DATA PARALLELISM AND PEI EQUATIONAL LANGUAGE

GUY-RENE PERRIN and ERIC VIOLARD

ICPS, Université Louis Pasteur, Strasbourg
Pole API, Boulevard Sébastien Brant, F-67400 Illkirch
{perrin,violard}@icps.u-strasbg.fr

URL: http://icps.u-strasbg.fr

Abstract. The theory PEI [13,14] was introduced in order to address crucial
questions of program design methodology through a straightforward general-
ization of equational notations [9, 3]. The relationship between a PEI statement
and a data parallel program is quite obvious since PEI expresses, in an ab-
stract way, parallel variables, global operations and communications, and data
alignment. The paper illustrates this point and considers a few examples.

Keywords. Data Parallel Programming, Equational Languages.

1. INTRODUCTION

Among the various parallel programming models that have recently emerged [11],
the data parallel paradigm is of particular interest. Former data parallel languages,
such as C* or MPL, were designed in order to program efficiently massively parallel
architectures. But, in the programming point of view, the question is: how such low-
level imperative languages can safely describe problems ? Obviously they seem not
abstract enough for reasoning on programs.

The theory PEI [13,14] was born from a generalization of the so-called polytope
model [7] and equational notations [9, 3]. It was introduced in order to address crucial
questions of program design methodology and transformations [5].

Equational notations associated with the polytope model have been of great inter-
est in processor array synthesis or compiling techniques for static control programs.
Compiling techniques, program rewriting and parallel program design obviously share
some common knowledge about programs which serves as a basic tool for parallel
program reasoning.

Since a decade, a wide range of research works on static analysis of programs, forms
the foundation of parallelization techniques which improve the efficiency of the code:
loop nest rewriting, advices to the compiler to align or distribute the data or the oper-
ations, etc. These techniques are of particular interest in data parallel programming.

They are based on geometrical transformations either of the iteration space or of the
index domains of arrays, which assume conditions such as the affinity of dependences
and of loop bounds. In some sense, this shows that, beside a classical functional point of
view on programs, geometrical issues in parallel programming or parallelizing technique
have to be considered of main importance for the mastery of efficient computations.

This geometrical approach entails an abstract manipulation of array indices, to define
and transform

— the data dependences in the program,

— the way the data are, or are not, locally accessible,

— their expansion in a multidimensional space of virtual processors,

— etc.

This requires to be able to express, compute and modify the placement of the data and
operations in an abstract discrete reference domain. Then, the programming activity
may refer to a very small set of primitive issues to construct, transform or compile
programs. They are the foundations of PEI.

The relationship between a PEI statement and a data parallel program is quite
obvious: the paper illustrates this point. It is organized as follows: section 2 presents
main features of PEI called shaped data fields and the equational notation and meaning
of the language. Section 3 and 4 emphasize on two aspects to express or transform
programs: modularity and transformation rules in PEI. They are applied on an example
of a regular loop nest rewriting. The relationship between PEI and data parallelism
is spread all over the paper and section 5 focuses on a very particular point in data
parallel programming : the actual semantics of array indices in data parallel languages.

2. PRESENTATION OF PEI

2.1. Shaped data fields

PEI is an equational language. Its notations refer to mathematical objects called shaped
data fields. Shaped data fields, like sets or bags, are collections of elements which
are values of a given data type. When operations use two or more elements possibly
belonging to several bags, it is necessary to define the way each element is addressed
whithin its bag. This can be done for example by associating an index with each
element. In the literature such indexed collections are referred to as data fields [3, 8].

A natural and interesting way to index elements of such a collection is to use a kind
of geometry: therefore each element is associated with a point in a discrete geometrical
space, say Z". The index set of a data field is the set of points where its values are
placed.

Fig.1. Data field A

Fzample 1. Fig. 1 shows a data field A whose index set forms a triangle in Z2.

The way the values are combined in an operation can then be interpreted geometrically
as superimposing values according to the points where they are placed.

ow
Own
Ow

N
AN

Fig. 2. Data field A + B

Fzample 2. For example, let us consider again the data field A and let B be another
data field of same index set. Then, the expression A + B denotes the data field drawn
on Fig. 2.

More generally, A + B denotes the data field whose values are the sum of values
of A and B with the same index and whose index set is the intersection of A and B
index sets.

Indexing is also natural to express dependences between the values of two objects as
in a recurrence equation notation: dependence defines a partial function from indices
to indices.

