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Abstract

We developed a theory in order to address crucial questions of program design
methodology. In this article, we regard this theory and its model as a minimum
semantic domain for data parallel languages.

The introduction of a semantic domain is justified because the classical data
parallel languages (HPF and C*) have different intuitive semantics: indeed, they use
different concepts in order to express data locality. These concepts are alignment
in HPF and shape in C*. Consequently the two languages each defines their own
balance between compilers and programmers investments in order to reach efficiency.

We show that our theory is a minimum basis in which the concepts of alignment
and shape could join up.
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1 Introduction

Facilities in programming languages express virtual items (objects, functions,
operations, ... ) and serve as an intermediate toolbox, in one hand for the pro-
grammer to specify what he knows about the problem to be solved and, in the
other hand for the compiler to rely on the architecture on which the program
will executes. These facilities then connect two domains and determine the
knowledge the programmer and the compiler can share to interact eachother
in order to perform an efficient program.
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Such a point of view leads to define a programming theory, supported by a
relevant formalism, in which any program is a statement which can be trans-
formed either by the programmer or by the compiler. The formalism and the
features it expresses have to establish a fair equilibrium point between the pro-
grammer and the compiler investments in order to facilitate the collaboration
between them.

Such a theory is even more useful if the architecture is a parallel one since
programming paradigms, algorithm definitions and the share of architecture
resources are more complex than those in sequential programming.

Any parallel programming paradigm expresses a specific balance between the
programmer workload and the compiler one in order to reach program ef-
ficiency: at one end of the sprectrum is the message passing model, as in
PVM or MPI, which leaves the programmer in charge of the whole workload.
Whereas, on the other side, the compiler has the whole charge in automatic
parallelization.

Data parallelism is a candidate to express an intermediate level of abstraction
to be shared by the programmer and the compiler. In particular, a major
interest of the data parallelism paradigm is that it enables the programmer
to describe a parallel algorithm by choosing a well-known sequential one and
then focusing on the expression of ” parallel variables ” and data locality, while
the compiler can be left in charge of the distribution onto physical processors,
communications management, etc. In some sense, it reveals that the concepts
for expressing data locality are of main interest in parallel programming and
even may be viewed as the essence of parallelism in comparison with sequential
programming.

This paper deals with these questions and aims to introduce a new theory, in
particular because there exists different intuitive semantics for data parallelism
and data locality. Hence let us consider standard data parallel programming
languages such as HPF [6] or C* [10]: both allow data locality to be expressed
as a relationship between indices of arrays and indices of so-called virtual
processors, but these languages differ for expressing this relationship:

e In HPF, alignment between two arrays, by using the ALIGN directive, pro-
vides a way to inform the compiler that some data elements should reside
in the same virtual processor and then in the same physical one. By default
an array is not aligned with any other one, so that the compiler must guess
alone a best distribution onto physical processors.

e In C*, the shape concept is a way of configuring data: it is a kind of abstract
data type which is associated with every parallel variable by using a shape
declaration. Typically the corresponding elements of two arrays declared of
the same shape reside in the same virtual processor. This concept of data



type entails some restrictions on authorized expressions: for example, the
assignment of two variables assumes they have the same shape.

Thus features for data locality have different meanings in HPF or in C*. More-
over it is interesting to note that these concepts yield an unbalanced workload
for the programmer and for the compiler:

e in order to express a parallel program in C* from a sequential one, the
programmer has to provide some real effort. Then the compiler workload is
weaker,

e whereas in HPF the programmer may only consider the sequential code and
the main workload is left to the compiler which has in charge to find a best
data distribution from some alignment directives.

The question is then to define a data parallelism theory which introduces
features such that the programmer and the compiler can fairly collaborate.
In this article, we propose such a theory which could bridge the gap between
alignment and shape.

In order to carefully introduce the theory the paper is divided into the follow-
ing sections: the next section recalls the problem and illustrates it with a few
simple examples in HPF and C*. Section 3 introduces the theory with an infor-
mal meaning. Section 4 presents a sound model of our theory which provides
a formal framework for demonstrating properties of data parallel programs.
Section 5 is devoted to a case study just before conclusion.

2 Some examples

Here is some very simple examples of programs in C* or HPF.

