[cickano

A Constructive Solution to the Juggling
Problem in Systolic Array Synthesis

Alain Darte, Robert Schreiber,

B. Ramakrishna Rau, Frédéric Vivien
Compiler and Architecture Research
HP Laboratories Palo Alto
HPL-2000-30

February, 2000

systolic array We describe a new, practical, constructive method for solving
synthesis, the well-known conflict-free scheduling systolic for the locally
affine sequential, globally parallel (LSGP) case of processor array
scheduling synthesis. Previous solutions have an important practical

disadvantage. Here we provide a closed form solution that
enables the enumeration of all conflict-free schedules. The
second part of the paper discusses reduction of the cost of
hardware whose function is to control the flow of data, enable
or disable functional units, and generate memory addresses.
We present a new technique for controlling the complexity of
these housekeeping functions in a processor array.

6] Copyright Hewlett-Packard Company 2000

A constructive solution to the juggling problem in systolic array synthesis

Robert Schreiber
LIP, ENS-Lyon, Lyon, France

Alain Darte

B. Ramakrishna Rau ecBric Vivien

Hewlett-Packard Company, Palo Alto, CA, USA

ICPS, Pole Api, Bvd S. Brand, lllkirch, France

Abstract

We describe a new, practical, constructive method for
solving the well-known conflict-free scheduling problem for
the locally sequential, globally parallel (LSGP) case of sys-
tolic array synthesis. Previous solutions have an impor-
tant practical disadvantage. Here we provide a closed form
solution that enables the enumeration of all conflict-free
schedules. The second part of the paper discusses reduc-
tion of the cost of hardware whose function is to control the
flow of data, enable or disable functional units, and gen-
erate memory addresses. We present a new technique for
controlling the complexity of these housekeeping functions
inasystolic array.

1. Introduction — hardware accelerators and
systolic arrays

schedule that accomplish this. We shall present some new
theoretical insight into this problem that leads directly to an
efficient solution. The second issue is the hardware cost of
systolic implementations of loop nests. Parallel realizations
of sequential algorithms come at some cost: in our case ad-
ditional computation — which would lead to additional hard-
ware in an application-specific accelerator — needed to con-
trol and coordinate the processor. We develop a new low-
cost technique for control and coordination that is theoret-
ically appealing, and we give some experimental evidence
that it greatly reduces cost in comparison with expensive,
standard approaches.

Section 2 explains the conflict-free systolic scheduling
problem. Section 3 explains the known theoretical solution,
developed by the first author, and discusses the problems
with using it in a practical system. Section 4 presents our
new theoretical approach and describes how it leads to an
improved implementation. Section 5 introduces and solves
the problem of the added cost of parallelization in systolic

The rapidly growing consumer electronics industry de- orm e offer some concluding remarks in Section 6.
mands low-cost electronics to perform image and signal
processing at impressive computational rates. Many current? Mapping and scheduling for systolic arrays
designs employ embedded general-purpose computers as-
sisted by application-specific hardware in order to meet the Classically, the iterations of a perfeetdeep loop nest
computational demands at low cost. Such systems are dif-are identified by the corresponding integewvector j =
ficult and expensive to design. This makes automatic syn-(j1,- .., j,) Of loop indices. The iteration vector lies in
thesis of application-specific hardware accelerators increassome given polytope.7, called the iteration space. An
ingly desirable. Ideally, a source program would be com- n — 1-dimensional grid of systolic processors with rectan-
piled into a system consisting of a general-purpose proces-gular topology is given, and each processor is identified by
sor and one or more hardware accelerators (automaticallyits coordinate vector. The systolic mapping problem is to
designed and interfaced to the whole system) using the proind functionsr andr such that processat(j) commences
gram as a behavioral specification. computation of iteratiory at clock cyclef(j). We use the