Fzample 3. Let U denote a data field whose index set is N and consider the data field,
denoted as V whose values are shifted to the right. This relation between U and V can
be denoted in PEI as: V = U <|pre

where pre is the name of a function which maps an index 7 to the index ¢—1. It means
the value at index ¢—1 in U is moved to the index ¢ in V. This is a classical feature in
equational languages like LUSTRE [6] or 81/2 [10].

Note that the function may not be injective and expresses a broadcast.

Ezample 4. Let M denote a data field whose index set is [1..4] x [1..4] in Z%: it rep-
resents a 4 X 4-matrix, say M. Let us consider the 4 x 4-matrix formed of the first
column of M replicated four times. It can be represented by the data field L defined
as: L = M <|spread col
where spread_col is the name of a partial function which maps any point (7, j) with
J €[1..4] to the point (i, 1). Tt is defined in PEI as:

spread_col(i,j) = (1<=j<=4) .(i,1).
All these issues concern classical approaches in equational languages based on data
fields. On the contrary, PEI is founded on a different concept of ”shaped” data field. A
shape expresses the relationship between the locality of values on a virtual architecture
and the way they are indexed according to the problem terms: it associates indices of
the index set with so-called locations '. A shaped data field is a data field associated
with a shape.

Locality is considered in a virtual meaning as a space and time expression

indices indices

Fig.3. (a) A shape (b) A shaped data field

Ezample 5. Fig. 3(a) shows a shape whose indices form a square in Z*: every index
is associated with locations (grey painted). Fig. 3(b) shows a shaped data field which
associates the data field & drawn on Fig. 1 with the previous shape. Each index of its
index set i.e. a triangle {(¢,j) | 0<i4j<1}, is associated with at less one location in
the shape.

Let us consider the two shaped data fields X and Y drawn on Fig. 4. They are different
data fields associated with different shapes, but the values associated with locations are
the same: we say that the shaped data fields are equivalent. This relation is expressed
in PEI through the equation: X =Y ::align

where align is the name of the partial function which maps any point (,j) of the
square {(7,7) | 0<%,j<1} to i+j. This means the index i+j in Y is related with the
index (7, j) in X. The partial function named align is defined in PEI as:

align(i,j) = (0<=i,j<=1) .(i+j).

Note that, since locations express space items, associating indices and locations
expresses data alignment on a virtual processor mesh. This facility exists in data par-
allel programming and allows to transform data placement on the machine in order to
improve data locality and parallel code efficiency.

2.2. An introduction to PE1 Programming

Previous section presented the main feature in PEI: the shaped data field. Let us see
now how such items are expressed and what a PEI program means.

Any PEI program is composed of unoriented equations 2, each of them connecting
two expressions of the same shaped data field. A program expresses the relation between
some input shaped data fields and an output one. Here is a first example of PEI program:

2 PEI means Parallel Equations Interpretor and pays homage to the architect of the Pyramide
du Louvre.

Fig. 4. Two equivalent shaped data fields

FEzample 6. Summation of two N x N-matrices.

MatSum[n]: (4,B) -> C

{

A = A ::matrix
B = B ::matrix
C=A+B

}

matrix(i,j) = (1<=i,j<=n) .(1,j)

— the two first equations define the index set of the input shaped data fields A and B:
function matrix defined as the identity, means that their values are placed onto a
square [1..N]x [1..N] of Z* (This program is parameterized by n which denotes).

— the operation + builds the pairs of value items of A and B which are placed at the
same index: these values are added and form the output data field C.

Let us see a second example in order to carefully introduce the syntactic issues of
PE1. Tt is a classical example of prefix-sum of N numbers.

Ezample 7. xp =3 ;o p @ik =1..N.

PrefixSum[n]: A -> X
{
A =4 ::dom
X <|fst = A <|fst
X <|Inext = A + (X <|pre)
}

dom(i) = (1<=i<=n) . (i)

pre(i) = (i-1)
fst(i) = (i=1) .(i)
next(i) = (1<i<=n) . (i)

— the first equation defines the index set of the input data field A: its values are
placed onto a line segment [1..N] of Z,

— Fig. 5 intuitively shows that data field X is a solution of the two last equations:
its value items are the prefix computations of the sums of the value items in A.
The former of these two equations says that the first values in A and X are the
same. The second one defines others values of X. The expression (X <|pre) defines
a data field resulting from X by shifting its values from left to right. They are then
composed with the values of A in the expression A + (X <|pre) and added one
another.

