A formal semantics of data parallel languages

Eric Violard

ICPS, Université Louis Pasteur, Strasbourg
Boulevard S. Brant, F-67400 Illkirch
violard@icps.u-strasbg.fr
Tel: (+33) 03 88 65 50 47, Fax: (+33) 03 88 65 50 61

Abstract. The data parallel programming model appears as a good
framework in which to develop software. Nevertheless, studies have still
to be carried out about this model, especially in theoretical foundations.
This paper is intented to show that these foundations are met by the
theory PEI. As an illustration, we propose a language based on this
theory and whose formal description can serve as a sound semantics
for data parallelism.

Keywords. Data-Parallel Languages, Semantics of programming languages,
Shape for Parallel Computing.

Topic 11: Parallel Programming : Models, Methods and Languages

1 Introduction

Among the various parallel programming models that have recently emerged, —
[13] gives an overview of existing ones — the data-parallel paradigm is of par-
ticular interest. Customized languages have been defined in this area, extending
classical expressions such as C or Fortran. Typical data-parallel languages, such
as C* [15] or HPF [6] include a similar core of data-parallel constructs, but they
are associated with different semantics. Thus, it is interesting to carry out a
formal semantic study about the data parallelism underlying concept, focussing
on the essence independently to any language. We proceed then as follows. We
first propose a theory that can integrate different implementations like C* or
HPF. Then, we propose a language and its formal definition in order to serve as
a base for illustrating our theory. The theory that we propose is the theory PEI
[17,18] born from a generalization of the so-called Polytope model [9]. PEI was
introduced in order to address crucial questions of program design methodology
and transformations [4], through a straightforward generalization of equational
notations [11, 3].

This paper is organized in three sections: section 2 gives an overview of the
language, section 3 is devoted to its formal definition and section 4 contains some
more tricky examples that can be easily handled in the language.

2 The language PEI

2.1 Shaped data fields

PEI notations refer to mathematical objects that are its central concept: these
objets are called shaped data fields. Shaped data fields, like sets or bags, are
collections of elements which are values of a given data type. When operations
use two or more elements possibly belonging to several bags, it is necessary to
define the way each element is addressed whithin its bag. This can be done
for example by associating an index with each element. In the literature such
indexed collections are referred to as data fields [10, 3].

A natural and interesting way to index elements of such a collection is to
use a kind of geometry: therefore each element is associated with a point in a
discrete geometrical space, say Z". The inder set of a data field is the set of
points where its values are placed.

. 1 3
/ o o

i

Fig. 1. Data field A

Ezample 1. Fig. 1 shows a data field A whose index set forms a triangle in Z2.

The way the values are combined can then be interpreted geometrically as su-
perimposing values according to the points where they are placed.

Fig. 2. Data field A + B

Example 2. For example, let us consider again the data field A and let B be
another data field of same index set. Then, the expression A + B denotes the
data field drawn on Fig. 2.

More generally, A + B (or B + A) denotes the data field whose values are
the sum of values of A and B with the same index and whose index set is the
intersection of A and B index sets. Superimposition defines another operation,
we call concatenation and noted []. The expression A [1 B (or B []1 A) denotes
the data field whose values are the values of A or B on the union minus the
intersection of their index sets.

Indexing is also natural to express dependences between the values of two objects
as in a recurrence equation notation : dependence defines a partial function from
indices to indices.

Ezample 3. Let U denote a data field whose index set is N and consider the data
field, denoted as V whose values are shifted to the right. This relation between
U and V can be denoted in PEI as: V = U <|pre

where pre is the name of a function which maps an index ¢ to the index i—1. It
means the value at index i—1 in U is moved to the index 7 in V. Such expressions
meet data-flow approaches in declarative language like LUSTRE [5] and the data-
parallel language 81/2 [12].

Ezample 4. Let M denote a data field whose index set is [1..4] x [1..4] in Z? : it
represents a 4 x 4-matrix, say M. Let us consider the 4 x 4-matrix formed of the
first column of M replicated four times. It can be represented by the data field
L defined as: L = M <|spread_col
where spread_col is the name of a partial function which maps any point (i, j)
with j € [1..4] to the point (¢,1). It is defined in PEI as:

spread_col(i,j) = (1<=j<=4) .(i,1).