2.1 Pascal summation on aligned arrays

REAL A(0:9,0:9),B(0:9,0:9)
'HPF$ ALIGN A(I,J) WITH B(I,J)

FORALL (I=1:9,J=1:9)
B(I,J) = A(I-1,)) + A(T,J-1)
END FORALL

This program in HPF obviously aligns matrices A and B and implicitely ex-
presses communications at execution time to execute the assignment. Here is



an equivalent program in C*, where A and B are declared of the same shape:

shape [10][10]matrix;
real: matrix A, B

where ((pc_coord(0)>0) && (pc_coord(1)>0))
B = [.-1][.]JA + [.J[.-1]4A;

Expressions of data distribution are very close on this example since facilities
exist in these two languages to express that some index in two arrays refers
to the same virtual processor.

We can conclude here that the balance between programmer and compiler
investments in these two programs is the same. Just an introductory example
then!

2.2 Summation of unaligned vectors

REAL A(0:7),B(0:7),C(0:7)
|HPF$ TEMPLATE X(0:14)
IHPF$ ALIGN A(I) WITH X(I+1)
'HPF$ ALIGN B(I) WITH X(2*I)

C=A+8B

where the template X is used for defining the alignment of variable A relatively
to variable B. The alignment of variable C is left in charge of the compiler.
This HPF program could be encoded as follows in C*:

shape [15]vector;
real: vector A,B,C;

where (pc_coord(0)<8)
C = [.+1]JA + [.*2]B;

where A, B and C are "reindexed” in the assignation in order to describe a re-
lationship between vector values and virtual processors which is equivalent to
this described by alignment directives in the HPF program. In C* then, com-
munications between virtual processors are expressed explicitly through the
assignation statement. Moreover the ”alignment” of C and the touched values
are defined by the programmer who has to define active virtual processors.

Then translating this simple example from HPF to C* first reveals some diffi-



culties the HPF compiler will ensure and those left in charge of the programmer
while writing the C* program.

2.8  Matriz product

Here is a program in HPF. Since its code is really inspired from a sequential
one, it illustrates a common way of HPF programming.

REAL A(0:7,0:7),B(0:7,0:7),C(0:7,0:7)
'HPF$ ALIGN A(I,*) WITH C(I,=*)
'HPF$ ALIGN B(*,J) WITH C(*,J)

DO K=0,7
FORALL (I=0:7,J=0:7)
Cc(1,J) = A(I,K)*B(K,J) + C(I,J)
END FORALL
END DO

The directives in this program advise the compiler to collapse all the elements
in row I of matrix A and all the elements in column J of matrix B, onto the same
virtual processor than C(I,J). This refers to a particular case of alignment,
called collapsing.

In this example, since the alignment is defined for every element of C, any row
I of A is replicated onto every virtual processor corresponding to an element
in row I of C. Similarly any column J of B is replicated onto every virtual
processor corresponding to an element in column J of C. Thus, this collapsing
implies a large amount of replication: if the compiler follows the directives no
communication will be performed. However that will of course entail a prob-
ably excessive memory space usage because of columns and rows replication,
unless a DISTRIBUTE directive is inserted and may reduce memory space on
the physical architecture. Therefore the usage of such directives can be very
tricky for the programmer since they have heavy consequences on the pro-
gram behaviour according to their interaction and the way the compiler will
implement them.

Without any further programmer’s help, it is very difficult for the compiler
to find a good trade-off between communications and memory space usage.
Hence doing this requires to analyze not only the alignment directives, but
also the scheduling of the summation of products by using commutativity and
associativity properties of addition.

The programmer can help the compiler a little more by inserting an INDEPEN-



DENT directive just before the DO loop in the program: this asserts that the
iterations of the loop could be executed in any order. Even if this directive is
added, a lot of workload remains for the compiler to produce a best distributed
code.

Now, let us study the way language C* can work on the matrix product exam-
ple and the balance between programmer and compiler workload it implies.