1 2 3 4 5
l @] O O O 6] Os ‘ A
l 1 3 6 10 15 21 ‘ X
@] o [e)) o)
1 3 6 10 15
l O O O O O O ‘ (X <|pre)
3 6 10 15 21
lo O o o 0o O ‘ A+ (X <|pre)
| L 6 o o o o ‘ (X <[fst)
3 6 10 15 21
l o & & v g ‘ (X <|next)

Fig.5. X is a solution of the two last equations

2.3. Semantics of PEI operations

Expressions are defined by applying operations on shaped data fields. There are three
operations in PEI:

e in section 2.1, the operation used in the expression (Y ::align) both modifies the
index set (deletion of indices, change of dimension, ...) and the shape in such
a way that locations are associated with the same values. As said before, writing
X = Y ::align defines X and Y as equivalent shaped data fields. The operation is
called change of basis and is denoted as : :.

e another operation “moves” values in the index set. It is called geometrical op-
eration (or routing), and is denoted as <|. For example, assuming shift is the
function written in PEI as shift(i) = (0<=i<4) .((i-1)%4), the expression (V
<|shift) denotes a shaped data field whose values are shifted one place cyclically
to the right.

If the function is not injective the operation expresses a broadcast. For instance
(V <|spread), where spread(i) = (0<=i<4) .(0) means the value mapped at

(Y <|mirror) (Y ::mirror)

Fig. 6. Routing vs Change of basis

index point 0 in V is broadcasted to index points 0 to 3, to form the resulting
shaped data field.

Note that change of basis modifies the index set and the shape, while only the index
set is concerned with the geometrical operation. Fig. 6 outlines semantic differences
between these operations if defined by the same function mirror, written in PEI
as mirror(i) = (2-1i), applied to shaped data field Y of section 2.1.

This example can be enlightened in an intuitive way by considering that location
and index sets look like a toy composed of two chips connected by a set of elastic
strings : change of basis consists in twisting one chip round the other one in order
to tangle or untangle the strings.

e the third operation computes the values of a shaped data field, and is called glob-
al operation. Tt performs an element-wise computation on the data field. Global
operations are induced from classical n-ary operations (—, + as examples). For ex-
ample, (V + 3), defines a data field whose values are computed from the V values
having the same indices.

2.4. Example: Heat equation

Let us consider a thin uniform rod whose extremities are held to 0°C'. The temperature
U(z,t) of the rod at time ¢ and distance z from one of its end, is defined by the following
differential equation:

v
ot 0x?
In order to simulate the diffusion of heat in the rod, a numerical solution uses a

discretization in respect to time and space [12]. A finite-difference approximation of
equation (1) is:

Ui:j = 7°Ui_‘|’j_‘] + (1 - 2T)Ui1j_1 + rUi+17j_1 (2)

where r is a constant only depending on discretization parameters. Fig. 7 presents a
framework of resulting values of U for r = 5.10° (m.s~?).

4"‘7 4@“

l II "ll U
..:ll:l’}}""'

l IIIIIIII lllll’"%'l’ 1

' 4" M.«VA»

ﬁ‘

Fig. 7. Heat diffusion in a thin uniform rod

In PE1, U will be expressed by a shaped data field, say U, whose index set is a
rectangle [1..N] x [0..T] in Z* where N and T are discrete bounds of discretized space
and time.

Dependencies in equation (2) are expressed by geometrical operations in PEI. These
routings define four domains in the index set of U (cf. Fig. 8): the rod points (such that
Jj=0), left and right borders and the domain inside (grey tinted). Values on borders are
known: initial temperatures at rod points and 0 elsewhere. Values inside the rectangle
are computed from values of shaped data fields (U <|left), (U <|middle) and (U
<|right) which are obtained by shifting U up-left, up, and up-right (according to the
figure orientation) as this equation says:

U <|inside = r*(U <|left) + (1-2*r)*(U <|middle) + r*(U <|right)
with:

inside(i,j) = (1<i<n & 0<j<=T) .(i,j)

left(i,j) = (i+1,j-1)
middle(i,j) = (i,j-1)
right(i,j) = (i-1,j-1)

Let us consider the vector whose components are the initial temperatures of the
rod. The vector is naturally associated with a shaped data field V¥ placed on the line
[1..N]in Z. In PEI, we can write the relation between V and U as follows:

U <|thinrod = V ::alignrod

thinrod (i, j)
alignrod(i,j)

(1<=i<=n & j=0) .(i,j)
(1<=i<=n & j=0) .(i)

(U <|middle)

(U <|left) (U <Iright)

Left Border
Jeplog Wby

Fig. 8. Building U

Note that the equation implicitly defines both the index set of V and the way V is
placed on U: this is the classical alignment issue in data parallel programming.