The most obvious way to obtain significant performance term schedule for the timing functionr and mapping for
from custom hardware is to exploit parallelism. Automatic the processor assignment The timer(j) is a start time
parallel hardware synthesis can be accomplished by transfor iteration, and all the detailed actions belonging to that
forming a loop nest into a form that allows its implementa- iteration are scheduled relative to this start time. In classi-
tion as a systolic-like array. This paper addresses two im-cal systolic scheduling [7, 9, 10] the scheduling function
portant practical problems in systolic synthesis. The first is an integer-valued linear function of the iteration vector.
is to map each iteration of a loop nest to a processor and alhe spatial mapping is defined by &m — 1) x n integer
time step in such a way that all processors are kept busy amatrix II that admits a unimodular extension, so that the
all times, and none is overloaded. Previous theoretical so-processor array i§: — 1)-dimensional.

lutions made it inconvenient to quickly find a mapping and The schedule and mapping must satisfy several valid-

ity requirements, including local interprocessor communi- virtual processor space of shaﬁ’e The number of virtual
cation, conflict-free scheduling and causality (data is not processors assigned to a systolic processor is not more than
used before it is computed.) v = H?:’ll C;.

2.1. Nonlinear mappings — tiling and clustering 2.2. Schedules consistent with clustered mappings

Full-rank, linear mapping has the significant practical ASSume that the physical processor can perform one loop
problem that one has little control over the number of pro- itération per cycle. We are interested in finding a linear
cessors. One would like to choose the number of processor$cheduler(y) = 7. for the iterations. The need to com-
and their topologya priori, based on such practical consid- Pute values before they are used leads to linear inequality
erations as the need to map to a piece of existing hardwareCOnstraints orr’. Let be a smallest integer null vector of
or to conform to a fixed allotment of chip area, board space, 11- Thus,@ connects the iteratiop to the very next itera-
or power. We therefore viell as a mapping onto an array 10N, j + @, that is mapped to the same virtual processor.
of virtual processors (VPs). The virtual processors are later W& know that the physical processor will visit each of its
associated with physical processors, but this map is many- Simulated virtual processors once, in some round-robin
to-one. manner, before returning @; again. Because we need to

One approach to the problem of handling arbitrarily large 2/l0W at leasty cycles between visits,
data sets and iteration spaces with fixed-size systolic arrays -
is to decompose the whole computation into a sequence of 7l 2. (1)

similar computations on subsets of the data [6, 2, 11]. This the throughput inequality (1) ensures that the physical pro-
approach is known asling in the compllgr Ilterature,.and cessor is not overloademh average. But because we are

as the locally parallel, globally sequential method in Sys- yving to determine a schedule that is precise (all actions
tolic synthesis. We use tiling to control the size of the iter- ¢.neduled for a certain machine cycle) and correct, we can-

ation space in order to limit the local storage in our synthe- .\t 510w two iterations to begin at the same time. Thus, the
sized processors. We do not want to constrain the tile Sizeproblem we seek to solve here is the followirapflict-free

by requiring thg number of virtual processors to match the systolic scheduling problem given G, the mappingT of
number of physical processors. To do so would usually pro- rank (n — 1) which hasi as its smallest integer null vector,
duce tiles too small to obtain significant benefit from reuse 4,4 jinear inequality constraints 6 chooser satisfying

ofintermediate results in the array. these constraint and such that no two virtual processors as-
We use an alternative approach, which we chibter- signed to a given physical processor are scheduled to be

ing, and which has also been called partitioning or the lo- simultaneously active.

cally sequential, globally parallel (LSGP) technique in the e say that a schedule that satisfies the no-conflict con-

systol?c synthesis'literature. Clust.ering assigns a rectanguxtraint for the given cluster “juggles”; imagine a juggling

lar neighborhood in the array of virtual processors to each processor with itsy balls (virtual processors) in the air, and

physical processor. This amounts to choosing a rectangu-pnly one hand, capable of holding only one ball at any given

lar cluster shape — a smal, — 1)-dimensional rectangle time. If 7 juggles and satisfies (1) with equality,
— and then covering thé: — 1)-dimensional array of vir-

tual processors with nonoverlapping clusters. The cluster |74 =, 2)
shape is chosen so that the set of clusters forms ani-

dimensional grid of the same shape as the systolic processothen we say that the scheduldiight.

grid. The systolic processor will have enough throughput, ~ Our main result is a construction that produetigtight

and the schedule of the iterations will allow enough time, so schedules for a given clustér. We have not obtained any
that each systolic processor will do the work of its assigned results concerning nontight, juggling schedules, except for

virtual processors. the obvious. If a schedule is tight for cluster shapet C'
Let ann — 1-dimensional grid of systolic processors of andD > C' elementwise, then this schedule is a nontight,
shapeP be given: processor coordinates sati@f p; < juggling schedule foC'.