Until now, it was the classical approach. Here is the PEI’s one with the notion
of ”shaped” data field. The notion of shape expresses the difference between the
locality of values on the architecture and the way they are indexed according
to the problem terms. A shape is a function which associates indices with some
others, called locations. A shaped data field associates a shape with a data field.

indices

Fig. 3. A shape

Ezample 5. Fig. 3 shows a shape whose indices form a square in Z*: each of
them is attached to some locations (grey painted). Fig. 4 shows a shaped data
field which associates the data field A drawn on Fig. 1 with the previous shape.
It contains three values. Its index set ({(i,5) | 0<i+j<1}) is included in the
index set of the shape ({(4,7) | 0<i,j<1}).

indices

Fig. 4. A shaped data field

Let us consider the two shaped data fields drawn on Fig. 5. They are different
data fields associated with different shapes, but their value at any location is the
same : we say that they are equivalent. This relation is expressed in PEI through
the equation: X = align:: Y
where align is the name of the partial function which maps any point (i, j) of
the square {(¢,) | 0<i, j<1} to i+j. This means the index i+j in Y is the index
(,7) in X. The partial function named align is defined in PEI as:

align(i,j) = (0<=i,j<=1) .(i+j).

Fig. 5. Two equivalent shaped data fields

Thus, thanks to the association between locations and indices, data align-
ment on a Virtual Processor Mesh can be expressed. Hence, one can control and
possibly transform the data placement on the machine in order to improve data
locality. The goal is to make data local to computations and reach parallel code
efficiency. Data alignment can be expressed in different manners in the data-
parallel programming languages, according to how the association is modeled,
whether as a function or as a bijection.

In languages like HPF, the association is a function: an array index can address
several locations. Hence, if a value is moved from an index to another one at
program level, it can involve any relation between locations: we could say com-
munications are hidden. In other data parallel languages like C*, the association
is a bijection. Each index refers thus to only one location. In that case, any move
of a value between two indices at program level, involves a similar move between
two locations at location level. Therefore, parallel variables are distributed on
the mesh and communications are explicit.

The language £ [1] was proposed as a formal semantics for languages with a
bijection between indices and locations. We propose an extension to model both
semantics.

2.2 PEI statements

A PEI statement is a set of equations which describes a relation between sev-
eral input shaped data fields and an output one. Each equation connects two
expressions which denote equal shaped data fields. Let us illustrate through a
few examples what PEI statements look like:

Ezample 6. (The prefix sum of N numbers)

VecScan[n] : V -> S v

/* Sum of the vector’s elements */ s

{ s <lpre

S = (V<Ifst) [1 (V+ (S <|pre)) V + (S <Ipre)

} v <lgst

fsv() = (i) . (1) (V <Ifst) [1 (V + (S <lpre))
pre(i) = (2<=i<=n) .(i-1) Fig.6. S is a solution of the equation

The input shaped data field V represents the vector whose values are assumed
to be placed onto a line [1..N] of Z (n denotes N). Fig. 6 intuitively shows that
output shaped data field S is a solution of the equation: its values are the prefix
computations of the sums of the values in V.

Ezample 7. (The matrix product) The matrix product can be written in PEI us-
ing the previous parameterized statement VecScan[n] (modular programming
is called structuration in PEI):

MatProd[n] : A,B -> C
/¥ n x n Matrix Multiplication */

{

P = (A <|align_row)*(B <|align_col)
C = VecScan[n] (P)

—

(1<=i,j,k<=n) .(i,k)
(1<=1,j,k<=n) .(k,j)

align row(i,j,k)
align_col(i,j,k)

locations

Fig.7. A <|align_row

The given matrices denoted by input shaped data fields A and B are broad-
casted along axes j and 4 respectively in a cube of size N. Elements of the
matrices are then superimposed in order to compute all products a;x X by ;.
Last, products are added using VecScan[n] considering their projection along
the k-axis is a N-vector — detailed explanation about this semantic point is re-
ported in appendix. The N? summations give the output C.