Collapsing does not exist in C* but the programmer is responsible for mem-
ory usage and communications which are explicit: the choice of shape for the
matrices induces a program behaviour. For example, in order to compute prod-
ucts locally, the matrices have to be embedded into a three-dimensional shape:
their elements can then be broadcasted onto adequate places and products can
be computed without any other communication. Another choice yields the fol-
lowing program, referred to as Cannon’s algorithm [7], where the matrices are
embedded into a two-dimensional shape:

shape [8,8]matrix;

real: matrix A, B, C
A
B

[.,(.+pc_coord(0))%%81A;
[(.+pc_coord(1))%%8,.1B;

for (k=0;k<8;k++)

{

A= [.,(.-1)%%8]A;
B = [(.-1)%%8,.1B;
C += AxB;

X

This program describes a memory-efficient version of the matrix product. Let
us briefly recall this algorithm: first, elements of A and B are re-arranged in
such a way that elements A(I, (I+J)%8) and B((I+J)%8,J) are placed on the
same virtual processor. This arrangement is achieved by shifting all elements
of A to the left, with wraparound, by I steps and similarly by shifting up all
elements of B, with wraparound, by J steps. Then, at every iteration, elements
of A (resp. B) are moved one step left (resp. up) so that products can be
performed locally.

Much work has been done by the programmer on this program and espe-
cially the proof of program correctness. Moreover a load balancing has been
performed so that the compiler can easily produce an efficient code.

This example clearly outlines different relationships between compiler and
programmer. The question is now: is a HPF programmer able to transform



the previous program in order to help the compiler to find out Cannon’s
algorithm? This would require that non-linear alignments are allowed in HPF
programs in order to express an initial arrangement of elements of matrices A
and B. Such a statement could be then re-written as:

REAL A(0:7,0:7),B(0:7,0:7),C(0:7,0:7)
'HPF$ ALIGN A(I,J) WITH C(I,MODULO(J-I,8))
'HPF$ ALIGN B(I,J) WITH C(MODULO(I-J,8),J)

DO K=0,7
FORALL (I=0:7,J=0:7)
Cc(1,J) = A(I,MODULO(I+J-K,8))*B(MODULO(I+J-K,8),J) + C(I,J)
END FORALL
END DO

where ALIGN pseudo-directives specify an initial arrangement of elements of
matrices A and B as in Cannon’s algorithm. Beyond syntactical differences in
languages such as C* and HPF, this example again shows a different balance
between the programmer and the compiler workload: non-linear alignments,
if allowed in HPF, should involve new compiling techniques [1], whereas the
difficulty is in writing the program in C*.

In the rest of the paper we introduce a theory which defines features such that
the programmer and the compiler can fairly collaborate to reach program
correctness and efficiency.

3 An introduction for the theory
3.1 Objects

The theory lies on a notion of objects called shaped data fields. A shaped data
field is mainly a container of values.

Containers without values are sometimes referred to as shapes (for example
refer to [5] in which B. Jay defines a very general and abstract notion of shape
via a categorical pullback). An original point of the theory we introduce here
consists in a particular notion of shape: we consider a shape composed by two
sets of points indeed, respectively called indices and locations, and by some
arrows between them.

Any point in a shape belongs to some ”geometrical space”, i.e., Z™. A location
expresses a place where at most one value can be placed. Each index of a shape



is connected to one or more locations and allows all the values, assumed to be
equal, which are placed at these locations to be accessed ”as a whole”. Con-
versely, every location is accessed by one index at most. Thus, every value of
a shaped data field has a location and is accessed via an index in the index set.
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Fig. 1. A shaped data field (left) and its shape (right). It contains four values: 1
twice and 3 twice. Each value has its own location in Z?: for example, an instance
of 1 is at location (0,0) while the other one is at location (1,0). Locations rely to
indices (0,0), (1,0) and (1,1) in Z% index (0,0) refers to two locations while every
other one rely only one own location. Note that index (0, 1) also relies one location
but no value is placed in it.

In the literature, indexed collections of values, detached from locations, are
generally called data fields (for example refer to Alpha [8] or Lisper formalism
[4]). It should be clear now that the theory we introduce defines a shaped data
field as such a data field associated with a shape. For example, the shaped data
field on Fig.1 associates a shape with the data field on Fig.2.
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Fig. 2. The associated data field

In the sequel, the index set of a shaped data field naturally refers to the data
field index set. Moreover when we talk about ”values” it stands for the values
within some shaped data field.

