear waves.

The Earth velocity model retained as the ini-
tial one is based on eleven layers given by the
1D TASPEI91 model [1] which depends only on
the depth. The ray-tracing algorithm is based
on the Snell-Descartes law in a spherical geom-
etry and describes the variation of seismic wave
velocities: o
sin(4) 1)
v(r)
where p is the ray parameter which is constant
on any point of the ray, v(r) is the wave propa-

p=r.

gation velocity at depth r and i is the incidence
angle of the ray at depth r (figure 2).

Earth surface

Fig. 2. Each ray point P is defined by its depth
r, angular incidence i, and § (PyOP). First
point Py (source) is defined by (rg, g, 6p = 0).
O is the Earth center.

The ray path computation relies on the initial
incidence angle (ig, given by TASP library), and
on the ray signature which is used to guide the
ray-tracing process. It does not depend on the
azimuth. The ray is therefore two-dimensional
in a plane defined by the source, the receiver and
the Earth center. The ray path computation
is done in this plane and then three successive
rotations are applied to set the rays in the 3D
space.

The 2D ray path computation is done us-
ing an iterative method which propagates the
ray segment by segment using either elementary
equal-length segments or equal-angle segments
depending on the incidence angle. When the in-
cidence angle is close to 90° the algorithm based
on equation (1) switches from equal-length seg-
ments to equal-angle ones. During this process
when a segment reaches an interface, the in-

Table I
29 seismic signatures given by IASP library for an
angular distance (source,receiver) of 130°, and 0 km
source depth.

Pdift PKPdf PKiKP
PP SK Pbc PKSbc
SKPab PKSab PKSdf
SK Pdf SKiKP SKSac
SKSdf | SKKSac | PKKPdf
Sdiff PS SP
PKKSbc | SKKPbc | PKKSdf
SKKPdf | SKKSac | SKKSdf
P'P'qdf SS S'S'ac
S'S’ac S'S'df

formation extracted from the ray signature is
used to guide the ray: it can be transmitted or
reflected, or changes the nature of the seismic
phase (see figure 1).

Since our final goal is to build an adaptive
mesh, the ray-tracing process not only computes
the discretized rays paths and travel times, but
also stores all the required information associ-
ated with a ray in the cells of an initial regular
mesh. The cell geometry of this mesh results
from a decomposition of the sphere into regular
angular sectors from the center to the surface.
Each sector is decomposed into a given number
of layers (in table IV, there are 8 layers). Each
elementary volume thus obtained defines a cell
which can be approximated by an hexahedron.
This information will be used in a second step
to refine the mesh by merging cells whose "illu-
mination" is not good enough. The mesh adap-
tation is realized by cells merging and hence the
mesh data structure must manage neighborhood
information through a set of links in all six di-
rections. The ray information is mainly com-
posed by the length of the ray in the cell, the
coordinates of its first and last point in the cell
and its incidence angle. Moreover other infor-
mations are computed on each cell to guide the
mesh adaptation such as the ray density (i.e. the
number of rays crossing the cell with respect to
the cell size), the average ray length, the num-
ber of ray hits by cell face, and the cell fill rate,
which measures the quality of the spatial repar-
tition of rays in the cell.

I11. Parallelization
A. Parallelization strategy

The difficulty of parallelizing the application
lies in keeping information related to both rays
and mesh in each processor local memory.

One possibility is to make each processor own
a distinct part of the mesh based on a geo-
graphic decomposition (for example we could at-
tribute the two hemispheres to two processors).
Each ray would then be traced by the processor
owning the geographic area the ray is traveling
through.

The pitfall of this approach is two-fold: first,
the ray tracing computations would be largely
unbalanced as the captors are (geographically)
dispatched in a disparate manner at the globe
surface (oceans have very few captors for exam-
ple) and hence some processors would see very

few rays passing in their zone. Secondly, inter-
processors communications would have to take
place every time the ray tracing pass from one
zone to another. Furthermore, increasing the
processors number would also increase the com-
munications number and lead to catastrophic
performances.

