Asynchronous Parallel Programming in PEI

E. Violard

ICPS, Université Louis Pasteur, Strasbourg
Boulevard S. Brant, F-67400 Illkirch
e-mail: violard@icps.u-strasbg.fr

Abstract. This paper presents a transformational approach for the deriva-
tion of asynchronous parallel programs. Transformation rules are based
on a theory, called PEI. This theory includes the definitions of prob-
lems, programs and transformation rules. It is founded on the simple
mathematical concepts of multiset and of an equivalence between their
representations as data fields. Program transformations are founded on
this equivalence and defined from a refinement relation. This paper is
illustrated by the example of the shortest path problem.

Keywords multiset, transformation, parallelism, asynchrony, specification

1 Introduction

Reliable parallel programming techniques are founded on formal derivations of
programs. The state of the art shows two complementary philosophies:

— the definition of a stepwise refinement calculus which requires a proof devel-
opment,
— the definition of transformation rules which apply on successive statements.

If a program F’ satisfies any specification that a program F satisfies, F’ is
called a refinement of F [7]. This approach requires to define a logic in order
to reason on programs. UNITY [1] is a fundamental contribution in this domain,
which allows to express specifications and solutions in the same formalism. It is
associated with a non-deterministic computing model which allows to introduce
sequentiality only when necessary.

The second approach lies on the definition of formal transformation rules. It
supposes a convenient model to express successive statements and these rules.
Affine recurrences on integral convex domains are an example of such an ex-
pression. They are mainly studied for systolic synthesis (see for example [9], [3],
etc.). ALPHA [6] and CRYSTAL [2] are the main formalisms using this approach.
These languages are founded on a deterministic computing model.

In our sense, parallel program derivation would benefit by extending the
transformational approach to asynchrony, in order to reach a class of solutions
as general as the one considered by refinement techniques. This supposes to
introduce an unifying theory. This theory, called PEI (for Parallel Equations

Interpreter), is founded on the simple mathematical concept of multiset, repre-
sented as a data field. A program is thus a function on data fields and is denoted
as a set of un-oriented equations. The two hand-sides of any equation define two
equal data fields. This expression generalizes classical recurrence equations.

Moreover transformations on these equations are founded on a mathematical
data fields equivalence referring to the same multiset. This equivalence induces
an equivalence of programs which is defined from a refinement relation.

The paper is organized as follows: section 2 presents the theory PEI and its
mathematical foundation. The equivalence of programs is defined in section 3.
Section 4 is devoted to the transformation rules. The concept of asynchrony is
presented in section 5 and applied to the derivation of an asynchronous program
in section 6.

2 The theory PEI

PEI is a notation for some semantics domains, where all names refer to mathe-
matical objects and all operations are mathematical operations. It is founded on
the simple concepts of multiset and of equivalence between their representations
as data fields.

2.1 PEI objects

Generally speaking, we can consider a problem as a relation between input and
output multisets of values. Of course, programming may imply to put these
values in a convenient organized directory, depending on the problem terms.
In scientific computations for example, items such as arrays are functions on
indices: the index set, that is the reference domain, is a part of some Z”. In PEI
such a multiset of value items mapped on a discrete reference domain is called
a data field.

Let us consider the multiset {1,2,—3,1}. A possible way to map this mul-
tiset is to choose indices, for instance {0,1,2,3} of Z, to refer to each of the
values. This mapping is shown on figure 1(a) and defines the data-field called
V. Obviously, this multiset might be mapped in a different manner, for example
onto points whose indices (4,j) in Z?, are such that (0<i,j<1) (figure 1(b)).
Such a mapping thus defines another data field, let us say M. Although their
mappings are different, the two data fields represent the same multiset of values
and therefore we say they are equivalent.

Formally, there exists a bijection from the first arrangement to the second
one, namely o (i) = (i mod 2,1 div 2). This relation is expressed in PEI through
the equation:

M=align:V
where align(i) = (0<i<3).(imod 2,¢div 2)
Any PEI program is composed of unoriented equations, each of them connecting

two data field expressions. On the example, M and (align:: V) have the same set
of value items, placed in the same fashion in the same reference domain.

