

A Constructive Solution to the Juggling
Problem in Systolic Array Synthesis

Alain Darte, Robert Schreiber,
B. Ramakrishna Rau, Frédéric Vivien
Compiler and Architecture Research
HP Laboratories Palo Alto
HPL-2000-30
February, 2000

systolic array
synthesis,
affine
scheduling

We describe a new, practical, constructive method for solving
the well-known conflict-free scheduling systolic for the locally
sequential, globally parallel (LSGP) case of processor array
synthesis. Previous solutions have an important practical
disadvantage. Here we provide a closed form solution that
enables the enumeration of all conflict-free schedules. The
second part of the paper discusses reduction of the cost of
hardware whose function is to control the flow of data, enable
or disable functional units, and generate memory addresses.
We present a new technique for controlling the complexity of
these housekeeping functions in a processor array.

 Copyright Hewlett-Packard Company 2000

A constructive solution to the juggling problem in systolic array synthesis

Alain Darte Robert Schreiber B. Ramakrishna Rau Fr´edéric Vivien

LIP, ENS-Lyon, Lyon, France Hewlett-Packard Company, Palo Alto, CA, USA
ICPS, Pole Api, Bvd S. Brand, Illkirch, France

Abstract

We describe a new, practical, constructive method for
solving the well-known conflict-free scheduling problem for
the locally sequential, globally parallel (LSGP) case of sys-
tolic array synthesis. Previous solutions have an impor-
tant practical disadvantage. Here we provide a closed form
solution that enables the enumeration of all conflict-free
schedules. The second part of the paper discusses reduc-
tion of the cost of hardware whose function is to control the
flow of data, enable or disable functional units, and gen-
erate memory addresses. We present a new technique for
controlling the complexity of these housekeeping functions
in a systolic array.

1. Introduction — hardware accelerators and
systolic arrays

The rapidly growing consumer electronics industry de-
mands low-cost electronics to perform image and signal
processing at impressive computational rates. Many current
designs employ embedded general-purpose computers as-
sisted by application-specific hardware in order to meet the
computational demands at low cost. Such systems are dif-
ficult and expensive to design. This makes automatic syn-
thesis of application-specific hardware accelerators increas-
ingly desirable. Ideally, a source program would be com-
piled into a system consisting of a general-purpose proces-
sor and one or more hardware accelerators (automatically
designed and interfaced to the whole system) using the pro-
gram as a behavioral specification.

The most obvious way to obtain significant performance
from custom hardware is to exploit parallelism. Automatic
parallel hardware synthesis can be accomplished by trans-
forming a loop nest into a form that allows its implementa-
tion as a systolic-like array. This paper addresses two im-
portant practical problems in systolic synthesis. The first
is to map each iteration of a loop nest to a processor and a
time step in such a way that all processors are kept busy at
all times, and none is overloaded. Previous theoretical so-
lutions made it inconvenient to quickly find a mapping and

schedule that accomplish this. We shall present some new
theoretical insight into this problem that leads directly to an
efficient solution. The second issue is the hardware cost of
systolic implementations of loop nests. Parallel realizations
of sequential algorithms come at some cost: in our case ad-
ditional computation – which would lead to additional hard-
ware in an application-specific accelerator – needed to con-
trol and coordinate the processor. We develop a new low-
cost technique for control and coordination that is theoret-
ically appealing, and we give some experimental evidence
that it greatly reduces cost in comparison with expensive,
standard approaches.

Section 2 explains the conflict-free systolic scheduling
problem. Section 3 explains the known theoretical solution,
developed by the first author, and discusses the problems
with using it in a practical system. Section 4 presents our
new theoretical approach and describes how it leads to an
improved implementation. Section 5 introduces and solves
the problem of the added cost of parallelization in systolic
form. We offer some concluding remarks in Section 6.

2. Mapping and scheduling for systolic arrays

Classically, the iterations of a perfectn-deep loop nest
are identified by the corresponding integern-vector~j =

(j1; : : : ; jn) of loop indices. The iteration vector lies in
some given polytope,J , called the iteration space. An
n � 1-dimensional grid of systolic processors with rectan-
gular topology is given, and each processor is identified by
its coordinate vector. The systolic mapping problem is to
find functions� and� such that processor�(~j) commences
computation of iteration~j at clock cycle�(~j). We use the
term schedule for the timing function� and mapping for
the processor assignment�. The time�(~j) is a start time
for iteration~j, and all the detailed actions belonging to that
iteration are scheduled relative to this start time. In classi-
cal systolic scheduling [7, 9, 10] the scheduling function�
is an integer-valued linear function of the iteration vector.
The spatial mapping is defined by an(n � 1) � n integer
matrix � that admits a unimodular extension, so that the
processor array is(n� 1)-dimensional.