P;. Thevirtual processor array is the image of7 under
I. Let the smallest rectangle that covers the set of virtual 3. Related work

processors have dimensioWs so that ifii = TI; for some The idea of Darte's (and initially Darte and Delosme's)

j € J,then0 < v; < V;. (We must apply a shift, in gen- solution [4, 3] is to produce a cluster shapecompatible
eral, to make the virtual processor coordinates nonnegative.)yith the given schedule vectét In many practical situa-
Define the shape of theluster, C' = (C1,...,Cn1), by tions, however, the physical and virtual processor arrays and
C; = [V;/P;]. The processor grid of shafg¢, whose pro- thus the set of possible cluster shapes is known. The task is
cessors each cover a cluster of shépecovers the whole to find a tight schedule for a known cluster shape. Using

Darte's approach, this must be done by an indirect and pos-Theorem 1 Let C bea given cluster shape. If II consists
sibly costly trial-and-error approach, while the theorem that of (n — 1) rows of the identity, then 7 is a tight schedule if
we later prove leads to a simple method that directly enu- and only if, up to a permutation of the elements of ¢’ and

merates the tight schedules. the same permutation of the first n — 1 elements of 7,.
Darte's theorem and method work this way. The inverse .
of any unimodular matrix having first row equal fohas 7= (k1, k201, k3C1C0s, ..oy knCro--Crt) (3)

as its second throughrth columns am x (n — 1) matrix
@ whose columns are a basis for the lattice of iterations
scheduled for time zero. Let = TIQ. ThenA is a square Proof. Theif part is the easy part. For tlemly if part, we
integral matrix of ordefn — 1) whose columns are the co- use the same same group theoretic result that was originally
ordinates of a set of virtual processors active at time zero.employed in [3]. The complete proof is available in the ex-
Darte calledA the “activity matrix”. Let H, be the Her- tended version of this paper [5].]
mite normal form ofd ': A = H,Q, with Q. unimodular.
The columns off, generate the lattice of virtual processors
active at time zero, and the diagonal elementé#/gfare a
cluster shape for whicfi is a tight schedule. This remains
true for the Hermite normal form of any permutation of the
rows of A. Furthermore, this is a necessary and sufficient
condition for tight schedules (the necessity being the diffi-
cult part). Thus, giverr, Darte's method produces all clus-
ter shapes’ of size|7.d] that juggle with?. If the schedule
is specified and an appropriate cluster shape is desired, then 7 t >
this method gives all possible choices. M= (I >; thus(7 > =Mj
Megson and Chen [8] attempt to guarantee a tight sched- .
ule for some given cluster shaﬁ7eby working with the Her- is the mapping from iteratior to time ¢ and virtual pro-
mite form of A = TIQ directly. Relying on the fact thatthe ~ cessord. We now change basis in the iteration space:
Hermite form of a triangular matriX has the same diago- j’ = S'j are the coordinates of the iteration with respect
nal asX (up to sign), they choosd to be triangular with to the basis consisting of the columns®fin this basis, the
the elements of on the diagonal, and they assume tHat transformation becomes

is known. They then look at the general soluti@rio the ¢ . 29\ o 7S .
(ﬁ) :]V[Sj':(:) -/:<In-1 0>j’ 5)

where k; and C; arerelatively primeand k,, = +1,

Actually, the restriction ol is unnecessary. Lef be
the inverse of a unimodular extensiornidf The last column
of S is the projection vectofi. The remaining columns
are the vectors that describe the virtual processor array. In
particular, the firs{n — 1) rows of S~! are the projection
matrixII. The transformation matri¥/ is the matrix whose
first row is7 and whose lastn — 1) rows arell:

(4)

underconstrained linear systdiid) = A and from the so- s
lutions they infer?. They try to choose the unconstrained
components of) and the off-diagonal elements dfto ob- Clearly, 7 is a tight schedule with cluster shageand map-
tain an acceptable schedule (via the inverse of a unimodularing IT if and only it 7.5 is a tight schedule fo€ with the
extension on'): Megson-Chen produces tight schedules mapping(l,_; 0). Hence, the generalized condition (3)
from the specified cluster shape, but does not have real adapplied to7.S is a necessary and sufficient condition for
vantages compared to Darte's: one will still need to searchj tight schedule. The formula does not specify the com-
for desirable tight schedules indirectly, by manipulating pa- ponents off but rather the components &S, and 7 is
rameters other than the elementsfof recovered through the integer matﬁ)‘(l .