Here is a complete PEI statement for the problem:

DiffHeat[n,T,r] : V -> U
{
U <|bord =0
U <|thinrod = V ::alignrod
U <|inside r*(U <|left) + (1-2#r)*(U <|middle) + r*(U <|right)

}
alignrod(i,j) = (i<=i<=n & j=0) .(i)
bord(i,j) = ((i=1 | i=n) & 0<j<=T) .(i,j)

thinrod(i,j) = (i1<=i<=n & j=0) .(i,j)
inside(i,j) (1<i<n & 0<j<=T) .(i,j)

left(i,j) = (i+1,j-1)
middle(i,j) = (i,j-1)
right(i,j) = (i-1,j-1)

3. PROGRAM STRUCTURATION

Modularity is an important issue in programming. It is achieved in PE1 by structuring
statements or objects.

3.1. Structuration of statements

In PEI, equation of the form: Eo=P(E{)

where P is the name of a program, and Eq and E; are shaped data field expressions,
may be written. Intuitively, such an equation means that the shaped data fields denoted
by the expressions Eg and Ey, satisfy the relation expressed by the program P.

Ezample 8. (The matrix product) The matrix product can be written in PEI by using
the previous parameterized statement PrefixSum[n]:

MatProd[n] : 4,B -> C
{

(A <l|align_row)*(B <|align_col)
PrefixSum[n](P)

P
C
b

(1<=1i,j,k<=n) .(i,k)
(1<=i,j,k<=n) .(k,])

align_row(i,j,k)
align_col(i,j,k)

The given matrices denoted by input shaped data fields A and B are broadcasted along
axes j and i respectively in a cube of size N. Elements of the matrices are then
superimposed in order to compute all products a; x X by ;. Last, products are added
using PrefixSum[n] considering their projection along the k-axis as a N-vector. The
N? summations result in the output C.

3.2. Structuration of objects

Shaped data fields express values mapped onto some index set which is a part of Z".
These objects are mainly characterized by operations (routing or change of basis) which
do not involve values but only indices in Z". In some sense, it means that objects are
characterized by their structure, i.e. the way their index set is defined. For example,
the previous 3D-data field P is defined as a 2D-array of N-vectors.

FEzample 9. Let us consider a N x N-matrix, i.e. a data field whose values are placed
on a square of 7% and suppose we want to define an operation which shifts values one
column right.

The way a shaped data field A expresses this matrix will induce different definitions
for this operation:

e the matrix can be considered as formed of N? elements that are its values. In that
case, the operation is written as (A <|shift) with shift(i,j) = (i,j-1).

e the same operation can be written differently considering that it only involves the
columns of the matrix. We can write: (A <|shift’) with shift’(j) = (j-1).In
that case, the matrix is considered as formed of IV columns: the values are placed
on indices from 1 to NV in Z and the index set of A is considered as a line in Z.

Such a point of view can be used through a change of basis in order to express
programs in a modular way.

Ezample 10. Let us consider a (2N) x (2N)-matrix. It can be seen as a N x N block
matrix whose ”values” are blocks of size 2 x 2. Assuming the shaped data field A
expresses the matrix, it can be block-organized by applying the change of basis defined
by the bijection by _block:
by block(x,y,i,j) = (1<=1i,j<=n & 1<=x,y<=2) .(2(i-1)+x,2(j-1)+y)

Let AO be the shaped data field which satisfies A0 = A ::by block. Then, A0 can be
used as a matrix whose index set is [1..N] X [1..N], any index identifying a 2 x 2 block.
For example, this new layout of the matrix can be used to write the block-matrix
product:

BlockMatProd[n,h] : A,B -> C

{

A0 = (A ::by_block) <|align_row

BO = (B ::by_block) <|align_col

P ::step_wise = MatProd[h] ((A0 ::elt_wise), (BO ::elt_wise))
C = PrefixSum[n] (P)
}

by_block(x,y,i,j) = (1<=i,j<=n & 1<=x,y<=h) .(h(i-1)+x,h(j-1)+y)
align_row(i,j,k) = (1<=i,j,k<=n) .(i,k)

align_col(i,j,k) = (1<=i,j,k<=n) .(k,j)

elt_wise(i,j,k,x,y) = (x,y,1,j,k)

step_wise(i,j,k,x,y) = (1<=1i,j,k<=n & 1<=x,y<=h) .(h(i-1)+x,h(j-1)+y,k)

Matrices A and B of size (hN)x (hN) are block-organized by the change of basis
operation (::by_block). In the context of the program, we use names (1, j) to identify
a block of size hxh and (x,y) to identify an element inside a block.

The blocks are then broadcasted into a cube by using operations (<|align row)
and (<|align_col) and form two cubes (whose third dimension is named k) of blocks.
They are reorganized as two hxXh matrices of elements by using the change of basis
elt_wise which swaps (i, j, k) dimensions for (x,y) ones. Products of these two hxh
matrices are then computed using a call to the program MatProd[h] which performs
N? elementary-matrix products.

The intermediate result P is implicitly defined. By definition of step wise, P is
block-organized as a (hN)x(hN)-matrix of N-vectors. Last, the call to the program
PrefixSum[n] perform (hN)% summations and result in the output C.

4. PROGRAM TRANSFORMATIONS IN PEI

The ability to master efficiency of computations is of particular interest in data-parallel
programming. It can be achieved by stepwise program transformations such as par-
allelization of a sequential program or generation of data alignment directives. Such
transformations can be formally expressed in PEI.

4.1. Transformation rules of PEI

The semantics of PEI allows to define program transformations, as soon as a shaped
data field is substituted for any equivalent one in an expression, or by applying some
algebraic law on the operations. Here is a few examples of such laws (a detailed list is
given in [15]).

(vop E) <If wop (E <I[f)
(vop E) ::f = wop (E ::f)
(Eo bop Ep) <If (Eg <If) bop (Eq <If)
(Eg bop E1) ::f (Eg ::f) bop (Eq ::f)

(E <Ifo) <If1 = E <[(fo o f1)
(E ::f0) ::f1 = E ::(foof1)
(E <[fo) ::f = (E::f) <Ify if foof=Ffofi

where wop and bop express respectively unary and binary global operations. Some of
these laws require hypotheses to be satisfied. This point is not detailed here.

Such transformation rules are very interesting either to improve program efficiency,
or to parallelize a given code or to align data in a data parallel programming model.
Here is an example dealing with parallelizing nested loops.

4.2. Time-space transformation

Among classical program transformations, the rewriting of loop nests is a paralleliza-
tion technique a compiler could apply (see the wide literature on this topic [4,1,7],
etc.). Let us consider a simple example.

Ezample 11. Nested Loops.
Assuming that a; 1, 7 € [1..N] and a4 ;, j € [1..N] are input data, let us consider
the following sequential loop nest:

do i=2,n

do j=2,n
a(i,j)=a(i-1,j)+a(i,j-1)
enddo

enddo

From a dependence analysis an affine timexspace transformation may apply (see

Fig. 9), defined as:
()= () + ()

The new iteration space can be scanned by a parallel loop which describes a compu-
tation front, within a sequential loop spending the time. Considering such a compiling

time-space
transformation

[/
[ST

Fig.10. Time-space transformation applied on shaped data fields in Pr1

technique in the formalism PEI means: apply a change of basis operation. As said in sec-
tion 2.3, this transformation leads to untangle the set of elastic strings which connect
locations and indices. This is illustrated on Fig. 10.

Here is the example written in PEIL:

NestedLoops[n]: D -> A

{
A <|bord = D ::bord
A <|next = (A <|right) + (A <|up)
}
bord(i,j) (1<=i,j<=n & (i=1 | j=1)) .(4,3)

next(i,j) (1<i, j<=n) .(i,])

right(i,j) = (i-1,j)
up(i,j) = (i,j-1)

Let us consider this bijection for the change of basis operation:
time_space(t,p) = ((p+t-n+1)%2 =0) .((p+t-n+1)/2, (t-p+n+1)/2)

By definition of PEI, it expresses the inverse of the bijection which defines the time x
space transformation above-mentioned. Needed hypotheses are satisfied: this change
of basis can apply on the equations and come into the expressions:

(D ::bord) ::time_space
((A <|right) + (A <|up)) ::time_space

(A <|bord) ::time_space

(A <|next) ::time_space
It rewrites as:

A’ <|bord’ = D’ ::bord’
A’ <|next’ = (A’ <|right’) + (A’ <|up’)

with A’ = A ::time spaceandD’ = D ::time_space, and where bord’, right’ and
up’ are the functions the transformation leads to.