The schedule and mapping must satisfy several valid-

1

ity requirements, including local interprocessor communi-
cation, conflict-free scheduling and causality (data is not
used before it is computed.)

2.1. Nonlinear mappings – tiling and clustering

Full-rank, linear mapping has the significant practical
problem that one has little control over the number of pro-
cessors. One would like to choose the number of processors
and their topologya priori, based on such practical consid-
erations as the need to map to a piece of existing hardware,
or to conform to a fixed allotment of chip area, board space,
or power. We therefore view� as a mapping onto an array
of virtual processors (VPs). The virtual processors are later
associated with physical processors, but this map is many-
to-one.

One approach to the problem of handling arbitrarily large
data sets and iteration spaces with fixed-size systolic arrays
is to decompose the whole computation into a sequence of
similar computations on subsets of the data [6, 2, 11]. This
approach is known astiling in the compiler literature, and
as the locally parallel, globally sequential method in sys-
tolic synthesis. We use tiling to control the size of the iter-
ation space in order to limit the local storage in our synthe-
sized processors. We do not want to constrain the tile size
by requiring the number of virtual processors to match the
number of physical processors. To do so would usually pro-
duce tiles too small to obtain significant benefit from reuse
of intermediate results in the array.

We use an alternative approach, which we callcluster-
ing, and which has also been called partitioning or the lo-
cally sequential, globally parallel (LSGP) technique in the
systolic synthesis literature. Clustering assigns a rectangu-
lar neighborhood in the array of virtual processors to each
physical processor. This amounts to choosing a rectangu-
lar cluster shape – a small(n � 1)-dimensional rectangle
– and then covering the(n � 1)-dimensional array of vir-
tual processors with nonoverlapping clusters. The cluster
shape is chosen so that the set of clusters forms ann � 1-
dimensional grid of the same shape as the systolic processor
grid. The systolic processor will have enough throughput,
and the schedule of the iterations will allow enough time, so
that each systolic processor will do the work of its assigned
virtual processors.

Let ann � 1-dimensional grid of systolic processors of
shape~P be given: processor coordinates satisfy0 � pi <
Pi. Thevirtual processor array is the image ofJ under
�. Let the smallest rectangle that covers the set of virtual
processors have dimensions~V , so that if~v = �~j for some
~j 2 J , then0 � vi < Vi. (We must apply a shift, in gen-
eral, to make the virtual processor coordinates nonnegative.)
Define the shape of thecluster, ~C = (C1; : : : ; Cn�1), by
Ci � dVi=Pie. The processor grid of shape~P , whose pro-
cessors each cover a cluster of shape~C , covers the whole

virtual processor space of shape~V . The number of virtual
processors assigned to a systolic processor is not more than

 �

Q
n�1
i=1 Ci.

2.2. Schedules consistent with clustered mappings

Assume that the physical processor can perform one loop
iteration per cycle. We are interested in finding a linear
schedule�(~j) = ~� :~j for the iterations. The need to com-
pute values before they are used leads to linear inequality
constraints on~� . Let ~u be a smallest integer null vector of
�. Thus,~u connects the iteration~j to the very next itera-
tion, ~j + ~u, that is mapped to the same virtual processor.
We know that the physical processor will visit each of its

 simulated virtual processors once, in some round-robin
manner, before returning to�~j again. Because we need to
allow at least
 cycles between visits,

j~� :~uj �
 : (1)

The throughput inequality (1) ensures that the physical pro-
cessor is not overloadedon average. But because we are
trying to determine a schedule that is precise (all actions
scheduled for a certain machine cycle) and correct, we can-
not allow two iterations to begin at the same time. Thus, the
problem we seek to solve here is the followingconflict-free
systolic scheduling problem: given ~C, the mapping� of
rank(n� 1) which has~u as its smallest integer null vector,
and linear inequality constraints on~� , choose~� satisfying
these constraint and such that no two virtual processors as-
signed to a given physical processor are scheduled to be
simultaneously active.