3.2 Operations

The theory defines three kinds of operations on shaped data fields:

e a change of basis redefines the relationship between indices and locations by
changing the indices while keeping the values and their locations unchanged.
It concerns both the shape and the data field of a shaped data field,



e a geometrical operation does not affect the shape but changes the indices of
the values on the data field: it possibly moves, deletes or duplicates some
values on locations.

Any change of basis or geometrical operation is determined from a func-
tion on indices of the resulting shaped data field to the indices of the given
one.

(a) Change of basis (b) Geometrical operation

Fig. 3. Operations on shaped data fields. The resulting shaped data field at the right
on figure 3(a) is defined by a change of basis applied to the shaped data field on
the left. The change of basis is defined from the function which associates point of
coordinate i in Z with any point (i, ) in the square [1..3] x [1..3] of Z2. The figure
3(b) illustrates a geometrical operation defined from the function which associates
point of coordinate (1,j) with any point (i,7) in the same square.

e a global operation applies the same operation on all values. Any classical
arithmetical or logical operation on values induces a global operation. In
particular, any binary operation on values defines a global operation which
combines two shaped data fields having the same shape.

3.3 A minimum notation set

Here we introduce a minimum notation set for expressing statements. A state-
ment is a finite set of equations which rely variables expressing shaped data
fields. A variable is noted by an uppercase letter (e.g., A, B, X, ...). The clas-
sical arithmetical or logical operations are overloaded with global operations
(e.g., A+ B).

In order to simplify the notations, change of basis and geometrical operations
on variables are denoted in an unified way as X.f where f is considered as
a pair (h, g) of partial functions: h defines the change of basis, g defines the
geometrical operation and f stands for applying first the change of basis and
then the geometrical operation on X.

This means that an operation which is really a change of basis is denoted as
X.f, where f = (h,g) and g is the identity and that an operation which is
really a geometrical one is denoted as X.f, where f = (h,g) and h is the
identity.



In order to denote partial functions we use the classical lambda-calculus no-
tation Az.e and f\p for the restriction of function f to domain D.

Example 1 The shaped data field resulting of the geometrical operation il-
lustrated on Fig.3(b), applied on a shaped data field, say A, is denoted as
A.spread, where spread denotes the pair (h,g): h is the identity on a domain
D and g is the partial function X(i,j).(1,5)\p, with D = {(i,7) | 1<i, j<3}.
Then if B denotes the resulting shaped data field we write the equation B =
A.spread.

Similarly shaped data fields, say A" and B', on Fig.3(a) satisfy the equa-
tion B' = A'.spread’, where spread’ is the pair composed by partial function
(i, 5).9\p and the identity on D.

3.4  Theory adequacy

In this section, we consider several examples which aim at illustrating the
adequacy of the theory just defined. The next section will provide a formal
model to prove the following assertions.

Example 2 FEzxpression of uniform dependencies.

Let us consider the dependencies B[i] = A[i+1], for any ¢ € [0..6]. In our theory
they can be expressed as:
B = A.shift (1)

where A and B are shaped data fields representing arrays A and B and shi ft
denotes any pair of functions (h, g) satisfying g o h = Ai.i+1\p with D = {7 |
0<i<6}.

For example, Fig.3.4 represents two shaped data fields A and B which satisfy
equation 1 for two different pairs (h, g) of functions:

e the left part (a) represents the case of a change of basis where A = A\i.i4+-1\p
and g is the identity on D,

e the right part (b) represent the case of a geometrical operation where g =
Ai.i+1\p and h is the identity on {7 | 0<i<T}.

In both cases, any value of B accessed by an index i € [0..6] is equal to the
value of A accessed by index i+1: the dependencies between arrays A and B
are then satisfied.

Nevertheless the two cases express different placements of values onto loca-
tions. In the first case there is no communication because the values B[i] and
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Fig. 4. Array B obtained by shifting array A

A[i+1] have the same location. The second case means that A and B have the
same shape: elements B[i] and A[i+1] forcefully have then different locations
and communications are required.

These examples could be written, in HPF for the case of change of basis or in
C* for the case of geometrical operation, as following:

REAL A(1:7),B(0:6) shape [8]vector;
'HPF$ ALIGN B(I) WITH A(I+1) real: vector A, B;
B(0:6) = A(1:7) B = [.+1]4;

Example 3 Summation of unaligned vectors.