The clear advantage of the method we propose here is we have used these results to generate schedules in a
that it works directly with7". Thus, one has far more control practical system for synthesis of systolic arrays; the details

over the resulting schedule, and may quickly determine a of the implementation will appear in a later report.

tight schedule that meets other requirements.
Example

4. Construction of tight schedules Letn = 3; letC = (4,5). Assume that; is the smallest
We now present a way to construct the set of all tight integer null vector of the space mapping. From (3), either
. i 7 = (ky,4ks,+20) or 7 = (5kq, ko, £20) with k; AC; = 1,
schedules for a given clusté. First, we assume thal . (k1, kz, £20) O 7 = (5ks, Ky, +20) v

consists of the firstn — 1) rows of the identity matrix, so fori = 1,2. For examples = (7,4,20) is a tight sched-
n — .
. ' ule (withk, = 7, ks = 1, k3 = 1) that corresponds to the
thatITu = Te, = T1(0,...,0,1) = 0. We writez A z (with fy 2 3 = 1) P

" activity tableau below. The number in each box denotes the
for the greatest common divisor afandz. If z A 2 = 1 residue modulo 20 of the times at which the virtual proces-
we say that and are relatively prime. Then, we have the sor that lives there is active. For a juggling schedule, these
following result: are all different. (The:; axis is the vertical axis in the dia-
LFor more about Hermite forms and lattice theory, we refer to [12]. gram.)

11519]113]17 and that they can therefore be obtained fromalzit circular
14118 2] 6)10 buffer. We use this technique in our current implementa-
7111115119 3 tions with good results. The second and more important
0] 4]8]12]16 reason for this inefficiency was the method used to compute
cluster coordinates. Our original approach took the rather
. obvious viewpoint that each processor, at each time, com-
ties of the mapping matrix and its Hermite normal form. . ; . .

putes the cluster coordinates of its active virtual processor,

It is fairly straightforward to show, as a consequence of " """ © . .
Darte's theorem on schedules and the cluster shapes foV.Vh'Ch is a function of the processor coordinafeand the

which they are tight, that the Hermite normal form of the Elme t. We generated the code by first applying standard

. ; . techniques [1] for code generation after a nonunimodular
mapping matrixM (see (4) above) is (up to a row per- . . .

N i . . . loop transformation (using Hermite form) to generate a loop
mutation ifII) a lower triangular matrix whose diagonal is

(1,C Chv) nest that scans the active virtual processors for each time.
b el We then inferred the local processor coordinatefsom
5. Reducing the cost of control the lower bounds for the virtual processor loops, which are

L . functions ofp andt, by taking their residues modul3.

Atter transformatlon'|'nto .LSGP form, the' systolic loop This technique is memory efficient, but computationally
.bOd.y serves as a specllflcatlon of the systolic processor. Inexpensive. It is a form of integer triangular system solution.
its ﬂnal form, the syetehc nest has outer loops over t}les and Let T be a unimodular matrix such thAfT = F,,. Then
an inner nest consisting of a sequential loop over time and
a parallel nest over processors. The transformed parallel (3) — M} =H,T"']=H,i
loop body contains generated code that we loatisekeep- o " "

ing code whose cost we consider here. Housekeeping code ,) -
has several forms and functions: whereH,, is the Hermite Normal Form af/, andq is in-

Cluster coordinates. For each time on the given proces- [€ger. Furthermore, we know (see end of Section 4) that

sorj, one may need to compute the local positibmithin the (1,1) element OfH 1, is unity and that the rest of the
the cluster:0 < ¢, < Cj. These give the position of the diagonal ofH,,, consists of the elements 6f. The require-