We say that a schedule that satisfies the no-conflict con-
straint for the given cluster “juggles”; imagine a juggling
processor with its
 balls (virtual processors) in the air, and
only one hand, capable of holding only one ball at any given
time. If ~� juggles and satisfies (1) with equality,

j~� :~uj =
 ; (2)

then we say that the schedule istight.
Our main result is a construction that producesall tight

schedules for a given cluster~C . We have not obtained any
results concerning nontight, juggling schedules, except for
the obvious. If a schedule is tight for cluster shape~D 6= ~C
and ~D � ~C elementwise, then this schedule is a nontight,
juggling schedule for~C.

3. Related work

The idea of Darte's (and initially Darte and Delosme's)
solution [4, 3] is to produce a cluster shape~C compatible
with the given schedule vector~� . In many practical situa-
tions, however, the physical and virtual processor arrays and
thus the set of possible cluster shapes is known. The task is
to find a tight schedule for a known cluster shape. Using

2

Darte's approach, this must be done by an indirect and pos-
sibly costly trial-and-error approach, while the theorem that
we later prove leads to a simple method that directly enu-
merates the tight schedules.

Darte's theorem and method work this way. The inverse
of any unimodular matrix having first row equal to~� has
as its second throughn-th columns ann � (n � 1) matrix
Q whose columns are a basis for the lattice of iterations
scheduled for time zero. LetA = �Q. ThenA is a square
integral matrix of order(n � 1) whose columns are the co-
ordinates of a set of virtual processors active at time zero.
Darte calledA the “activity matrix”. LetHa be the Her-
mite normal form ofA 1: A = HaQa with Qa unimodular.
The columns ofHa generate the lattice of virtual processors
active at time zero, and the diagonal elements ofHa are a
cluster shape for which~� is a tight schedule. This remains
true for the Hermite normal form of any permutation of the
rows ofA. Furthermore, this is a necessary and sufficient
condition for tight schedules (the necessity being the diffi-
cult part). Thus, given~� , Darte's method produces all clus-
ter shapes~C of sizej~� :~uj that juggle with~� . If the schedule
is specified and an appropriate cluster shape is desired, then
this method gives all possible choices.

Megson and Chen [8] attempt to guarantee a tight sched-
ule for some given cluster shape~C by working with the Her-
mite form ofA = �Q directly. Relying on the fact that the
Hermite form of a triangular matrixX has the same diago-
nal asX (up to sign), they chooseA to be triangular with
the elements of~C on the diagonal, and they assume that�

is known. They then look at the general solutionQ to the
underconstrained linear system�Q = A and from the so-
lutions they infer~� . They try to choose the unconstrained
components ofQ and the off-diagonal elements ofA to ob-
tain an acceptable schedule (via the inverse of a unimodular
extension ofQ). Megson-Chen produces tight schedules
from the specified cluster shape, but does not have real ad-
vantages compared to Darte's: one will still need to search
for desirable tight schedules indirectly, by manipulating pa-
rameters other than the elements of~� .

The clear advantage of the method we propose here is
that it works directly with~� . Thus, one has far more control
over the resulting schedule, and may quickly determine a
tight schedule that meets other requirements.

4. Construction of tight schedules

We now present a way to construct the set of all tight
schedules for a given cluster~C . First, we assume that�
consists of the first(n � 1) rows of the identity matrix, so
that�u = �en = �(0; : : : ; 0; 1)t = 0. We writex ^ z
for the greatest common divisor ofx andz. If x ^ z = 1

we say thatx andz are relatively prime. Then, we have the
following result:

1For more about Hermite forms and lattice theory, we refer to [12].

Theorem 1 Let ~C be a given cluster shape. If � consists
of (n � 1) rows of the identity, then ~� is a tight schedule if
and only if, up to a permutation of the elements of ~C and
the same permutation of the first n� 1 elements of ~� ,.