By definition, the shaped data fields A and A <|align row in this statement,
have the same shape (which maps indices of both matrix and cube onto loca-
tions).

Ezample 8. (The matrix product) (continued) Here is another PEI statement
for the matrix product. It is in some sense, equivalent to the previous one. It
describes the same algorithm, but dependences (involving communications) have
been replaced by references to locations (involving data alignment).

MatProd[n] : A,B -> C
/¥ n x n Matrix Multiplication */ J— »

{

P = (align_row:: A)*(align_col:: B)
C = VecScan[n] (P)

}

align row(i,j,k) = (1<=i,j,k<=n) .(i,k) ;;gg%ﬁ/
align col(i,j,k) = (1<=i,j,k<=n) .(k,j) alalil locations

Fig.8. A and align row:: A

Fig. 7 and 8 represent locations of the values of A for the statements of
examples 7 and 8 respectively. In the first statement, an index is attached to
only one location. In other terms, one may found a bijection between indices and
locations. The statement can thus be interpreted in different intuitive semantics
of data parallel languages like C* and HPF. On the contrary, in the second one,
an index in A is attached to several locations: the association between indices
and locations is not a bijection. It means this statement cannot be expressed in
C* whereas it can be expressed in HPF.

These observations outline semantic differences between data parallel pro-
gramming languages and we formalize them in the rest of the paper through the
PEI language definition.

3 Towards a formal description

Previous section presented constructs of the language with an intuitive meaning
and the relationship with data parallel languages. This section is intented to
give a formal description of PEI itself, in order to have a sound semantics of
data, parallelism.

Preliminaries. Here are some mathematical notations and concepts that are
assumed in the rest of the article. Let A and B be sets. Classically, we use
f : A — B to indicate that f is a function with dom f = A (the domain of
f) and codom f = B (the co-domain of f) and f : A — B to indicate f is
a partial function (f(a) can be L (undefined) for some (or all or no) elements
of A). Moreover, we use def f and img f to respectively denote the domain of
definition of f i.e. {z € dom f | f(z) #L} and its image i.e. {f(z) | z € def f}.

3.1 Syntax

Notations. The syntax of the language is given in BNF-like notation. Termi-
nal symbols are set in typewriter (like this). Non-terminal symbols are set in
a upright italic font type (like that). Curly brackets {...} denote zero, one or
several repetitions of the enclosed components. Square brackets [...] are used to
denote optional components.

The expressions of the language are given by the following grammar:

E:=-E | E+1 | Eg+E; | ... global operation
| X variable
| E<If dependence
| §:: E change of location
| Eo [1E; concatenation

where global operations are induced from classical n-ary operations (—, + are
representative examples) and § is the name of some partial function on integer
tuples: it is defined in the context of a statement. By convention, names of par-
tial functions start with a lower case letter (ex: roll, swap, ...) and names of
variables start with an uppercase one (ex: A, BO, B1, ...).
In PEIL, the definition of a partial function is of the following form:
f(pattern) = (pred) . (expr)

where pattern is a tuple of integer names (ex: (i,j,k)) - an integer name is a
lowercase letter i, j, ... - and denotes a formal argument of the function, pred
is a boolean expression that denotes the domain where the function is defined,
and expr is an integer tuple expression that denotes the result of the function
on its domain. When the function is always defined, j (pattern) = (expr) can be
used as a shorthand for j(pattern) = (true). (expr).

In fact, only some of the expressions defined above are well-formed. Classi-
cally, we will say that an expression is well-formed only if a type can be associ-
ated with it. An elegant way to define the type of expressions consists in writing
structural rules with formulas of the form E : 7 asserting that E is a well-formed
expression of type 7 [14]. Rather than introducing another language for types,
mathematical types will be used. In addition, df[n, V] is used as a shorthand for
the type of a shaped data field, that only depends on the dimension n of the geo-
metrical space Z" where values are placed, and on the data type V of its values.
Well-formed expressions in PEI can then be defined by the following rules:

E : df[n,R]
-E : df[n, R]
E:df[n,R] 1:R
E +1: df[n,R]
Eo : df[n,R] E; : df[n,R]
Eo+E;: df[n, R]
X : df[n, V]

§:Z¥ =7 E:dfn,V]
>
B<If: Ak, V] "= (dependence)
§:2¥ ~ 7" E:df[n,V] _
>
i E: df[n—k+H¥, V] n>k (change of location)
Eo : df[n, V] E; :df[n, V]
Eo [By : df[n, V]

(concatenation)

Let us consider the rules of dependence and change of location. Given the type

of the partial function §, several types can be chosen for the expression E :
all the types df[n,V], for any n such that n>k where k is the dimension of
the function j co-domain. It means the definition is sufficient to define well-
formed expressions, but not sufficient to have an unique type associated with an
expression. Therefore we complete this definition by choosing the “least type”
that can be found. This refers to an order relation between types which is defined
as: df[n, V] is smaller than df[m, V] iff n<m. This precision allows expression
types to be automatically inferred from function types.

3.2 Semantics

Objects PEI notations refer to objects that are called shaped data fields. This
section is intented to give a formal definition of these objects. Let us first define
the related notions of data field and shape.

A data field maps values of a given data type V onto its index set. It is there-
fore a partial function from indices to V. Its domain of definition is called the
indezx set of the data field. An index is an element of any geometrical space.
Formally, indices are elements of the set I defined as the union of all Z",
n € N. The index set of a data field is a subset of I, such that each element
belongs to the same Z".

Definition 1. (data field) We call data field, any partial function X from I toV,
whose domain of definition is a subset of some Z".

X: I~V
dn e N.defX CZ"

A shape associates locations with some indices. It is therefore a partial function
from locations to indices. Mathematically, a location and an index are both
elements of I. We call location any element of the domain of a shape.

Definition 2. (shape) We call shape, any partial function o from I to I.
o:I—~1T

The image of a shape is the set of indices which are attached to at least one
location. A shaped data field is a data field X associated with a shape o, such
that the index set of the data field is included in the image of the shape i.e.
def X C img 0. It could be defined as the pair (o, X). This would assume to
give a constructive definition of the part o for every operations on shaped data
fields, and would impose unnecessary restriction on operations. This was our
original approach in [16,4]. A shaped data field will be rather formally defined
as a total function X which returns X given the shape ¢ and the data field
nowhere defined, given any other shape.

Definition 3. (shaped data field) We call shaped data field, any total function
X from shapes to data fields, that returns for one shape o, a data field X (o)
denoted as X such that def X C imgo, and for any other shape, the data field
nowhere defined.
X:(I-1)-({T—-YV)
o +— X(o)

Expressions Semantics of well-formed phrases in PEI are defined by semantic
functions, denoted as [.]” for any phrase of type 7. Given some environment
which may depend on the type 7, the function [.]” maps any well-formed phrase
of type 7 to its mathematical meaning.

Any semantic function is defined within an environment, denoted e which
gives values to some global parameters. It may also depend on a more specific
environment, denoted as p, that depends on the type 7. If there is no ambiguity
about the type of a phrase x, the result of the semantic function is denoted as
[x],, or even [x] if there is no ambiguity about the specific environment.

Let us consider the well-formed expressions defined in the previous section.
Their semantic function is defined given an environment p which maps any vari-
able in the statement to its value. Classically, p can also be described as a set of
pair (X, value) and we note p.X the value of the variable X in the environment
p- The semantic function of well-formed expressions is defined as follows:

For any expression E of type df[n, V], [E] is the shaped data field defined

for any shape o and any index z by the following semantic definitions, where we
admit -1 =1 and L +a=a+ 1L =1, for any a in R:

[-El(o)(2) = —[E](0)(2)
[E +1](0)(2) = [E](0)(2) + 1
[Eo + E1](0)(2) = [Eo](0)(2) + [E1](0)(2)
X1, =pX
[El(e)(F(2)) if F(z) # LAz € imga,
1 otherwise.
[El(Foo)(F(z)) if F(2) # LAz € imgo,
1 otherwise.