Fig. 1. Two different mappings of a multiset of values

2.2 PEI operations

Expressions are defined by applying operations on data fields. The operations
are second-order functions, and fall into three categories:

— the operation used in the expression (align:: V) modifies the reference do-
main onto which values are mapped. It is called change of basis and is denoted

by ::

— another operation “moves” values in the reference domain. It is called ge-
ometrical operation (or routing), and is denoted by <. Figure 2(a) shows the
mapping of values of the data field W defined as W =V < shift. The function
shift shifts values one place cyclically to the right and is written in PEI as
shift(i) = (0<i<4).(i—1) mod 4. If the function is not injective the opera-
tion expresses a broadcast. For instance W =V < spread, where spread(i) =
(0<i<4).0 means the value mapped at index point 0 in V is broadcasted to
index points 0 to 3, to form the data field W as shown on figure 2(b).

— the third operation computes the values of a data field, and is called func-
tional operation. It is denoted by > and performs an element-wise computation
on the data field. For example, W = inc > V, where inc(a) = a + 3, defines a
data field whose values are computed from the V values having the same indices
(figure 3).

Last, an internal operation is defined on data fields. It is called superimposi-
tion and denoted by /&/ . The superimposition of several data fields results in
a new data field whose values are sequences. Each sequence is the concatenation
of values mapped at the same indices. Figure 4 shows the result of superimposing
X and Y.

2.3 PEI programs and syntactic issues

A PEI statement is a set of equations which expresses the relation between input
and output data fields. It is a system of equations with the input data fields

\Y w

0 1 2 3

w

® (1) [2)[=][4]
0 1 2 3

\

Fig. 2. Geometrical operations: (a) one-to-one relation (b) broadcast

s S - .
e . v

EEEIE ENECIE
0 1 2 3 0 1 2 3

\ w

Fig. 3. W defined by a functional operation applied on V

being the parameters and the output data fields being the unknowns.
A solution is a set of output data fields verifying the system. In the PEI
theory, only some statements are programs.

Definition1. A PEI statement is a program, if for any given input data fields
set, there exists at most one solution.

The definition implies that we do not consider statements having non-deterministic
solutions as programs.

Let us now make precise some of the syntactic features of the formalism. As
typographic conventions, we will use X, H, W, etc. for data fields, whereas £, g, etc.
denote functions. The general form of a PEI statement includes a header com-
posed of the tuples I and 0 of input and output data fields, and an equation set S:

:I—0

- n —~ 'd

We will also use the shorthand P { S } when I and 0 do not matter.

To improve the readability, only function names appear in the equations, their
definition being reported outside the system. Function definitions are written
using the following notation: a function f of domain dom(f) = {z | P(z)} and
image img(f) = {f(z) | P(z)} which associates the expression E(z) with z, is
= P(z). E(z) and we use # to separate alternatives in a definition

defined as £(z)

by case.

2.4 Example

We present an example of PEI statement for the shortest path problem. This
program is drawn from the UNITY program presented in [1], page 104 and will

Y

IIII
ID

R

Fig. 4. Superimposition

be used as our running example:

FQZWF—)D

{

onfirst: (H < first)
H < next =min ((H < pre) /&/ (H < shift) /&/ (H < move))
=D

onlast:: (H < last)

}

first(s,5,k) = (0<q,
last(i, j, k) = (0<q,
onfirst(s, j, k) = (0<i,
onlast(s,j, k) = (0<,
next(i, j, k) =
pre(i,j, k) =
shift(i,j,k) = (
move(t, j, k) =

min(dl;d2;d3) =

=W

Jj<n—1,k=0).
Jj<n—1,k=n)

Jj<n—1,k=0).
j<n—1,k=n).

0<z,j<n—1,0<k<n).
0<z,j<n—1,0<k<n).
0<z,j<n—1,0<k<n).
0<z,j<n—1,0<k<n).

(d1<d2+d3) . d1 #
(d1>d2+d3) . (d2+d3)

Considering a point (i, j, k) of H, the value in that point is the weight of the
shortest path from i to 7 whose indices of intermediate vertices are smaller than
k. We denote it H (i, j, k) in section 6.