Let us consider again the example 2.2: arrays A, B and C depend eachother
according to the relationship C[i] = A[i] + B[7], for any 7 € [0..7].

It is expressed as C = A + Bin HPF independently of the placement of values.
In our theory this could be expressed by the following statement:

where id; and ids) are pairs (hi, g1) and ((ha, g2)) of functions whose compo-
sition is equal to the identity on the domain [0..7]. These pairs of functions
express a particular placement of the arrays.

For instance, the placement of arrays in the HPF program could be expressed
by the following definitions® :

hi= g1t g1 = Mi+1yp

h,z = gg_l go = )\ZQXZ\D
with D = {i | 0<i<T7}, as depicted on Fig.5.

1 where f~! stands for the inverse of f, provided f is injective

11
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Fig. 5. Relative placements of arrays A, B and C

Previous examples have shown that the relationship between a statement in
our sense and a data parallel program is quite obvious since this theory defines
parallel variables, data locations, global operations and communications. Here
we confront the theory with a major semantic point in data parallel languages:
the semantics of indices in a variable.

In languages such as HPF the indices in a program refer to indices of arrays
without any reference to data location. Then, if a program expresses that
a value in some index depends on the value in another one, it may involve
any other relation between locations, which may imply or not some commu-
nication: we say that in such cases communications are hidden. Moreover the
association between indices and locations may not be one-to-one: an array
index can then address several locations. This is a particular, but powerful,
case of data alignments through directives.

In other data parallel languages such as C*, indices refer to virtual processors:
X[i] means the local value of X in the ith processor. The association between
indices and locations is then one-to-one and any dependence between a value
in some indice and a value in some other one involves a similar dependence be-
tween the two associated locations. Therefore, parallel variables are distributed
on the mesh and communications are made explicit.

Example 4 Matriz product.

Let us consider the computation of all products A[i, k] x B[k, j| for 1<i, j, k<n,
mapped on a three dimensional array P on a cube. Here is a statement for this
problem, by introducing geometrical operations:

P = A.spread, x B.spread,

where spread; = (h, g1) and spreads = (h, go) with

e h the identity on domain {(4,7) | 1<¢,j<n} U D
and D = {(4,4,k) | 1<i,j, k<n},

e functions g; and g, defined as g, = A(4, 5, k).(¢, k)\p
and go = (4,7, k).(k, j)\p-

12
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Fig. 6. Shaped data fields A and A.spread;

Shaped data fields A and A.spread; have the same shape: it maps indices of
both matrix and cube onto locations. Moreover, since two different indices
cannot be associated with the same location in a shape, an index of the cube
cannot be associated with the same location as an index of the matrix. Last,
the shape of these data fields may be a one-to-one correspondance between
indices and locations. These points are shown on Fig.6. This statement can
thus be interpreted in different intuitive semantics of data parallel languages,
for example in C*.

Let us consider now an other statement for the same problem by introducing
changes of basis substituted for geometrical operations:

P = A.spreads x B.spread,

where spreads = (hs, g) and spready, = (h4, g) with

e ¢ the identity on domain D,
e functions hy = ¢g; and hy = go.

--index sef

% Girare
/q locations /V/V/\7 locations

Fig. 7. Shaped data fields A and A.spreads

Shaped data fields A and A.spreads have two different shapes but the same
values are associated with the same locations. Since every index on a vertical
line of the cube, as shown on Fig.7, is connected to at least one location and
since the values accessed by an index on such a line are the values which are
accessed by an unique index in A, this means that any index in A is necessarily
connected to all the locations which are associated with the indices on the

13



line in A.spreads. This means that the shape of A cannot be a one-to-one
correspondance between indices and locations.

This statement expresses then virtual indices in an array which can be as-
sociated with different locations on a machine. This is typically what a data
alignment expresses in HPF through an ALIGN directive. It describes then a
different algorithm since dependences, involving communications in the previ-
ous expression, have been modified and now refer to locations, involving data
alignment.