For later use, we need to record some important proper-

currently active VP. ment that the triangular system above has an integer solu-
Virtual processor coordinates. One may also need the tion ¢ in fact completely determines the residues modulo
global virtual processor coordinatg = ¢y, + pCh. (1,C) = diag(H,) of ¥, which are the cluster coordinates

lteration space coordinates.Since the iteration space co- Of the VP active at time on processof = ¥ < C. This in
ordinatesj may appear in the loop body, these will some- turn determined. Solving this system, inferring the clus-
times need to be computed. The usual technique is to usder coordinates in the process, la&:*) complexity. By a
I Lt) slightly different use of the special form of a tight schedule

the relationy = M (7 > (The resultis guaranteed 10 (see [5)), we reduced this cost@(n). From the viewpoint
be integer when is active at time, even though\/ —! is a of generating hardware, however, the method still has a few
matrix with rational elements.) disadvantages since it involves a quotient and a remainder
Memory addressesWhen data is “live-in” to the loop nest, ~ for each dimension, and it does nothing to assist with ad-
or is “live-out”, it is read from or stored into global mem- dresses, iteration space coordinates, or predicates.
ory. The memory address, which is the location of an array ~ We now discuss methods for making a major reduction
element whose indices are affine functions of the iteration in the cost of housekeeping computations; tests will show
space coordinates must be computed. that once these techniques are employed the cost of the re-
Predicates. In a naive approach, many Comparisons are sulting processor is close to the minimum possible. We shall
used to compute predicates. These compfester-edge examine two alternatives. Both of them trade space for time.
predicates(comparison of the cluster coordinatand the ~ Both use temporal recurrences to compute coordinates.
cluster Shapé), Ti|e-edge predicatedtests of the g|oba| First note that with a tight schedule, the cluster and vir-
iteration coordinates against the limits of the current tile); tual processor coordinates, and all but one of the global iter-
and Iteration-space predicates(that test the global itera- ~ ation space coordinates, are periodic with pefipas are all
tion coordinates against the limits of the iteration space). ~ Predicates defined by comparing these periodic functions to

Our first experiments with systolic processor synthe- one another and to constants. The remaining iteration space
sis revealed that these housekeeping computations were sgoordinate satisfies
costly that the resulting processor was grossly inefficient. . .
Th .]n(t)—]n(t_’}/)+1-

ere were two primary reasons. One was the large number
of comparisons for predicates. We then observed that al-(These assertions apply whHrconsist of rows of the iden-
most all of these repeat on a given processor with peyjod tity; things are only slightly more complicated in general.)

Any quantity that depends linearly gi}, can be updated the same physical processor. Cled}lbs the sum obt x o

with a single add. Quantities (such as predicates) that de-and a linear combination @%, . . ., t,.

pend only on the other coordinates are similarly periodic. ~ We know already thak exists and is unique since the
This is the cheapest approach possible in terms of compu-schedule is tight. This can also be seen from the fact that
tation; its only disadvantage is in storage. We need to storeH,, has theC;'s on the diagonal: writing_c' = TX, we end

the lasty values of any coordinate or related quantity that up with a triangular system that can be easily solved thanks

we wish to infer by thisy-order recurrence. Whenis fairly to the structure oH,,,. We can add a suitable linear com-
large (say more than ten or so) these costs become signifibination ofs, ..., £, to 6t x @ so that the(n — 1) last
cant. components of\/ (6t x @) are in the box. This vector (let

The alternative technique allows usupdate the cluster us denote it bﬁ[o, ...,0]) will be one of the candidates
coordinates(t, p) from their values at aarbitrary previous in the decision tree. Now, either the second component of
cycle but on the same processéft, p) = R(c(t — dt, p)) M + 5[0, ..., 0] is still strictly less thar;, and we are in
(hereR stands for the recurrence map that we now explain.) the first case (first branch of the tree), or this component is
We may choose any time lag. (Provided thabt is not so strictly less thar2C; and we simply subtracttg to go back
small that the recurrence becomes a tight dataflow cycle in-in the box. In the latter casé]L, 0, . 0] = 6[,0]—t>
consistent with the schedule that we have already chosen.]plus possibly a linear comblnatlon of, ..., In SO that the
The form of R is quite straightforward. Using a binary de- (n — 2) last components af/4[1,0, . 0] are in the box)
cision tree of deptlin — 1), we find at the leaves of the tree is one of the candidates in the decision tree. Continuing in
the increments(t, p) — &t — 6t, p). The tests at the nodes this way, we end up with at mogt™—1) vectors (at most
are comparisons of scalar elementg@f- 4t, p) with con- two cases for each dimension, and only one when the cor-
stants that depend only af and the schedulg. They are responding component of the move vectoris zero).
thus known at compile time and can be hard coded into the The notation in brackets for the vectossspecifies if
processor hardware. tbe move is nonnegativ@) or negative {): for example,