Expressions such as (4 <|right) ::time_space are transformed by applying alge-
braic laws on operators. It can be rewritten as (A ::time _space) <|right’ provided
right o time space = time space o right’ (idem for the other functions). One
can define:

bord’ (t,p) = (i<=p+t-n,t-p+n<=2n-1 & (p+t=n+1 | p-t=n-1)) .(t,p)
next’(t,p) = (1<p+t-n,t-p+n<=2n-1) .(t,p)

right’ (t,p) = ((p+t-n+1)%2 =0) .(t-1,p-1)

up’ (t,p) = ((p+t-n+1)%2 =0) .(t-1,p+1)

The predicates of these last functions can be simplified by using the Fourier elimi-
nation and yield the following PE1 program:

Parallelloops[n]: D’ -> A’

{

4’ <|bord’ =D’ ::bord’

A’ <|next’ = (A’ <|right’) + (A’ <|up’)
}

bord’ (t,p) = (1<=t<=n & (p=t+n-1 | p=n-t+1)) .(t,p)

next’(t,p) (1<=t<=2n-1 &
max(1,n-t+2,t-n+1)<=p<=min(2n-1,t+n-2,3n-t-1)) .(t,p)

right’ (t,p) = ((p+t-n+1)%2 =0) .(t-1,p-1)

up’ (t,p) = ((p+t-n+1)%2 =0) .(t-1,p+1)

Such a statement could be easily translated in a data parallel language in which a
masking instruction determines active virtual processors among the array of (2N—1)
Processors.

9. PEI AND DATA PARALLELISM

Previous examples have shown that the relationship between a PEI program and a
data-parallel one is quite obvious since PEI expresses in an abstract way parallel vari-
ables, data alignments and global operations and communications.

In this section, we focus on a major semantic point in data-parallel languages: the
semantics of indices in a variable. In languages like HPF, the indices in a program
refer to indices of arrays, without any reference to data location. The association
between indices and locations is a possibly not injective function: an array index can
address several locations. In these languages, this allows to define data alignments
through directives. Then, if the program expresses that a value is moved from an
index to another one, it may involve any other relation between locations: we say that
communications are hidden.

In other data parallel languages like C*, indices refer to virtual processors: z[i]
means the local value of x in the ith processor. The association between indices and
locations is injective. Every index refers to only one location and any move of a value
between two indices in a program, involves a similar move between the two locations
of the variable. Therefore, parallel variables are distributed on the mesh and commu-
nications are explicit.

The language £ [2] was proposed as a formal semantics for this last kind of lan-
guages. PEI proposes an extension to both semantics.

Ezample 12. The matrix product (continued). We illustrate this point by considering

two versions of this problem. Let us first recall the previous program:

MatProd[n] : A4,B -> C
{

(A <|align_row)*(B <|align_col)
PrefixSum[n](P)

P
C
b

align_row(i,j,k)
align_col(i,j,k)

(1<=i,j,k<=n) .(i,k)
(1<=i,j,k<=n) .(k,]j)

According to the routing definition (see section 2.3), in this statement the shaped
data fields A and (A <|align row) have the same shape (which maps indices of both
matrix and cube onto locations).

Moreover, since two different indices cannot be associated with the same location in a
shape, an index of the cube cannot be associated with the same location as an index of
the matrix. Last the shape of these data fields can be a bijection as shown on Fig.11.

Here is another PEI statement for the matrix product. It describes the same algo-
rithm, but dependences (involving communications) have been replaced by references
to locations (involving data alignment), i.e. change of basis is substituted for routing.