4 A formal model of the theory

This section presents the mathematical definitions of shaped data fields and
their associated operations. These definitions could serve as a semantic domain
for data parallel languages. Very few works are dedicated to semantics of data
parallel languages: let us mention the language £ [2] and its semantics which
is a model for languages such as C*. Our proposal is more general and meets
the different situations we told about just above.

4.1 Shaped data fields

The theory refers to mathematical objects called shaped data fields. This sec-
tion includes their formal definition beginning with the related notions of data
field and shape.

A data field is a model for collections of indexed values such that any index
uniquely corresponds to a value. Any index is composed of the coordinates of
a point in a ”"geometrical space”, i.e. a given Z™: an index is thus an integer
tuple.

Note that the points which index the values of a data field may belong to
different geometrical spaces. In the sequel, we call I the union of all Z", for
alln e N.

A data field then associates a value in a given data type with some elements
of I which form its index set. A data field is then formally defined as follows:

Definition 5 Let V' be a given data type. A data field, whose values are in
V', is any partial function X from I to V.

X:I—-V

14



We note DF(V'), the set of data fields whose values are in V.

A shape expresses a set of arrows between two sets of points: indices and
locations. These arrows describe a relation from indices to locations: indices
form the domain of the relation and locations form its co-domain. Since the
relation is supposed to be injective (any location has at most one corresponding
index), its inverse is a function.

Therefore, a shape is defined by a function from locations to indices. Moreover,
since locations and indices are two subsets of I, it is a partial function from
I to I whose domain of definition is the set of locations, and whose image is
the set of indices.

Definition 6 A shape is any partial function o from I to I.

o:1—~1

We note S, the set of shapes.

A shaped data field X is a data field X’ associated with a shape o. This asso-
ciation means that each index in the index set of the data field is an index of
the shape: it belongs to the image of this shape. Formally, def(X') C img(c) 2.

In order to properly define this association, a shaped data field is defined via
a partial function as follows:

Definition 7 Let V' be a given data type. We call shaped data field, whose
values are in 'V, a constant partial function X, from shapes to data fields whose
values are in V', which returns a data field X, such that def(X) C img(o) for
any shape o in its domain of definition.

X :8— DF(V)
such that Vo € def(X) def(X (o)) C img(o).

4.2 Operations

These definitions associate a mathematical meaning of operations with the
notation introduced in section 3.3. For sake of conciseness, the definitions are
given using semantic equations [9]: such an equation defines the result of a
given operation applied on arbitrary arguments. Moreover, the result of any

2 where def(X) stands for the domain of definition of X and img(c) is a shorthand
for the image of o.
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operation is a shaped data field, i.e. a function: it is defined itself by its image,
i.e. a data field, resulting from an arbitrary argument, i.e. a shape.

Last, in every semantic equation, it is implicit that the shaped data field
applied on o, on the left handside, is undefined if and only if all the values of
the data field, on the right side, are undefined.

Here is some notations: g,h,o0: I =1, A,B,X : S = DF(V), geom = (id, g)
and basis = (h,id), with id the identity on I.

Definition 8 A global operation, denoted as +, on two shaped data fields A
and B is such that b
(A+ B)(0) & A(0) + B(o)

The notation + on the right handside of this semantic equation is for the
addition on data fields. This addition can be defined by the equation

(A+B)(2) = A(z) + B(z)

where the result is defined on the intersection of the domains of definition of
the two arguments.

Definition 9 A geometrical operation, denoted as geom, is such that

(X.geom)(0) 22/ | X(9) 09 i def(X(0) 0 g) C img(c)
. undefined otherwise

This definition says that for any shaped data field X, whose data field X is
associated with shape o, the result of the geometrical operation, defined from
g and applied on X, is the data field associated with shape o, which maps
value X (g(z)), if defined, to each index z of o.

Definition 10 A change of basis, denoted as basis, is such that

(X.basis)(0) " X(hoo)oh

This definition says that for any shaped data field X, whose data field X is
associated with shape h o g, the result of the change of basis, defined from h

and applied on X, is the data field associated with shape o, which maps value
X (h(z)), if defined, to each index z of o.