These cluster coordinates are the key. The global virtual 6[0, 1, 1] corresponds to the case where we move forwards
processor coordinates the global iteration space coordi- in the first dimension and backwards in the two other di-
natesj, and the memory addresses are all linear functions mensions.
of them. If we know the change itithen we also know the
changes in all of these derived values, and these changes ap-
pear as explicit constants in the code. Only one addition is
needed to compute each such value. We have thus reduceﬁ
the problem of cost reduction to that of the update of the
cluster coordinates. The next section explains how we can

Example (continued)

We takedt = 1 so that the reader can compare the result
ith the activity tableau on page The Hermite form of

e mapping/T = H,,) is

4) =" 7 4 20 3 4 0 100
automatically generate this decision tree. 10 0 0 3 5 — [3 4 o
01 0 -1 -2 -1 0 3 5

5.1. A general updating scheme

We first present the theory, then we will illustrate the ~ From the matrix7,,, we read that we may have to move
technique with an example. Note that the activity times on alonga’ = (3,0) in the virtual space (which corresponds,
some arbitrarily chosen processpare shifted by a con- N the original space, to the first column @f the vector
stant, 7.(p1C1, . . ., pn—1Cr—1), compared with the times 6[0,0] = (3,0,-1)). If ¢ +3 > 4, then we subtract
on processor zero. This implies that the same decision tre¢h€ second column aff,,, i.e. (4,3), we find the move
may be used on all processors. We therefore assume thatector(—1,—3), and we add the third column to go back
the processor coordinatgsare all equal to zero. in the box: (3,0) — (4,3) + (0,5) = (—1,2). This cor-

Recall that the columns &f are a unimodular basis and responds in the original space #1,0] = (3,0,—1) —
thatMT = H,,. The first row of M T gives the time differ- (4,3,-2) + (0,5,—1) = (-—1,2,0). Then, for both vec-
ence along each column @f, and the last rows are the co- tors, we check the last component: in the first case, no other
ordinates of the columns @f in the virtual processor array. ~ Vector is required since the second componer(©Bod) is
Since the first row of\/ T is (1,0,...,0), the first column 0. In the second case, we may have to subtf@gcs): the
@ of T connects an isochrone (a hyperplane of iterations last candidate is thué-1,2) — (0,5) = (-1,-3) and
scheduled for the same time) to the next isochrone, and theg[l, 1] = (-1, =3, 1). With this technique, we get the deci-

remaining columnss, ..., i, lie in an isochrone. Given sion tree below. O
the iteratiory, what we want to find is a vectdr such that The technique works the same way for arbitrétryYou
M (j+k) = (t+6t,2)t whereZis “inthe box"0 < 7 < C, begin with the changé x @, and “correct” it as necessary

which means that it corresponds to an iteration scheduled inwith the remaining columns dff,,, in order to find the tree

if (c(1) + 1< 1) {

c(1) += 1;

if (c(2) +4 <C2) {
c(2) += 4,

} else {
c(2) += (-1);

}

} else {

c(l) += (-3);

if (c(2) +1<C2) {
c(2) += 1;

} else {
c(2) += (-4);

}

for the more complicated loop. The photography loop has
a deeper decision tree than matrix multiply because of the
deep loop nest; this accounts for the different costs. Evi-
dently, with optimization, housekeeping costs are not triv-
ial, but they are manageable. The naive method, however,
produces intolerably costly code for calculation of coordi-
nates, predicates, and memory addresses.