[Eo](0)(2) if [E1](0)(2)
[Eo [1 E1](0)(2) = § [E1](0)(2) if [Eo](o)(2)

1 otherwise.

[E <1§](0)(2) =

[:: E](o)(2) =

€
1

)

where the function F' is called the cartesian extension to Z" of the func-
tion [f]. Cartesian extension allows objects to be structured (see appendix A
for a complete definition). The semantics of functions ([f]) is not detailed (it
is straightforward to give a mathematical meaning to the function definitions,
presented in section 3.1). The meaning of functions does not depend on a specific
environment.

This semantics description is compositional since each operation semantics is
defined in terms of its arguments semantics only. In other words, the meaning
of every composite phrase is expressed as a function of its intermediate sub-
phrases. For instance, [E <|f] only depends on [E] and [f]. As a consequence,
the meaning of a phrase remains unchanged when a part of the phrase is replaced
by an expression having the same meaning.

Statements A PEI statement is mainly a set of (unoriented) equations of the
form: Eg = E; connecting two shaped data field expressions. Such an equation
describes the equality of two shaped data fields: it can be true or false. Since
its meaning is defined from the meaning of the two expressions, the semantic
function for equations depends on the same environment p than expressions. It
returns a boolean value defined as: [Eo = E1], = ([Eo], = [E1],)-

In PEL, an equation and a set of equations have the same type (boolean type).
When applied to several equations, the associated semantic function naturally
returns the conjunction of each equation semantics.

A whole PEI statement includes a header composed of a statement name
P, a list I of input variables (of the form X{,X}) and an output variable O.
In addition to these variables, the equation set S of the statement possibly use
some intermediate variables (later referred by T):

P:I->0
{s}

Function definitions are reported under the system. Intuitively, a PEI statement
denotes a relation between input and output shaped data fields that satisfy
the equation set. The relation holds provided that, for some other intermediate
shaped data fields, the equation set denotes true when the values of the variables
inside are set to all these shaped data fields.

Formally, the semantic function for statements does not depend on a specific
environment and returns a relation which is expressed as a set of pairs of shaped
data fields. In the particular case where there is only one input and only one
intermediate variable, it is defined as:

[P1={(Z,0)|3T.[S], = true where p ={(1,7),(0,0),(T,T)} }

where the environment p is described as a set. Of course, this definition can
easily be generalized to any number of input or intermediate variables.

4 Further examples

We illustrate previous definition of the PEI language with the classical Cannon’s al-
gorithm [2] for the matrix product. It can be expressed in PEI as:

MatProd[n] : A,B -> C
/* n x n Matrix Multiplication */

{

AQ0 = face_cube:: A
BO = face_cube:: B
A1 = AO <|pipe

Bl1 = BO <|roll

P = A1l % Bl
C = VecScan[n] (P)
}

face_cube(i,j,k) = (1<=i,j<=n & k=1) .(i,j)
pipe(i,j.k) = (1<=i,j,k<=n) . (i, ((i-1)+(k-1))%n+1,1)
roll(i,j,k) = (1<=i,j,k<=n) .(((i-1)+(k-1))%n+1,j,1)

Using structuration, the previous statement can be generalized to the block-
matrix multiplication, as:

BlockMatProd[n,h] : A,B -> C
/* n x n Block Matrix Multiplication */
/* with h-by-h blocks */

{

A0 = by_block:: A
BO = by_block:: B
A1 = AO <|pipe
Bl = BO <|roll

P = MatProd[h] ((elt_wise:: A1), (elt_wise:: B1))
C = VecScan[n] (step_wise:: P)
}

by_block(x,y,i,j,k) = (1<=i,j<=n & 1<=x,y<=h & k=1) .(h(i-1)+x,h(j-1)+y)

step_wise(i,j,k) = (1<=i, j<=n*h & 1<=k<=n)
.((i-1)/h+1,(j-1) /h+1,k, (i-1)4h+1, (j-1) %h+1)

pipe(i,j,k) = (1<=i,j,k<=n) .(i,((i-1)+(k-1))%n+1,1)

roll(i,j,k) = (1<=i,j,k<=n) .(((i-1)+(k-1))%n+1,j,1)

elt_wise(i,j,k,x,y) = (x,y,i,j,k)

Matrix blocks of matrix A are broadcasted row-wise by dependence ”pipe”
whereas matrix blocks of matrix B are shifted column-wise by dependence "rol11”.
Blocks are multiplied using the previous statement MatProd[n].