Thus, X and X.basis have the same values placed at the same locations:

since the shape of X is h oo, considering any value of X at location [, its
corresponding index is (ho o)(l), i.e. h(z) with z = o(l). This value is then

16



equal to the value of X.basis at location [. This proof is summarized by the

following commuting diagram:
h
z — = h(2)
W
l

Definition 11 The composition of a change of basis and a geometrical oper-
ation s defined as

X.(h,9) et (X.basis).geom

Let us call Y the result of this operation. By definition, and for any o such
that Y (o) is defined, we have: Y (o) = ((X.basis).geom)(o)

= (X.basis)(o) o g

=(X(hoo)oh)og

= X(hoo)o(hog)
It means that, for any shaped data field X, whose data field X’ is associated
with shape h oo, result Y is the data field associated with shape o, which

maps value X'((h o g)(z)), if defined, to each index z of o, i.e. value Y(z) is
equal to value X ((h o g)(2)).

5 A case study

In this section, we use the theory to deal with the matrix product problem.
Let us show how to write a first statement for this problem.

This initial statement is built from the following set of recurrent equations:

tiajyk = 0 if (/L7 j7 k) E ‘D—l
tije = @ik Xbrj + tije—1 if (1,5,k) € D
Lijk = Cig if (4,5,k) € Dna

with
D_; =[0.n—1]x[0..n—1]x{-1}

D = [0..n—1]x[0..n—1]x[0..n—1]
D,_1 =[0.n=1]x[0..n—1]x{n—1}
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where indexed variables a, b and c identify the nxn-matrices, and ¢ is a inter-
mediate variable indexed on [0..n—1]x[0..n—1]x[0..n—1].

Here is our first statement:
Tanit = ...

T.current = A.spread, x B.spready, + T.prec
T.term = C.expand
e where A, B, C and T rely to variables in the previous recurrent equations
set and nit, current and term operations restrict variable 7' on some sub-
domains. They are defined as follows:

init = (id,id\p_,) current = (id,id\p) term = (id,id\p,_,)

e where spread, = (hq, 9a), spready, = (hs, g), prec = (hy, gp) and expand =
(he, ge) express dependencies in the recurrent equations set. They are such

ha 0 go = (3,4, k).(3, k)\p
h = \1,7,k).(k,j
chat: |09 (4,7, k)-(k, ))\p
hP oGy = /\(7’:]) k)(la]ak_l)\D
he © ge = (4, 3,k).(%, 1)\ Dn_s

Such dependencies determine the scheduling of computations. Without any
other precision, the previous statement is the semantics of the following pro-
gram written using a HPF-like notation:

REAL A(O:N-1,0:N-1),B(0:N-1,0:N-1),C(0:N-1,0:N-1)
REAL T(-1:N-1,0:N-1,0:N-1)

FORALL (I=0:N-1,J=0:N-1)
DO K=0,N-1
T(I,J,K)=A(I,K)*B(K,J)+T(I,J,K-1)
END DO
END FORALL
FORALL (I=0:N-1,J=0:N-1)
c(1,J)=T(I,J,N-1)
END FORALL

where the scheduling is explicit but the relationship between array indices and
virtual processors is undefined. Note that this program is incorrect in HPF
because it is not allowed to put a DO loop inside a FORALL body in HPF.
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Now, setting pairs (a4, ga), (hs, 9b), (hp, gp) and (he, ge) to a particular instance
attaches some additional operational properties to the statement and preserves
its correctness. These operational properties are induced from the operational
semantics associated with any such statement. This operational semantics is
formally described in [3]. Here is what it defines:

e the virtual processors array for carrying out computations (induced from
shapes of the shaped data fields involved in the statement, and induced
itself from the changes of locations)

e the data placement on this array (also induced from shapes)

e the required memory size for storing data on each virtual processor (induced
from the data placement)

e the computations to be performed by any virtual processor of the array (also
induced from the data placement and from the ”owner-computes” rule)

e the required (virtual) communications between the virtual processors of the
array (also induced from the data placement)

e the computations scheduling (induced from the communications)

So, the previous statement can be transformed step by step by both the pro-
grammer and the compiler, for example in order to define a better trade-off
between communications and memory usage. Some transformations may con-
sist in substituting a pair of functions, say (h/, ¢'), for some other, say (h,g),
such that A’ o ¢’ = hog. The so obtained statement expresses the same depen-
dencies, i.e. remains correct, but a different relationship between indices and
locations, i.e. is attached to a different operational meaning.