2.5 Semantics

The previous section points out that data fields are the central concept in PEI.
A data field represents a multiset of values. It is characterized by a drawing of
the multiset: a drawing associates a geometrical point on Z" with each value of
a multiset. Formally, assuming the values of the multiset are in V', a drawing of
the multiset is a function v : Z" — V.

As it has been observed in section 2.1, many data fields can represent the
same multiset of values and a bijection links any two of them. It is the reason
why, besides its drawing, a bijection characterizes also a data field: it links the
data field with a virtual reference domain and can be changed by a change of
basis. In fact, the bijection of a data field is not explicit in PEI expressions and
it only expresses the conformity of objects in such a way that two objects can be
combined if and only if one of them conforms to the other. Formally, the bijection
is denoted as o, and it defines an other drawing (v o o~1) if dom(v) C dom(c).

v
7" —= V

‘| s

7r

Definition2. A data field is a pair, denoted as (v : o), composed of a drawing
v and of a bijection o such that dom(v) C dom(o).

This definition founds the formal definition of operations on data fields.

The superimposition combines the data fields in conformity. More precisely,
we say that a data field conforms with an other one if its bijection is a restriction
of the other’s bijection. The drawing of the result is the union of the drawings and
the operation builds sequences of values on the intersection. As a consequence,
we consider all values are sequences built from an associative constructor “;”. In
the rest, we use classical notation [.] to associate syntax with semantics.

Definition3. Let [E;] and [E3] be two data fields in conformity ie. o1 =
02\dom(oy)- The superimposition defines the data field [£, /&/ E»] as (w: 03),
where w(z) = v1(z); va(2).

The other operations apply a function on a data field [X] = (v : ¢) and form
a new data field. We use two other notations on partial functions: composition:
the domain of a composed function [f o g] is {z € dom([g]) | [g](z) € dom([£])}
and inverse: [inv(h)] is the inverse of a bijection [h].

Definition4. Let [£] be a partial function from V to W such that img(v) C
dom([[£]). Let [g] be a partial function from dom(o) to dom(v). Let [h] be a
bijection from dom(o) to ZP such that dom(v) C dom([h]).

— The functional operation defines the data field [£ > X] as ([f]ov : o).
— The geometrical operation defines the data field [X <1 g] as (vo [g] : o).
— The change of basis defines the data field [h:: X] as (vo [a] ™" : oo [a] ™).

Naturally, equation Fy = F5 semantics where /| and F5 denotes data fields
is the data fields equality [E1] = [F2] (that is (v1 = va) A (01 = 02)) and the
semantics of an equation set is the conjunction of the semantics of each equation.

3 Equivalence and refinement of PEI statement

Our definition of refinement is similar to Knapp’s definition, applicable to UNITY
programs. Let us consider a statement P : I +— 0 {S} and let T denote intermedi-
ate data fields in S. According to the previous semantics definition, we can state
what is specified by a PEI statement: we will say that P specifies the relation,
denoted as R(P), between data fields [I] and [0]. The relation is defined by the
conjunction of all equations of the statement, the intermediate data fields are
existentially quantified in order to only define the relation between [I] and [O].
Formally:

R(P) = {([]. [o]) [3] - [s}

Definition 5. (refinement)
Let P and P’ be two PEI statements. We say that P is refined by P’ and we note

PC P iff R(P') C R(P)

The symbol E denotes an inclusion relation which takes data field equivalence
into account. It is defined as follows:

Definition 6. (inclusion modulo data field equivalence)

Let P and P’ be two PEI statements. R(P’) C R(P) iff A(R(P')) C A(R(P))
where A is the application which returns the multisets pair represented by a
given data fields pair.

Note 7. Of course, if R(P') C R(P), then R(P’) E R(P). We will speak about

strong refinement in that particular case.

The equivalence of two statements is defined from refinement:

Definition 8. (equivalence)
Let P and P’ be two PEI statements. We say that P and P’ are equivalent and
we note P = P/, iff P and P’ refine each other.

3.1 Relevance of typechecking in PEI

As seen in the previous section, PEI operations are not allowed on any data fields:
this means that some phrases are forbidden according to some type constraints.
In other words, if the constraints do not hold, then we say that no semantics is
associated with such phrases. Note that this is not absolutely necessary and we
could decide to associate a specific meaning with such phrases. But this addresses
the following crucial question: is a given PEI specification, feasible or not 7 It is
important to be able to check for feasibility at any step of the refinement process
[7]: in PEI, feasibility checking is just typechecking.