5 Conclusion

We define a compositional semantics for data parallel languages. Some associated
tools have been developed including;:

— a type-checker for PEI programs, which infers the domains of shaped data
fields and uses the OMEGA library [8] for evaluating set expressions.

— an interpretor from PEI to CAML programs, based on a functional interpre-
tation of shaped data fields,

— a translator from PEI to HPF.

Our theory mainly lies on the notion of shape. Some languages refer to similar
notion of shape thought of as a structure with holes or positions, into which data
elements (stored in a list for example) can be inserted. We advocate semantics
studies about this shape notion based on ideas from category theory ([7] as
example), that could bridge different models.

Acknowledgments

I would like Stéphane Genaud for clarifying some points about data-parallel
programming languages during long hours of discussions, and Philippe Gerner
for our constructive brain-storming considerations about semantics.

References

1. Luc Bougé and Jean-Luc Levaire. Control structures for data-parallel SIMD lan-
guages: semantics and implementation. FGCS, 8:363-378, 1992.

2. L. Cannon. A cellular computer to implement the Kalman Filter Algorithm. PhD
thesis, Montana State University, 1969.

3. M. Chen, Y. Choo, and J. Li. Parallel Functional Languages and Compilers. Fron-
tier Series. ACM Press, 1991. Chapter 7.

4. Stéphane Genaud, Eric Violard, and Guy-René Perrin. Transformations techniques
in PEI. EUROPAR’95, LNCS, 966:131-142, August 1995.

5. N. Halbwachs, P. Caspi, D. Pilaud, and J.A. Plaice. LUSTRE / a declarative lan-
guage for programming synchronous systems. P.0.P.L., 215:178-188, 1967.

10.

11.

12.

13.

14.

15.
16.

17.

18.

High Performance Fortran Forum. High Performance Fortran Language Specifica-
tion, Version 1.0, January 1993.

C.B. Jay. A semantics for shape. Science of Computer Programming, 25:251-283,
1995.

Wayne Kelly, Vadim Maslov, William Pugh, Evan Rosser, Tatiana Shpeisman, and
David Wonnacott. The Omega Library - Version 1.00, April 1996. Interface Guide.
C. Lengauer. Loop parallelization in the polytope model. Parallel Processing
Letters, 4(3), 1994.

B. Lisper. Data Parallelism and Functional Programming. School on Data Paral-
lelism, Les Ménuires (France). LNCS 1132-Tutorial Series, 1996.

C. Mauras. ALPHA : un langage équationnel pour la conception et la programmation
d’architectures paralléles synchrones. PhD thesis, U. Rennes, 1989.

O. Michel, D. De Vito, and J.-P. Sansonnet. 8 1/2 : data-parallelism and data-flow.
Intensional Programming II:Proc. of the 9th Int. Symp. on Lucid and Intensional
Programming. World Scientific, May 1996.

D.B. Skillicorn and D. Talia. Models and languages for parallel computation.
Technical report, Queen’s University, October 1996. also published in Computing
Surveys.

R.D. Tennent. Semantics of Programming Languages. C.A.R. Hoare. Prentice Hall
Ed., Endlewood Cliffs, N.J., 1991.

Thinking Machines Corp. C* Programming Guide, November 1990.

E. Violard. Typechecking of PEI expressions. EUROPAR’97, LNCS, 1300:521-529,
1997.

E. Violard and G.-R. Perrin. PEI : a language and its refinement calculus for
parallel programming. Parallel Computing, 18:1167-1184, 1992.

E. Violard and G.-R. Perrin. PEI : a single unifying model to design parallel
programs. PARLE’93, LNCS, 694:500-516, June 1993.

A Structuration

Structuration in PEI is based on both equation set definition and what we
call cartesian extension of partial functions. These concepts respectively involve
statements and objects.