~� = (k1; k2C1; k3C1C2; : : : ; knC1 � � �Cn�1) (3)

where ki and Ci are relatively prime and kn = �1,

Proof. The if part is the easy part. For theonly if part, we
use the same same group theoretic result that was originally
employed in [3]. The complete proof is available in the ex-
tended version of this paper [5]. �

Actually, the restriction on� is unnecessary. LetS be
the inverse of a unimodular extension of�. The last column
of S is the projection vector~u. The remaining columns
are the vectors that describe the virtual processor array. In
particular, the first(n � 1) rows ofS�1 are the projection
matrix�. The transformation matrixM is the matrix whose
first row is~� and whose last(n� 1) rows are�:

M �

�
~�
�

�
; thus

�
t
~v

�
= M~j (4)

is the mapping from iteration~j to time t and virtual pro-
cessor~v. We now change basis in the iteration space:
~j0 = S�1~j are the coordinates of the iteration with respect
to the basis consisting of the columns ofS. In this basis, the
transformation becomes�

t
~v

�
= MS~j0 =

�
~�:S
�S

�
~j0 =

�
~� :S

In�1 0

�
~j0 (5)

Clearly,~� is a tight schedule with cluster shape~C and map-
ping� if and only it~� :S is a tight schedule for~C with the
mapping(In�1 0). Hence, the generalized condition (3)
applied to~�:S is a necessary and sufficient condition for
a tight schedule. The formula does not specify the com-
ponents of~� but rather the components of~� :S, and~� is
recovered through the integer matrixS�1.

We have used these results to generate schedules in a
practical system for synthesis of systolic arrays; the details
of the implementation will appear in a later report.

Example
Letn = 3; let ~C = (4; 5). Assume thate3 is the smallest

integer null vector of the space mapping. From (3), either
~� = (k1; 4k2;�20) or~� = (5k1; k2;�20)with ki^Ci = 1,
for i = 1; 2. For example,~� = (7; 4; 20) is a tight sched-
ule (with k1 = 7, k2 = 1, k3 = 1) that corresponds to the
activity tableau below. The number in each box denotes the
residue modulo 20 of the times at which the virtual proces-
sor that lives there is active. For a juggling schedule, these
are all different. (Thec1 axis is the vertical axis in the dia-
gram.)

3

1 5 9 13 17
14 18 2 6 10
7 11 15 19 3
0 4 8 12 16

For later use, we need to record some important proper-
ties of the mapping matrix and its Hermite normal form.
It is fairly straightforward to show, as a consequence of
Darte's theorem on schedules and the cluster shapes for
which they are tight, that the Hermite normal form of the
mapping matrixM (see (4) above) is (up to a row per-
mutation if�) a lower triangular matrix whose diagonal is
(1; C1; : : : ; Cn�1).

5. Reducing the cost of control

After transformation into LSGP form, the systolic loop
body serves as a specification of the systolic processor. In
its final form, the systolic nest has outer loops over tiles and
an inner nest consisting of a sequential loop over time and
a parallel nest over processors. The transformed parallel
loop body contains generated code that we callhousekeep-
ing code whose cost we consider here. Housekeeping code
has several forms and functions:
Cluster coordinates.For each timet on the given proces-
sor~p, one may need to compute the local position~c within
the cluster:0 � ck < Ck. These give the position of the
currently active VP.
Virtual processor coordinates. One may also need the
global virtual processor coordinatevk = ck + pkCk.
Iteration space coordinates.Since the iteration space co-
ordinates~j may appear in the loop body, these will some-
times need to be computed. The usual technique is to use

the relation~j = M�1

�
t
~v

�
. (The result is guaranteed to

be integer when~v is active at timet, even thoughM�1 is a
matrix with rational elements.)
Memory addresses.When data is “live-in” to the loop nest,
or is “live-out”, it is read from or stored into global mem-
ory. The memory address, which is the location of an array
element whose indices are affine functions of the iteration
space coordinates~j, must be computed.
Predicates. In a naive approach, many comparisons are
used to compute predicates. These comprise:Cluster-edge
predicates(comparison of the cluster coordinates~c and the
cluster shape~C); Tile-edge predicates(tests of the global
iteration coordinates against the limits of the current tile);
and Iteration-space predicates(that test the global itera-
tion coordinates against the limits of the iteration space).