We presented in [11] an algorithm that can infer the type of PEI expressions
defined as the pair (dom(v), dom(c)). Our algorithm presents weak limitations.
Based on this algorithm, a typechecker for PEI statements has been implemented.
It uses the OMEGA library [5, 8] for evaluating set expressions. This means that
the algorithm is decidable if the functions used for geometrical operations or
change of basis inside a statement can be coded into an OMEGA relation.

4 Transformation rules

Transformation rules are partitioned in three sets: the first rules are derived from
operation properties, the following ones are derived from equation systems and
the last ones are equivalence rules.

4.1 Operation properties rules

These rules are founded on algebraic properties of operations. More precisely,
the refined statement is obtained by replacing one occurrence of a PEI expression
by an other one that can be proved equal from some operation property or from
the mathematical structure of the data fields set.

The rules derived from operation properties fall into two categories: some are
unoriented and we obtain an equivalent statement by replacing an expression by
the other:

(fof)p> E = £ (£ > F)
(h o k) E hi: (b’ E)
(h:: Bv) /&/ (h:: Ea) = hu (Ey /&/ E))
(f> E) ag = £> (E <g)
fr> (hi E) h: (fp> E)

Others are oriented because the conditions required for the expression on the
right to be well-formed are stronger than the ones required for the expression
on the left to be well-formed. If, when substituting the right expression for the
left one, the new statement is well-formed, then it strongly refines the old one.
Conversely, if we substitute the left expression for the right one, then the new
statement is well-formed but it is an abstracted statement: it is equivalent only
if both statements have the same type constraints.

E<1(og’) — (E gg) <g’
(E1 /&/ E2) g — (E1 <g) /&/ (B2 Qg)
(h:EF) «g — h:(F < (inv(h) o g o h))
h:(F <g) — (h:FE) (b o g o inv(h))

4.2 Equations systems rules

These rules are more general than the preceding ones. They permit to modify
not only an expression, but one or more equations of the system which defines
a statement. The transformed system is a new one whose solutions set is the
same: these rules maintain the equality of statements. Among these rules let us
cite classical substitution and the application of a non-singular function to both
sides of an equation.

4.3 Equivalence rules

These rules are still more general than the preceding ones. They consist in sub-
stituting a data field for an equivalent one. One of these rules is classical. It
allows to change representation of a data field. This is its formal definition:

Theorem 9. Let P{S} be a PEI statement and T a data field name in S.
If P{S[T/(h:: T)]} is well-formed, then it refines P.

where E[E;/FE5] denote the result of replacing all occurences of Ey by Es in E.

4.4 Operational aspects

Operational aspects define the set of computations associated with any data field
definition. This means the definition of an order on the data field elements. This
order is a partial one for parallel computations. We define this order, denoted
as |, for some given partial order < on Z™, by considering the bijection o from
Z"™ to Z™ which characterizes a data field.

Definition10. Let (v : o) be a data field where o is a bijection from Z" to Z™,
Vz,2' € dom(v) . v(z) F v(2) & o(z) < o(2)

The choice of the order relation < on Z™ predetermines the operational def-
inition of a program. In fact, the aim of the transformations is to explicit or to
build a ”nice” bijection o which introduces the ”convenient” order to define a
“nice” operational behaviour of the program. These transformations lie on the
change of basis operation.

Examples

1. Let us consider a bijection o from Z" to Z™ such as o(z) = (p(z),1(2)),
where p is a function from Z" to Z™~! and ¢ a function from Z" to N. Note
that such a definition is a classical way to define a scheduling and a mapping
of the computations on a processor set.

— Let < be an order on Z™ such that o(z) < o(z') iff t(z) < t(2') on N. The
induced operational definition only defines computations scheduling.

— Let < be an order on Z™ such that o(z) < (') iff p(z) = p(z') At(z) <
t(2’). The induced operational definition defines computations mapping
and the scheduling of the processors.