,,,,,,,,,,,,, 4 --index set

/// locations locations
Fig.11. Data fields A and (A <|align row)

MatProd[n] : A,B -> C

{

P = (A ::align_row)*(B ::align_col)

C = PrefixSum[n](P)

}
align_row(i,j,k) = (1<=i,j,k<=n) .(i,k)
align_col(i,j,k) = (1<=i,j,k<=n) .(k,j)

__index_set
index set
aYeeYd
locations /// locations

Fig.12. Data fields A and (& ::align _row)

By definition, the shaped data fields A and (A ::align row) have two different
shapes, but the same values are associated with the same locations. On the example, it
means that any index in A is necessarily attached to several locations: hence consider-
ing a vertical line of the cube (as shown on Fig. 12), every index on this line is attached
to at least one location. Moreover, values on this line are the one located at an unique
index in A. Since A and (A ::align row) have the same values at the same location,
any index in A is necessarily attached to all the locations associated with the index on

the line in (A ::align_row). This means that the shape of A cannot be a bijection.

As said before, in the first statement, an index in (A <|align row) can be attached
to only one location. This statement can thus be interpreted in different intuitive
semantics of data parallel languages, for example in C*.

On the contrary, in the second example, an index in A is attached to several loca-
tions: the association between indices and locations is not a bijection. It means that
this statement expresses virtual indices in an array, which can be associated with dif-
ferent locations on a machine. This is typically what expresses data alignmentin HPF,
through an ALIGN directive.

These observations outline semantic differences between data parallel programming
languages.

6. CONCLUSION

In the area of scientific programming, parallelism is now a major challenge. Besides low
level programming languages, which may ensure an actual efficiency, general purpose
or abstract high level languages are required in order to manage a safe programming.

This paradox can be solved if an abstract machine-independent language is asso-
ciated with a sound transformation theory. So, a parallel program may be developed
from an abstract statement until a detailed and optimized program, which takes data
distribution and communications into account, according to given architectural con-
straints.

This was the aim of PEI, an equational language which is founded on the concept
of shaped data field and an equivalence definition. Due to the unifying aspect of this
theory, solutions that can be reached by these transformations are relevant to various
parallel programming models, such as ”systolic” processing or data parallelism. In this
paper we particularly focused on data parallelism, and we have shown how the formal
description of the language PEI can serve as a sound semantics for this programming
model.

REFERENCES

1. U. Banerjee. Loop Transformations for Restructuring Compilers: the Foundations. Kluwer
Academic Publishers, 1993.

2. Luc Bougé and Jean-Luc Levaire. Control structures for data-parallel SIMD languages:
semantics and implementation. FGCS, 8:363-378, 1992.

3. M. Chen, Y. Choo, and J. Li. Parallel Functional Languages and Compilers. Frontier
Series. ACM Press, 1991. Chapter 7.

4. P. Feautrier. Some efficient solutions to the affine scheduling problem, part 1, one-
dimensional time. Int. Journal of Parallel Programming, 21(5):313-348, 1992.

5. Stéphane Genaud, Eric Violard, and Guy-René Perrin. Transformations techniques in
PEI. FUROPAR’95, LNCS, 966:131-142, August 1995.

6. N. Halbwachs, P. Caspi, D. Pilaud, and J.A. Plaice. LUSTRE / a declarative language for
programming synchronous systems. P.0.P.L., 215:178-188, 1967.

7. C. Lengauer. Loop parallelization in the polytope model. Parallel Processing Letters,

4(3), 1994.

10.

11.

12.

13.

14.

15.

B. Lisper. Data Parallelism and Functional Programmming. LNCS 1132-Tutorial Series,
1996.

C. Mauras. ALPHA : un langage équationnel pour la conception et la programmation
d’architectures paralléles synchrones. PhD thesis, U. Rennes, 1989.

O. Michel, D. De Vito, and J.-P. Sansonnet. 8 1/2 : data-parallelism and data-flow.
Intensional Programming I1:Proc. of the 9th Int. Symp. on Lucid and Intensional Pro-
gramming. World Scientific, May 1996.

D.B. Skillicorn and D. Talia. Models and languages for parallel computation. Technical
report, Queen’s University, October 1996. also published in Computing Surveys.

G.D. Smith. Numerical solution of partial differential equations: finite difference methods.
Ozford Applied Mathemaltics and Computing series, Ozford University Press, 1985.

E. Violard and G.-R. Perrin. PEI : a language and its refinement calculus for parallel
programming. Parallel Computing, 18:1167-1184, 1992.

E. Violard and G.-R. Perrin. PEI : a single unifying model to design parallel programs.
PARLE’93, LNCS, 694:500-516, June 1993.

E. Violard and G.-R. Perrin. Reduction in PEI. CONPAR’94, LNCS 854, pages 112-123,
1994.