Our first experiments with systolic processor synthe-
sis revealed that these housekeeping computations were so
costly that the resulting processor was grossly inefficient.
There were two primary reasons. One was the large number
of comparisons for predicates. We then observed that al-
most all of these repeat on a given processor with period
,

and that they can therefore be obtained from a
-bit circular
buffer. We use this technique in our current implementa-
tions with good results. The second and more important
reason for this inefficiency was the method used to compute
cluster coordinates. Our original approach took the rather
obvious viewpoint that each processor, at each time, com-
putes the cluster coordinates of its active virtual processor,
which is a function of the processor coordinates~p and the
time t. We generated the code by first applying standard
techniques [1] for code generation after a nonunimodular
loop transformation (using Hermite form) to generate a loop
nest that scans the active virtual processors for each time.
We then inferred the local processor coordinates~c from
the lower bounds for the virtual processor loops, which are
functions of~p andt, by taking their residues modulo~C .

This technique is memory efficient, but computationally
expensive. It is a form of integer triangular system solution.
Let T be a unimodular matrix such thatMT = Hm. Then�

t
~v

�
= M~j = HmT

�1~j = Hm
~i

whereHm is the Hermite Normal Form ofM , and~i is in-
teger. Furthermore, we know (see end of Section 4) that
the (1; 1) element ofHm is unity and that the rest of the
diagonal ofHm consists of the elements of~C. The require-
ment that the triangular system above has an integer solu-
tion ~i in fact completely determines the residues modulo
(1; ~C) � diag(Hm) of ~v, which are the cluster coordinates
of the VP active at timet on processor~p = ~v � ~C . This in
turn determines~v. Solving this system, inferring the clus-
ter coordinates in the process, hasO(n2) complexity. By a
slightly different use of the special form of a tight schedule
(see [5]), we reduced this cost toO(n). From the viewpoint
of generating hardware, however, the method still has a few
disadvantages since it involves a quotient and a remainder
for each dimension, and it does nothing to assist with ad-
dresses, iteration space coordinates, or predicates.

We now discuss methods for making a major reduction
in the cost of housekeeping computations; tests will show
that once these techniques are employed the cost of the re-
sulting processor is close to the minimum possible. We shall
examine two alternatives. Both of them trade space for time.
Both use temporal recurrences to compute coordinates.

First note that with a tight schedule, the cluster and vir-
tual processor coordinates, and all but one of the global iter-
ation space coordinates, are periodic with period
, as are all
predicates defined by comparing these periodic functions to
one another and to constants. The remaining iteration space
coordinate satisfies

jn(t) = jn(t�
) + 1 :

(These assertions apply when� consist of rows of the iden-
tity; things are only slightly more complicated in general.)

4

Any quantity that depends linearly onjn can be updated
with a single add. Quantities (such as predicates) that de-
pend only on the other coordinates are similarly periodic.
This is the cheapest approach possible in terms of compu-
tation; its only disadvantage is in storage. We need to store
the last
 values of any coordinate or related quantity that
we wish to infer by this
-order recurrence. When
 is fairly
large (say more than ten or so) these costs become signifi-
cant.

The alternative technique allows us toupdate the cluster
coordinates~c(t; ~p) from their values at anarbitrary previous
cycle but on the same processor:~c(t; ~p) = R(~c(t � �t; ~p))
(hereR stands for the recurrence map that we now explain.)
We may choose any time lag�t. (Provided that�t is not so
small that the recurrence becomes a tight dataflow cycle in-
consistent with the schedule that we have already chosen.)
The form ofR is quite straightforward. Using a binary de-
cision tree of depth(n� 1), we find at the leaves of the tree
the increments~c(t; ~p) � ~c(t� �t; ~p). The tests at the nodes
are comparisons of scalar elements of~c(t� �t; ~p) with con-
stants that depend only on~C and the schedule~� . They are
thus known at compile time and can be hard coded into the
processor hardware.

These cluster coordinates are the key. The global virtual
processor coordinates~v, the global iteration space coordi-
nates~j, and the memory addresses are all linear functions
of them. If we know the change in~c then we also know the
changes in all of these derived values, and these changes ap-
pear as explicit constants in the code. Only one addition is
needed to compute each such value. We have thus reduced
the problem of cost reduction to that of the update of the
cluster coordinates. The next section explains how we can
automatically generate this decision tree.

5.1. A general updating scheme

We first present the theory, then we will illustrate the
technique with an example. Note that the activity times on
some arbitrarily chosen processor~p are shifted by a con-
stant,~�:(p1C1; : : : ; pn�1Cn�1), compared with the times
on processor zero. This implies that the same decision tree
may be used on all processors. We therefore assume that
the processor coordinatespi are all equal to zero.