Our strategy of parallelization is based on the
replication of the mesh information on each pro-
cessor. To overcome memory constraints due to
such a replication, we only compute some mini-
mal mesh information on each processor, ignor-
ing the links between cells and allocating mem-
ory for cells only when needed. In the examples
treated in section IV we thus spare 13.5 Mbytes
of such administrative information. For a global
Earth mesh it would be larger than 200 Mbytes.

Each processor receives from the master pro-
cess a description of the mesh (such as the de-
scription presented in table IV) covering the
area under investigation and a set of rays to
trace. Each process then starts to compute the
rays of its set in turn. At the beginning of each
ray segment, the process tests if the ray path
has entered a new mesh cell and tests to which
cell the segment endpoint belongs to. If the ray
is the first to enter the cell, memory is allocated
for this cell in order to store information related
to the ray traversal, otherwise the cell existing
data is updated with information brought by the
ray.

B. Implementation

It is important to us that the design and
the implementation of the code be modular and
portable. It is modular as each functionnality is
written as a library: the mesh feeding uses the li-
brary that implements the ray-tracing algorithm
based on the Snell-Descartes law, which in turns
uses a library implementing the TASP91 model
and another one that provides phases parsing
(to guide the ray-tracing process). Thus, other
ray-tracing algorithms could be easily plugged
in the application in the future.

Concerning portability, the code is written in
C and contains Fortran routines borrowed from
Kennett [1]. The library used to parallelize the
code is MPI [2] (note however that the build of
a sequential or parallel version can be chosen at
compile time). All these technical choices come
from portability requirements since the applica-
tion must build and run on any Unix System:
we discuss in section V our future work plans
whose objective is to make the application run

on a computational grid [3], where portability
requirements are strong. Currently, the applica-
tion runs on Linux (various distributions), IRIX,
SunOS and HPUX systems. Our application
also generates VTK [4] files to visualize the re-
sults.

IV. Experimental results

We carried out two experiments to validate
the scalability of our application. In the first
experiment, concerning the study of a regional
area (the Euro-Mediterranean area), we have
used the data set from Granet and Trampert
[5] of about 17000 rays with a P signature,
which reduces to 10751 rays after removing
those which get out the geographic boundaries
of the studied area described in table IV. We
also restricted our benchmark to P-type rays to
be able to compare our results to other experi-
ments described in the literature.

In the second experiment, we traced all the
seismic events of year 1999, as recorded in the
world-wide ISC databases. The data sets is com-
posed of about 827000 rays, of which 325749 can
be traced.

For the two experiments, we completed the
ray-tracing process with a phase feeding an ap-
propriate mesh to store the various information
elements described in the end of section II, called
the mesh update process. We first describe the
behavior of the two experiments concerning the
ray-tracing process only (section IV-A), and we
compare afterwards the behavior of the mesh
information computation in both cases (section
IV-B).

A. Ray-tracing speed

In the following, we try to assess and compare
to related experiments two metrics:

— the number of rays computed by our ray-
tracing algorithm in a given time, called the ray-
tracing speed,

— and the number of rays treated after having
extracted and put their information in the light
mesh structure.

Table IT and III presents the ray-tracing speed
obtained on an SGI Origin 3800 parallel com-
puter with 500 MHz Mips R14K processors. We
have chosen a 2 km long discretization step all
along the ray-tracing to get a very good pre-
cision. Column np indicates the number of
processors involved. All times are in seconds,

min and maz refer to the shortest and longer
(resp.) computation times observed on the dif-
ferent processors. These times measure both the
data transmission and ray computation (I/O op-
erations are excluded from the measurements).
The absolute speed speed, is the number of rays
computed divided by max, while the relative
speed is speed, = speed,/np. Column e indi-
cates the efficiency of the parallel runs depend-
ing on np. All times are average times based on
measures from two to four runs.