As examples, let us consider the following cases where we focus on the place-
ment of matrix A values relatively to 7" ones. In each case, the data placement
is determined by a particular pair (hg, g,)-

Each case is illustrated with a figure. The figure shows the locations of shaped
data field 7. In order to simplify the drawing, every location of 7" is identified
with its corresponding index. The locations of A values is a subset of the
locations of T'. These locations are grey painted. Last, an arrow between two
locations specifies a (virtual) communication.

(1) Replication (Fig.8). Let us define:
ha = )‘(,La ja k)(’L, k)\D
9o =1d

It expresses that value a; is located at every location where some ¢; ; x,
j € [0..n—1], is located. Consequently, products computation does not
require matrix A values communications. In return each value a;  is (vir-
tually) stored n times.
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(2)

<=

58

Fig. 8. Matrix replication.

Broadcast (Fig.9). Let us define:
ha = id\ pujo..n—1]x[0..n—1]
go = )\(l,j, k)(la k)\D

It expresses that value a;j has its own location which is different from
the locations where T' values are placed. Thus, value a; is broadcasted
to all the locations where some ¢; jx, j € [0..n—1], is located.

Fig. 9. Matrix broadcast.
Alignment and broadcast (Fig.10). Let us define:
ha = (i, 3, k)- (4, k)\j0.n—1]x {0} x[0..n—1]
9o = A3, 7,k).(2,0, k)\p

It expresses that value a;j is placed at the same location as ¢; . As
previously, value a; ;, is broadcasted to all the locations where some value
tijk, J € [0.n—1], is located.

Fig. 10. Matrix alignment and broadcast.

Cannon’s algorithm (Fig.12).

The previous cases could be somewhere unsatisfactory for the compiler,
for example if broadcast can not be efficiently implemented due to some
architecture limitations. In such cases, the programmer can be helpful by
allowing to change the sequence of products accumulation and then by
allowing an other communication-memory trade-off. This could be done
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in a HPF-like notation by inserting a DO INDEPENDENT directive in the
previous program.

The semantics of the new program could be defined as:

ha 0 gs = /\(27]7 k)(lv hZ,J(k))\D
hb O gy = )‘(7'7 j7 k)(hZ,](k)7 ])\D
where h; ;, 7,j € [0..n—1], is any permutation of [0..n—1].

Let us focus again on the placement of A. As seen previously it is
possible to split dependencies into an alignment and a broadcast. An
interesting case is when the dependency allows A values to be aligned
with values ?; ;0 of T' and then to be broadcasted along k axis, as drawn
on Fig.11.

Fig. 11. Matrix alignment and broadcast along k axis.

In this case the broadcast can be performed while products are com-
puted. Such an alignment is allowed if and only if A(4, 5).(¢, ks ;(0)) and
A(i,7).(hi;(0),7) are two permutations of [0.n—1]x[0..n—1]. This rea-
soning may be conducted either by the programmer or by the compiler
and may yield the following definition for A; ;:

hij(k) = (i+j—k)%n

It induces a new equivalent statement where the pair (hg, g,) is defined
as follows:

ha = A(i, J, k). (3, (i47) %)\ j0.n—1]x[0.n-1]x {0}
9o = )‘(la ]a k)(Z, (]_k)%na O)\D

in which h, defines the initial placement of Cannon’s algorithm and g,
expresses the communications to be performed.

From this new statement, the compiler can use a well-known uniformiza-

tion technique to make communications uniform (Fig.12) and implement
these communications by using links of a parallel architecture.
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Fig. 12. Uniform communications.

Applying the same transformations for shaped data field B, i.e. defin-
ing (hy, gs) as:

hy = A(3, J, k).((i+7) %, 3)\jo..n—1]x[0..n—1]x {0}

yields Cannon’s algorithm.

6 Conclusion

Data locality expression is of great importance in data-parallelism. Therefore,
a formal framework is needed where this notion could be formally defined and
explained. We proposed our theory as such a framework. It offers a notion of
data locality in which those of HPF and C* could join up.

This theoretical framework allows the programmer and the compiler to share
a minimum knowledge to reach efficiency. We think that it could help both
the programmer and the compiler to transform the program in order to reach
the best implementation.
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