Recall that the columns ofT are a unimodular basis and
thatMT = Hm. The first row ofMT gives the time differ-
ence along each column ofT , and the last rows are the co-
ordinates of the columns ofT in the virtual processor array.
Since the first row ofMT is (1; 0; : : : ; 0), the first column
~w of T connects an isochrone (a hyperplane of iterations
scheduled for the same time) to the next isochrone, and the
remaining columns~t2; : : : ;~tn lie in an isochrone. Given
the iteration~j, what we want to find is a vector~k such that
M(~j+~k) = (t+�t; ~z)t where~z is “in the box”0 � ~z < ~C ,
which means that it corresponds to an iteration scheduled in

the same physical processor. Clearly~k is the sum of�t� ~w
and a linear combination of~t2; : : : ;~tn.

We know already that~k exists and is unique since the
schedule is tight. This can also be seen from the fact that
Hm has theCi 's on the diagonal: writing~k = T~�, we end
up with a triangular system that can be easily solved thanks
to the structure ofHm. We can add a suitable linear com-
bination of~t2, . . . , ~tn to �t � ~w so that the(n � 1) last
components ofM(�t � ~w) are in the box. This vector (let
us denote it by~�[0; : : : ; 0]) will be one of the candidates
in the decision tree. Now, either the second component of
M(~j + ~�[0; : : : ; 0] is still strictly less thanC1 and we are in
the first case (first branch of the tree), or this component is
strictly less than2C1 and we simply subtract~t2 to go back
in the box. In the latter case,~�[1; 0; : : : ; 0] = ~�[0; : : : ; 0]�~t2
(plus possibly a linear combination of~t3, . . . ,~tn so that the
(n � 2) last components ofM~�[1; 0; : : : ; 0] are in the box)
is one of the candidates in the decision tree. Continuing in
this way, we end up with at most2(n�1) vectors (at most
two cases for each dimension, and only one when the cor-
responding component of the move vector is zero).

The notation in brackets for the vectors~� specifies if
the move is nonnegative (0) or negative (1): for example,
~�[0; 1; 1] corresponds to the case where we move forwards
in the first dimension and backwards in the two other di-
mensions.

Example (continued)
We take�t = 1 so that the reader can compare the result

with the activity tableau on page4. The Hermite form of
the mapping (MT = Hm) is
0
@ 7 4 20

1 0 0

0 1 0

1
A
0
@ 3 4 0

0 3 5

�1 �2 �1

1
A =

0
@ 1 0 0

3 4 0

0 3 5

1
A

From the matrixHm, we read that we may have to move
along ~w = (3; 0) in the virtual space (which corresponds,
in the original space, to the first column ofT , the vector
~�[0; 0] = (3; 0;�1)). If c1 + 3 � 4, then we subtract
the second column ofHm, i.e. (4; 3), we find the move
vector(�1;�3), and we add the third column to go back
in the box: (3; 0) � (4; 3) + (0; 5) = (�1; 2). This cor-
responds in the original space to~�[1; 0] = (3; 0;�1) �

(4; 3;�2) + (0; 5;�1) = (�1; 2; 0). Then, for both vec-
tors, we check the last component: in the first case, no other
vector is required since the second component of(3; 0) is
0. In the second case, we may have to subtract(0; 5): the
last candidate is thus(�1; 2) � (0; 5) = (�1;�3) and
~�[1; 1] = (�1;�3; 1). With this technique, we get the deci-
sion tree below. �

The technique works the same way for arbitrary�t. You
begin with the change�t� ~w, and “correct” it as necessary
with the remaining columns ofHm in order to find the tree

5

if (c(1) + 1 < C(1)) {
c(1) += 1;
if (c(2) + 4 < C(2)) {

c(2) += 4;
} else {

c(2) += (-1);
}

} else {
c(1) += (-3);
if (c(2) + 1 < C(2)) {

c(2) += 1;
} else {

c(2) += (-4);
}

}

of changes. This gives the necessary tests in the decision
tree directly, as well as the corresponding changes in the
cluster coordinates and the original loop indices.