A.1 Structuration of statements

As seen previously, a statement expresses a relation. Since an equation expresses
an equality which is a relation too, a statement can be called from another
statement via an equation of the form: Eq = P(E;) where P is the name of
the statement, and E¢ and E; are shaped data field expressions. Intuitively, it
means that the shaped data fields verify the relation denoted by the statement.
This meaning is formally defined by the semantic function for equation, as:

true if (|[E1]]p, HEO]],,) € [P],
false otherwise

[Eo=P(ED], = {

A classical equation (of the form Eq = Eq) is just a particular case where the
statement (of name) P denotes the identity relation. Of course, this definition is
generalized so that E; can be a list of expressions.

A statement call can modify the general environment e by associating a value
with some parameter used in the statement. The parameter must appear in the
statement name of the form: P ::= root[[param]] where root is a sequence of
letters and param is a list of formal parameters of any phrase type: for example,
a formal parameter can be an integer name or a function name. Classically,
a statement call indicates a value that is substituted for the parameter in its
definition. Statement call with parameters is defined hereunder (with only one
parameter):

true if ([E1], [Eo]) € [root [param]].,
[Eo = root [valuel (E1)], = where € = (e | param — [value],),
false otherwise.

where (e | param — [value],) is the environment which results from substituting
the value [value], for the value of the parameter param in the environment e.
This definition generalizes to any number of parameters.

A.2 Structuration of objects

As seen in section 3.2, shaped data fields represent data fields, that is values
mapped onto some index set which is a part of Z". These objects are mainly
characterized by ”geometrical” operations that are dependence, change of loca-
tion and concatenation that do not involve values but only indices in Z". In some
sense, it means that these objects are not characterized by values but rather by
their structure which is defined by their index set.

Example 9. Let us consider a N x N-matrix which is a particular case of data
field whose values are placed on a square of Z> : In PEI, it is represented by a
shaped data field, say A. Let us consider the operation that consists in shifting
the values one column right. The matrix can be considered as formed of N2 ele-
ments that are its values: In that case, the operation is written in PEI: A <|shift
with shift(i,j) = (i,j-1). In fact, the same operation can be written differ-
ently considering that it only involves the columns of the matrix. We can write:
A <|shift’ with shift’(j) = (j-1).In that case, the matrix is considered as
formed of NV columns that define another type of values. These values are placed
on indices from 1 to IV in Z : the index set of A is considered as a line in Z.

As seen in section 3.2, the meaning of the second expression is defined from
the notion of cartesian extension which is formally defined hereunder:

Cartesian extension refers to the cartesian structure of Z" : for any k<n, Z" can
be expressed as the cartesian product Z" * x ZF. It means that the cartesian
coordinates of any index z of Z" can be split into two parts so that z can be
denoted (z:y) where z € Z"* and y € Z*.

Definition 4. (cartesian extension) Let f : Z% — Z¥ with k<n. We call the
cartesian extension of f to Z", the partial function F : I — I defined as:

F(z) =(z:f(y)) ifz € Z" and f(y) # L, and L otherwise. Its image is included
in ank-l-k' .

In a geometrical point of view, the point of index y is the projection of the point
z on the space defined by the last k axes. This intuitively means that any object
in PEI can be viewed through such projection.

Of course, it can be useful to organize the objects differently in order to
express some other operation. This is naturally achieved in PEI by using a change
of location.

Ezample 10. Let us consider a (2N) x (2N)-matrix. It can be seen as a N x N
block matrix whose ”values” are blocks of size 2 x 2. Assuming the shaped data
field A represents the matrix, it can be block-organized by applying the change
of location defined by the bijection by_block:

by_block(x,y,i,j) = (1<=i,j<=n & 1<=x,y<=2) .(2(i-1)+x,2(j-1)+y)

Let B be the shaped data field which verifies B = by_block:: A. Then, B can
be used as a matrix whose index set is [1..N] x [1..N], any index identifying a
2 x 2 block. For example, this new layout of the matrix can be used to write the
block-matrix product presented in section 4.