6. Conclusion

The first part of this paper provides a simple characteri-
zation of all tight LSGP schedules, solving a longstanding
problem in systolic array synthesis. The characterization al-
lows a synthesis system to directly enumerate all the tight
schedules in any desired region of the space of schedules,
which can be very useful in generating tight schedules in,
e.g., a polyhedron defined by recurrence constraints.

We also demonstrated a new technique for generating ef-

of changes. This gives the necessary tests in the decisioiciant parallel code that takes full advantage of our charac-
tree directly, as well as the corresponding changes in theyg iz ation of tight schedules. Our experiments have shown

cluster coordinates and the original loop indices.
5.2. Measuring the cost of housekeeping code

We show here the results of systolic loop transformation

with our efficient recurrence scheme for cluster coordinates
and the parameters that depend on them linearly. We usg

that the specialized processors we generate are highly effi-
cient in their gate count and chip area. We conclude that the
technigue explained in the second section of this paper can

' control the added computational cost due to parallelization
to the point where it is not overly burdensome, especially

or loop nests that have more than a handful of computa-

three loop nests as test cases. The first, from an appl'caﬁons in the innermost loop.

tion in digital photography, is a nest of depth six, in which
the loop body contains only a simple multiply-accumulate
statement. The second, from a printing application, is a
much more complicated loop body. The third is matrix mul-

tiplication. We transformed the loop nests using the mecha- [2]

nisms described in this paper. In [5], we present the original
and the transformed loop nests for matrix multiplication as
an illustrative example.

Photography Printing | Matrix Mult.
operation | orig. transf. naive| orig. transf. | orig. tranf.
+ 5 7 52 | 22 31 5 6
X 1 1 34| 1 1 1 1
= 0 0 4 0 0 0 0

compare 1 6 35 18 18 1 3

In the table, we show the number of inner-loop integer
operations in the original and the fully transformed loop
nests. In addition, for the photography application, we show

the same statistics for the code as transformed by the naive
methods that we have earlier described. The counts were [g

obtained by examining the code. It is clear from this data

that the housekeeping due to parallelization has added to th€10]

computational cost of the loop body. The number of oper-
ations increased by seven in the simple photography loop,
nine in the more complicated printing loop, and only three
in the matrix product loop. The ratio of the added operation
count to the original operation countds: 7 for the matrix
multiply loop, 1 : 1 for the photography loop, arl : 41

References

[1] C. Ancourt and F. Irigoin. Scanning polyhedra with DO

loops. In3rd ACM PPoPP Symp., pp. 39-50, Apr. 1991.

P. Boulet, A. Darte, T. Risset, and Y. Robert. (Pen)-ultimate

tiling? INTEGRATION, the VLS Journal, 17:33-51, 1994.

A. Darte. Regular partitioning for synthesizing fixed-size

systolic arraysINTEGRATION, The VLS Jounal, 12:293—

304, 1991.

A. Darte and J.-M. Delosme. Partitioning for array proces-

sors. Tech. Rep. 90-23, LIP, ENS-Lyon, 1990.

A. Darte, R. Schreiber, B. R. Rau, and F. Vivien. A con-

structive solution to the juggling problem in systolic array

synthesis. Tech. Rep. RR1999-15, LIP, ENS-Lyon, 1999.

F. Irigoin and R. Triolet. Supernode partitioning. 18th

ACM POPL Symp., pp. 319-329, 1988.

H. T. Kung and C. E. Leiserson. Systolic arrays (for VLSI).

In Sparse Matrix Proc., pp. 256—-282. SIAM, 1978.

G. M. Megson and X. Chen. A synthesis method of LSGP

partitioning for given-shape regular arrays.Sh IPPS pp.

234-238. IEEE, 1995.

] D.Moldovan. On the analysis and synthesis of VLSI systolic

arrays.|EEE Trans. on Computers, 31:1121-1126, 1982.

P. Quinton. Automatic synthesis of systolic arrays from uni-

form recurrent equations. tith ISCA, pp. 208-214. IEEE,

1984.

[11] J. Ramanujam and P. Sadayappan. Tiling of iteration spaces
for multicomputers. INCPP, pp. 179-186. IEEE, 1990.

[12] A. Schrijver. Theory of Linear and Integer Programming.
Wiley, New York, 1986.

(3]

(4]
(5]

(6]
(7]
(8]