A.1 Regional area

In the first experiment, the table shows that
we achieved a ray-tracing speed of 3821 rays.s !
on 64 processors. Using only one processor, the
ray-tracing speed is about 168 rays.s™!. We

Table IT
Ray-tracing speed of 10751 P-type rays, with a 2 kms

ray discretization in a regional mesh.

np min max speed, | speed, e
1 65.36 | 65.36 164.49 164.49 | 100%
2 33.16 | 33.18 324.07 162.03 98%
8 8.25 8.67 | 1240.50 | 155.06 | 94%
16 4.27 4.79 | 2245.64 | 140.35 | 85%
32 2.36 3.11 | 3462.48 108.20 66%
64 1.75 2.81 | 3821.45 59.71 36%

can compare this result to the ray-tracing algo-
rithm of Bijwaard and Spakman [6] whose speed
is claimed to be 15 rays.s™! on a Mips R8SK.
Other recent results with a ray-tracing method
based on minimization of travel times come from
Cores et al. [7] who obtain a maximum speed of
about 12.5 rays.s~! on a Sparc-Ultra 1. How-
ever, they only tested their algorithm on small
data sets. Sambridge and Gudmunsson [8] ob-
tained a ray-trace speed at about 12.5 rays.s !
on a Sun Sparcstation 10/40.

Obviously, these speeds would be much faster
on a MIPS R14K processor. However notice that
it is difficult to compare these results more pre-
cisely because the algorithms are differents and
mainly because we select a 2 kms step whereas
Bijwaard and Spakman [6] used a step varying
from 10 kms to 5 kms depending on depth.

In terms of speed-up, we can see from results
in table II that the algorithm is scalable up to
16 processors (Bijwaard and Spakman [6] used a
maximum of 3 processors for the computation,
hence we cannot compare this aspect). Our par-
allel algorithm shows an efficiency of 85% and
65% with 16 and 32 processors respectively, and
decreases dramatically to 36% with 64 proces-
sors.

We must also note that the processor load im-
balance (let us define it by (maz — min)/max)
is correlated with the efficiency. It stays accept-
able up to 16 processors (about 10%) but grows
up to 37% with 64 processors.

This behavior can be explained by the rela-
tively small size of the data set: with 64 proces-
sors, each processor only has 168 rays to com-
pute. In this case, the overhead due to data
transmission and the imbalance in ray length
distribution to processors becomes predominant.
The experiment at the Earth scale with many
more rays, described in the following paragraph,
confirms this explanation.

A.2 Global area

The second experiment deals with the compu-
tation of rays issued from seismic events which
occured during the year 1999. Unlike the Euro-
Mediterranean experiment, we have a very large
set of ray signatures as we treat rays with P,
S, Pn, Pg, pP, PKP, PcP, pPKP, ScP, etc,
signatures. Table III gives the ray-tracing speed
for more than 3.10° rays (about 30 times more
than in the previous experiment).

Table III
Ray-tracing speed of 325749 rays (large set of ray
signature), with a 2 kms ray discretization in a global

mesh.
np min max speedq | speedr e
2 960.70 | 1158.58 281.14 | 140.56 | 97%
8 244.99 308.43 | 1056.15 | 132.01 | 81%
16 132.47 171.02 1904.74 119.04 | 73%
32 86.32 108.63 | 2998.70 93.70 | 57%
64 49.90 69.35 | 4697.17 73.39 | 45%

The overall ray-tracing speed is a bit slower in
this experiment, excepted for 64 processors. It
is not suprising as the dataset contains rays with
higher lengths, like PK P rays, which take more
time to compute. However, we can notice that
the efficiency decreases less quickly: from 57% to
45% with 32 and 64 processors, correlated with
a load imbalance that stays more stable in this
experiment, between 20% and 28% on 8 and 64
processors respectively. This can be explained
by the fact that each processor receives a bigger
set of rays (more than 5000 rays per processor
for 64 processors) and hence, the data transmis-
sion overhead is not significant as compared to
the computation time of rays.