2. The shortest path problem continued: an obvious synchronous opera-
tional definition of the programm Fj is obtained by identifying index & with
time ¢. In this solution, indices ¢, j can be identified with coordinates z, y of
the computation point on the processor array. By considering the bijection
o of data field H, this solution consists in defining o as the bijection from Z3
to Z3 such that o(z) = (p(z),t(z)), where p is the function from Z3 to Z2
defined as p(i, j, k) = (i,) and where ¢ is the function from Z3 to N, defined
as t(4,j,k) = k.

5 About asynchrony

Asynchronous programs are defined from a function denoted as pack for packing
function: when applied to a data field X whose drawing domain dom(v) is a subset
of Z, it defines a bijection which packs dom(v) in an interval of N, whose length is
the cardinality of dom(v). The change of basis applied on pack(X) and X defines
a packed data field such that dom(v) = dom(c). Here is the formal definition of
the packing function which is generalized to be applied to any data field:

Definition11. The function pack associates with any data field X of drawing
v such that dom(v) C Z",n>0, the bijection pack(X) defined on dom(v) which
maps (i1,...,4) to (i1,...,in—1, h(in)) where h is the bijection defined on do-
main {i, | (i1,...,i,) € dom(v)} as:

— img(h) = [0..card (dom(h))]

— h strictly increases.

The word “asynchronous” characterizes a non-deterministic aspect of the
program computing model. To illustrate what is asynchrony, let us consider the
following trivial example. Let X be a data field whose drawing domain is a subset
of Z. The values of X are ordered by their coordinates in Z. Let us define:

Sync : X —Y
{
Y=X <odd

}

0dd (i) = ((i mod 2)=1).¢

As said in section 4.4, this program defines the instants where the values of
Y are computed, for the bijection ¢ of Y is the same as the bijection of X. So, this
program can be considered as synchronous. Let us consider now the following
equivalent program:

Async: X — Y
{
Z=X odd

pack(Y):: Y = pack(Z):: Z
}
0dd(7) = ((i mod 2)=1) .4

The packed drawings of data fields Y and Z are the same. So, the sequences
of values in Y and Z are the same. But, the drawings of Y and Z are different.
This means that the computing instants of these two sequences can be different.
This program can then be considered as asynchronous and the bijection pack(Y)
defines the computation delays in Y.

6 Programs derivation

Programs derivation, by using transformation rules, is illustrated here under with
the shortest path problem. We present the first steps to design an asynchronous
solution for the problem whose initial statement was previously given.

Step 1 : distribution An asynchronous solution can be obtained by dissoci-
ating index k from time ¢, by convincing that a value in the point (¢, j, k) is
computed before the computation of a value in the point (¢, j, k4+1). In order
to reach this goal, we apply a transformation which ”distributes the index &
on each point (7,7, k)” and leads to the following new statement:

F1 :W—D
{
onfirst: (H < first) = joing > W

H < next =min’ > ((H < pre) /&/ (H < shift) /&/ (H < move))
onlast:: (H < last) = join, > D

}

first(i, 4, k) k
last(i, j, k) 0<z _]<7’L 1,k=n).
onfirst(s, j, k) = k

= (0<)

=()

(0<)
onlast(i, j, k) (O<z _]<7’L 1, k=n).(i,7)
next(i, j, k) = (0<i,j<n—1,0<k<n) . (4,4, k)
pre(i, j, k) = (0<i,j<n—1,0<k<n) . (i,4,k-1)
shift(i,j, k) = (0<i,j<n—1,0<k<n).(i, k,k-1)
move(i, j, k) = (0<i,j<n—1,0<k<n) . (k, j, k-1)

min'((d1, k1); (d2, k2); (d3, k3)) = (d1<d2+d3) . (d1,k1+1) #
(d1>d2+d3) . (d2+d3, k1+1)

joing(d) = (d,0)

join, (d) = (d,n)

This new program is obtained by considering a new intermediate data field
H’ whose any point (i, j, k) is a pair of values: the value of data field H in
this point and the value k:
H = (/&/) (joing > (H < selectg))
K

where: selectg (4, j, k) = (0<i,j<n—1,k=K).(i,j, k) and joing (d) = (d, K)
H’ can be substituted for H in any equation of the program Fy, according
to an equation system rule which allows to apply an operation on the two
hands of an equation. Let us consider, for example, the following equation
in Fo: H <next =minp ((H < pre) /&/ (H < shift) /&/ (H < move))
Using properties of the superposition, this equation can be rewritten as:

(/&)((H < neXt) < SelectK) =
K

(/&/)((min > ((H < pre) /&/ (H < shift) /&/ (H < move))) < selectg)

K

Then, for any K:

(H < next) < selectg =

(minp> ((H < pre) /&/ (H < shift) /&/ (H <move))) < selectg

By using the equation system rule, we can apply functional operation joing
on the two hands of this equation:

joing > ((H < next) < selectk) = joing I>

((minp> ((H < pre) /&/ (H < shift) /&/ (H < move))) < selecty)
Now, by using properties of operations and by applying an other equation
system rule to substitute (H’ < selectg) for (joing > (H < selectg)),
the following equation comes:

(H’ < next) < selectg =

(min’ > ((H’ < pre) /&/ (H’ < shift) /&/ (H’ <Imove))) < selectg

where: min'((d1, k1); (d2, k2); (d3,k3)) = (d1<d2+d3).(d1,k1+1) #
(d1>d2+d3) . (d2+d3, k141)

For this equation is valid for any K and by renaming H’ as H and min’ as

min, we deduce the corresponding equation of the program Fj.

Step 2 : scheduling This step allows to explicit a scheduling of the computa-
tions and leads to the following new statement:

F2 :W—D
{
onfirst’: (H < first’) = joing > W
H <next’ =minp ((H < pre’) /&/ (H < shift’) /&/ (H <move’))
onlast’: (H < last’) = join, [> D
}
first'(i,5,¢) = (0<i,j<n—1,r=0).(i
last’(i, j, 1) = (0<i,j<n—1,r=n). ,
onfirst’(i,j,t) = (0<i, j<n—1,r=0). (z,j)
onlast/(i,j,t) = (0<i,j<n—1,r=n).(i,j)
(r<n

next’(, 7,1) = (0<4, j<n—1,0<r

pre'(i,j,t) = (0<i,j<n—1,0<r<n).(i,j,k(i,)" (r—1))
shift’(i, j,1) = (0<i, j<n—1,0<r<n).(i,r, k(i,j)” " (r—1))
move'(i,j,t) = (0<i,j<n—1,0<r<n).(r,j, k(i,5)" " (r—1))
min((d1,k1); (d2, k2); (d3, k3)) = (d1<d2+d3) . (d1,k1+1) #

(d1>d2+d3) . (d2+d3, k1+1)
where r = k(7, 7)(?)

The transformation consists in applying the change of basis inv(pack(H))
on the data field H of the previous program. By definition of the packing
function, we can write:

pack(H)(i,j,1) = (i,], k(2,7) (1))

where k(i,j) is a bijection defined from a subset of N to the drawing domain
of H. First, we use an equation system rule to apply the change of basis
operation inv(pack(H)) on the two hands of any equation of the program
Fy. Then, we use operation properties in order to apply this change of basis
on H. Last, we rename inv(pack(H)):: H as H and use the equivalence rule,
which allows to change of representation in order to obtain the equivalent
program Fy.

Step 3 : domain expanding The following statement is obtained by consid-
ering the function k(i, j) defined as:

This transformation allows to expand the domain of data field H on {(4, j,1) |
0<i, j<n—1At>0}. It is an uniformization of the function k(%, j).

F3 :W—D
{
onfirst: (H < first) = joing > W

H < next =min> ((H < pre) /& (H < shift) /&/ (H < move))
onlast:: (H < last) = join, > D

}
first(i,j,1)
last(i, j, 1)

= (0<i, j<n—1,t=0). (i, 4,1)
= (0<i, j<n—1,t=T) . (i, j 1)
onfirst(s,j,t) = (0<i,j<n—1,t=0).(¢,j)
onlast(s, j,t) = (0<i,j<n—1,t=T).(i,7)

(

(

= (

next(i, j,1) 0<i,j<n—1,t>0). (3, j,1)
pre(i, j, 1) = (0<i,j<n—1,t>0). (¢, 4,t-1)
shift(s, j, 1) 0<i, j<n—1,t>0). (¢, r,t-1)
move(i, j,1) = (0<i,j<n—1,t>0) . (r, j,t-1)
min((d1, k1); (d2, k2); (d3, k3)) =
(k2=k1 A k3=k1 A d1<d2+d3) . (d1, k1+1) #
(k2=k1 A k3=k1 A d1>d2+d3) . (d2+d3, k1+1) #
(k2£k1V k3£k1) . (d1, k1)
where r = k(i,4)(t) and T = k(i, j) "' (n).