5.2. Measuring the cost of housekeeping code

We show here the results of systolic loop transformation,
with our efficient recurrence scheme for cluster coordinates
and the parameters that depend on them linearly. We use
three loop nests as test cases. The first, from an applica-
tion in digital photography, is a nest of depth six, in which
the loop body contains only a simple multiply-accumulate
statement. The second, from a printing application, is a
much more complicated loop body. The third is matrix mul-
tiplication. We transformed the loop nests using the mecha-
nisms described in this paper. In [5], we present the original
and the transformed loop nests for matrix multiplication as
an illustrative example.

Photography Printing Matrix Mult.
operation orig. transf. naive orig. transf. orig. tranf.

+ 5 7 52 22 31 5 6
� 1 1 34 1 1 1 1
� 0 0 4 0 0 0 0

compare 1 6 35 18 18 1 3

In the table, we show the number of inner-loop integer
operations in the original and the fully transformed loop
nests. In addition, for the photography application, we show
the same statistics for the code as transformed by the naive
methods that we have earlier described. The counts were
obtained by examining the code. It is clear from this data
that the housekeeping due to parallelization has added to the
computational cost of the loop body. The number of oper-
ations increased by seven in the simple photography loop,
nine in the more complicated printing loop, and only three
in the matrix product loop. The ratio of the added operation
count to the original operation count is3 : 7 for the matrix
multiply loop, 1 : 1 for the photography loop, and9 : 41

for the more complicated loop. The photography loop has
a deeper decision tree than matrix multiply because of the
deep loop nest; this accounts for the different costs. Evi-
dently, with optimization, housekeeping costs are not triv-
ial, but they are manageable. The naive method, however,
produces intolerably costly code for calculation of coordi-
nates, predicates, and memory addresses.

6. Conclusion

The first part of this paper provides a simple characteri-
zation of all tight LSGP schedules, solving a longstanding
problem in systolic array synthesis. The characterization al-
lows a synthesis system to directly enumerate all the tight
schedules in any desired region of the space of schedules,
which can be very useful in generating tight schedules in,
e.g., a polyhedron defined by recurrence constraints.

We also demonstrated a new technique for generating ef-
ficient parallel code that takes full advantage of our charac-
terization of tight schedules. Our experiments have shown
that the specialized processors we generate are highly effi-
cient in their gate count and chip area. We conclude that the
technique explained in the second section of this paper can
control the added computational cost due to parallelization
to the point where it is not overly burdensome, especially
for loop nests that have more than a handful of computa-
tions in the innermost loop.

References
[1] C. Ancourt and F. Irigoin. Scanning polyhedra with DO

loops. In3rd ACM PPoPP Symp., pp. 39–50, Apr. 1991.
[2] P. Boulet, A. Darte, T. Risset, and Y. Robert. (Pen)-ultimate

tiling? INTEGRATION, the VLSI Journal, 17:33–51, 1994.
[3] A. Darte. Regular partitioning for synthesizing fixed-size

systolic arrays.INTEGRATION, The VLSI Jounal, 12:293–
304, 1991.

[4] A. Darte and J.-M. Delosme. Partitioning for array proces-
sors. Tech. Rep. 90-23, LIP, ENS-Lyon, 1990.

[5] A. Darte, R. Schreiber, B. R. Rau, and F. Vivien. A con-
structive solution to the juggling problem in systolic array
synthesis. Tech. Rep. RR1999-15, LIP, ENS-Lyon, 1999.

[6] F. Irigoin and R. Triolet. Supernode partitioning. In15th
ACM POPL Symp., pp. 319–329, 1988.

[7] H. T. Kung and C. E. Leiserson. Systolic arrays (for VLSI).
In Sparse Matrix Proc., pp. 256–282. SIAM, 1978.

[8] G. M. Megson and X. Chen. A synthesis method of LSGP
partitioning for given-shape regular arrays. In9th IPPS, pp.
234–238. IEEE, 1995.

[9] D. Moldovan. On the analysis and synthesis of VLSI systolic
arrays.IEEE Trans. on Computers, 31:1121–1126, 1982.

[10] P. Quinton. Automatic synthesis of systolic arrays from uni-
form recurrent equations. In11th ISCA, pp. 208–214. IEEE,
1984.

[11] J. Ramanujam and P. Sadayappan. Tiling of iteration spaces
for multicomputers. InICPP, pp. 179–186. IEEE, 1990.

[12] A. Schrijver. Theory of Linear and Integer Programming.
Wiley, New York, 1986.

6