B. Ray-tracing in a mesh

B.1 Regional area

For the regional area study, we now focus on
the ray-tracing performed in a 8-layers mesh de-
scribed by the configuration file of table IV,
containing 196992 cells, all cells being 0.5°x
0.5°wide in longitude and latitude. The stud-
ied area is the same as the one in the study
of Granet and Trampert [5] excepted that our
cell size is six times thinner in both longitude
and latitude. The objective here is not to en-
hance the resolution (which would make little
sense from a geophysical point of view due to
the source/receiver configuration) but rather to
test our application with a big enough number
of cells.

Table IV
The mesh description of the regional
Euro-Mediterranean area

<?7xml version="1.0"7>

<mesh

lat-unit-size="0.5" lon-unit-size="0.5"
lat-min="30" lat-max="87"
lon-min="-42" lon-max="66">

<layer name="11" zstart="0" zend="40" />
<layer name="12" zstart="40" zend="100" />
<layer name="13" zstart="100" zend="250" />
<layer name="14" zstart="250" zend="400" />
<layer name="15" zstart="400" =zend="650" />
<layer name="16" zstart="650" zend="900" />
<layer name="17" zstart="900" zend="1200" />

<layer name="18" zstart="1200" zend="1500" />

</mesh>

Each processor manages its own ray data set.
In the first step it computes the ray paths us-
ing the iterative discretization process described
above. In the second step it scans the discretized
points and updates cell information in the mesh
as explained in section II. Figure 3 and 4 show
the visual results of the whole process. Table V
presents performance results on the same data
set and in the same format as table II. The
extra-columns ray and mesh express the rel-
ative durations of the ray-tracing process and
mesh update with rays computed data respec-
tively. The results show that the mesh update
takes roughly as long as the ray-tracing process.
This ratio decreases as the number of processors
involved increases since each processor has less
rays to trace and hence, less information has to
be added to cells.

B.2 Global area (with an Earth mesh)

The biggest run concern the ray-tracing of the
data set for the whole year 1999 in a global Earth

Table V

Ray-tracing speed with mesh cells information
computation (10751 P rays)

np min max speed, | speed, ray | mesh|
2 77.19 | 77.32 139.05 | 69.52 | 43% | 57%
8 18.66 | 19.62 547.96 | 68.50 | 44% | 56%
16 9.40 | 10.22 | 1052.47 | 65.78 | 47% | 53%
32 4.5 5.69 | 1889.46 | 59.05 | 51% | 49%
64 2.34 4.12 | 2609.47 | 40.77 | 68% | 32%

Fig. 3. VTK image of 2500 rays in a mesh of
the Euro-Mediterranean area.

mesh. The mesh used here (described in table
VI) is made of 11 layers, and all its cells are 1°x
1° wide so that there are a total of 712800 cells
in the mesh. Note that, though we use cells of
identical size, the cells could be of arbitrary sizes
in latitude and longitude in a given layer.

Table VI

The mesh description of the global area

<?7xml version="1.0"7>

<mesh

lat-unit-size="1" lon-unit-size="1"
lat-min="-90" lat-max="90"
lon-min="0" lon-max="360">

<layer name="10" zstart="0" zend="20" />
<layer name="1l1" zstart="20" zend="35" />
<layer name="12" zstart="35" zend="120" />

zstart="120"
zstart="210"

zend="210" />
zend="410" />

<layer name="13"
<layer name="14"

<layer name="15" zstart="410" =zend="660" />
<layer name="16" zstart="660" zend="760" />
<layer name="17" zstart="760" zend="2740" />

zstart="2740" zend="2889" />
zstart="2889" zend="5153" />
zstart="5153" zend="6371" />

<layer name="18"
<layer name="19"
<layer name="110"
</mesh>

The performance results are presented in ta-
ble VII. The performance is not affected by the
big amount of memory needed. The number of
rays computed per second appears to be still ac-
ceptable and, though the mesh has many more

Fig. 4. Slice of the of the Euro-Mediterranean
mesh (layer 5) after cells information update:
the upper figure represents the ray density and
lower one shows the cell fill rate. The color scale
goes from blue for poorly informative cells, to
red for highly exposed cells.

cells, the ratio of the mesh update duration as
compared to the ray-tracing process stays com-
parable to what was observed with the regional
area mesh.