Step 4 : abstraction From the preceding program, we make permissible to

have one process race ahead of another by using property H (4, j, k+m)<H (i, j, k),
m>0. This leads to the following equivalent program that is presented in [1],
p. 109:

F4 :W—D
{
onfirst: (H < first) = joing > W

H < next =min’ > ((H < pre) /&/ (H < shift) /&/ (H < move))
onlast:: (H < last) = join, > D

}
first(i,4,1)
last(é, j, 1)

= (0<i, j<n—1,t=0). (i,], 1)
— (0<i, j<n—1,t=TY) . (i, j,1)
onfirst(s,j,t) = (0<i,j<n—1,t=0).(¢,j)
onlast(s,j,t) = (0<i,j<n—1,t=T).(i,7)
next(i, j,1) = (0<i,j<n—1,t>0). (4, 4,1)
pre(s, j, 1) = (0<i,j<n—1,t>0). (¢, 4,t-1)
shift(i,j,t) = (0<i,j<n—1,t>0). (i, t—1)
move(i, j,1) = (0<i,j<n—1,t>0) . (
min’((d1, k1); (d2, k2); (d3, k3)) =
(k2>k1 A k3>k1 A d1<d2+d3) . (d1, k1+1) #
(k2>k1 A k3>k1 A d1>d2+d3) . (d2+d3, k1+1) #
(k2<k1V k3<kl).(d1, k1)

r,j,t—1)

7

Conclusion

The theory we have presented in this paper is founded on the simple mathemat-
ical concepts of multiset and of an equivalence between their representations as
data fields. A detailed presentation can be found in [10, 4]. Program transfor-
mations are founded on this equivalence and defined from a refinement relation.
Due to the unifying aspect of this theory, solutions that can be reached by these
transformations are relevant to various synchronous or asynchronous computing
models. The point we have focused in this paper concerns asynchronous compu-
tations and was illustrated by the algebraic path problem.

References

10.

11.

. K.M. Chandy and J. Misra. Parallel Program Design : A foundation. Addison

Wesley, 1988.

. M. Chen, Y. Choo, and J. Li. Parallel Functional Languages and Compilers. Fron-

tier Series. ACM Press, 1991. chapter 7.

. P. Clauss, C. Mongenet, and G.-R. Perrin. Synthesis of size-optimal toroidal arrays

for the algebraic path problem : A new contribution. Parallel Computing, 18:185—
194, 1992.

. S. Genaud, E. Violard, and G.-R. Perrin. Transformation techniques in PEIL In

EUROPAR’95, Stockholm, Sweden, August 1995.

. Wayne Kelly, Vadim Maslov, William Pugh, Evan Rosser, Tatiana Shpeisman, and

David Wonnacott. The Omega Library - Version 1.00, April 1996. Interface Guide.

. C. Mauras. ALPHA : un langage équationnel pour la conception et la program-

mation d’architectures paralléles synchrones. PhD thesis, Université de Rennes 1,
Décembre 1989.

. C. Morgan. Programming from specifications. C.A.R. Hoare. Prentice Hall Ed.,

Endlewood Cliffs, N.J., 1990.

. William Pugh. The omega test: a fast and practical integer programming algorithm

for dependence analysis. Communications of the ACM, August 1992.

. P. Quinton. The mapping of linear recurrence equations on regular arrays. Journal

of VLSI Signal Processing, 1, 1989.

E. Violard. Une théorie unificatrice pour la construction de programmes paralléles
par des techniques de transformations. PhD thesis, Université de Franche-Comté,
Octobre 1992.

E. Violard. Typechecking of PEI expressions. In LNCS, FUROPAR’97, volume
1300, pages 521-529, Passau, 1997.

This article was processed using the INTRX macro package with LLNCS style