Table VII

Ray-tracing speed with mesh cells information
computation (325749 rays, various signature)

np min max speed, | speed ray | mesh|
8 434.93 | 633.68 514.06 | 64.25 | 48% | 52%
16| 213.15 | 332.66 977.96 | 61.12 | 51% | 49%
32| 115.32 | 186.04 | 1748.14 | 54.62 | 58% | 42%
64| 68.39 | 114.88 | 2830.26 | 44.22 | 60% | 40%

The overall results exhibited in this last ex-
periment are quite satisfactory: the information
that can be extracted from the seismic events of
a whole year have been structured into a geo-
graphical mesh in less than 2 minutes. This can
not be done on standard computing equipement,
mainly because of RAM requirements: our at-
tempts to run this experiment on a PC equipped

with 2 GBytes rapidly failed because of memory
exhaustion.

V. Conclusion

We have described in this paper the design
and the performances of the core part of a
seismic tomography tool under developement.
This work is the preliminary step of an on-
going project whose aim is to build an adap-
tive mesh to modelize the Earth interior. We
put forward the parallel design of the program,
since the huge quantity of data to be computed
will require massively parallel computations. At
this step of the project, we have evaluated and
compared the performances obtained to related
work.

The results and the good scalability show that
the extension to a wider set of data, that is mil-
lions of rays traced in a full Earth mesh are
reachable. The use of massively parallel compu-
tational resources will be in this case unavoid-
able. This is the reason the project is part of
a larger initiative called TAG! whose objectives
are to port scientific applications on the grid [3]
and to develop tools for efficient execution of
programs in this framework.

Acknowledgements

All experiments have been carried out on the
SGI Origin 3800 with 512 processors of the
CINES (http://wuw.cines.fr). We want to
thank them for letting us access to their com-
putational resources. We are grateful to Michel
Granet who provided valuable comments, and to
the RENASS, the French National Seismic Net-
work (http://renass.u-strasbg.fr) for pro-
viding ISC data.

References

[1] Brian L.N. Kennett, “laspei 1991 seismological
tables,” Research School of Earth Sciences Aus-
tralian National University, 1991.

[2] Message Passing Interface Forum, MPI : A
message-passing Interface Standard, June 1995.

[3] Ian Foster and Carl Kesselman, The Grid,
Blueprint for a New Computing Infrastructure,
Morgan Kaufmann Publishers, Inc., 1998.

!TAG stands for Transformations and Adapta-
tions for the Grid, http://grid.u-strasbg.fr

[4] Will Schroeder, Ken Martin, and Bill Lorensen,
The Visualization Toolkit, An Object-Oriented
Approach To 3D Graphics, Prentice Hall, De-
cember 1997.

[5] Michel Granet and Jeannot Trampert,
“Large-scale p-velocity structures in the
euro-mediterranean area,” Geophys. J. Int., vol.
99, pp. 583-594, 1989.

[6] Harmen Bijwaard and Wim Spakman, “Fast
kinematics ray tracing of first and later arriv-
ing global seismic phases,” Geophys. J. Int., vol.
139, pp. 359-369, 1999.

[7] Debora Cores, Glenn M. Fung, and Reinaldo J.
Michelena, “A fast and global two point low stor-
age optimization technique for tracing rays in
2D and 3D isotropic media,” Journal of Ap-
plied Geophysics, vol. 56, no. 45, pp. 273-287,
September 2000.

[8] Malcom Sambridge and Olafur Gudmundsson,
“Tomography systems of equations with irregu-
lar cells.,” J. of Geophys. Res., vol. 103, no. No.
B1, pp. 773-781, 1998.

