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Abstract
Parallel programs mainly differ from sequential ones in that they include geometrical
aspects involved by the hardware architecture. We present in this paper the PEI
formalism, which enables to take into account both the geometrical and functional
aspects of programs. It provides a refinement calculus mainly used to transform the
geometrical characteristics of parallel programs, and we show how it may apply on
data parallel programs, in particular for data alignments.
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1 INTRODUCTION

Parallel programming is a major challenge for handling efficient computations. It in-
volves two technological issues: a program expressed in some dedicated language which
supports a parallel programming model, and a computer and the parallel execution
model it implements. Ideally the programming language should be architecture in-
dependent whereas the computations efficiency requires a strong-related architecture
implementation.

The relationship between these issues is a matter of compiling techniques as well as
programming capabilities: in scientific applications for example, on the one hand par-
allelizing compilers are able to automatically transform the iteration space, assuming
conditions such as the affinity of dependencies and of loop bounds; on the other hand
the programmer may help the compiler by using directives to indicate a “good” data
alignment —that is a data placement that minimizes interprocessor communications.
All these techniques are based on geometrical transformations either of the iteration
space or of the index domains of arrays. Especially, they are of particular interest in
the data parallel programming model, implemented by programming languages such
as High Performance Fortran (HPF 1993) or C*(Thi 1990).

In some sense it shows that, beside a classical functional point of view on pro-
grams, geometrical issues in parallel programming or parallelizing compilation have
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2 Refinement of data parallel programs in PEI

to be considered of main importance for the mastery of efficient computations. The
geometrical approach entails an abstract manipulation of array indices, to define and
transform:

— the data dependencies in programs,

— the way the data are, or are not, locally accessible,

— their expansion in a multidimensional space of virtual processors,

— etc.

The solution might be the use of some methodology for parallel program develop-
ment, in the same spirit as what is done with the Bird-Meertens Formalism (Bird
1987, Skillicorn 1993). In addition, given the previous considerations on geometry, a
specialised methodology might well be needed.

The PEI formalism (in some sense similar to ALPHA (Mauras 1989) or CRYSTAL
(Chen, il Choo & Li 1991)) was originally defined (Violard & Perrin 1992, Violard
& Perrin 1993) to describe and reason on parallel programs and their implementa-
tion. It includes a refinement calculus that makes possible to transform statements
by associating algebraic laws and symbolic evaluation of functions with the classical
geometrical foundations in this area. Using PEI, the programming activity may refer
to a very small set of primitives to design programs. They are:

— the placement of value items in some discrete reference domain, which relates to
data dependencies that possibly induce interprocessor communications,

— the definition or the change of the reference domain itself, which enables to
change the program structure,

— the application of functions on the value items, which defines the operations
carried out by a program.

The relationship between a PEI statement and a data parallel program is quite
obvious since PEI expresses, in an abstract way, parallel variables, global operations
and communications, and data alignment. Therefore PEI provides a good framework
to design and transform data parallel programs (Genaud, Violard & Perrin 1995), and
we illustrate how its refinement calculus may be used to deal with the crucial aspect
of data alignments.

The paper is organized as follows: section 2 explains the PEI concepts and notations.
Section 3 is concerned with the semantic definitions associated with PEI constructs,
and section 4 presents how refinement is defined in the formalism. Finally, we illustrate
most of the formalism issues, including design and refinement considerations on the
Gazpy example drawn from the numerical computation field.

2 DEFINITION OF THE FORMALISM PEI

2.1 PEI data fields

Generally speaking, we can consider a problem as a relation between input and out-
put multisets of values. Of course, programming may imply to put these values in a
convenient organized directory, depending on the problem terms. In scientific compu-
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tations for example, items such as arrays are functions on indices: the index set, that
is the reference domain, is a part of some Z”. In PEI such a multiset of value items
mapped on a discrete reference domain is called a data field.

Let us consider the multiset {1,2,—3,1}. A possible way to map this multiset is to
choose indices, for instance {0, 1,2, 3} of Z, to refer to each of the values. This mapping
is shown on figure 1(a) and defines the data-field called V. Obviously, this multiset
might be mapped in a different manner, for example onto points whose indices (i, )
in Z?, are such that (0<i,j<1) (figure 1(b)). Such a mapping thus defines another
data field, let us say M. Although their mappings are different, the two data fields
represent the same multiset of values and therefore we say they are equivalent.

Figure 1 Two different mappings of a multiset of values

Formally, there exists a bijection from the first arrangement to the second one, namely
o(i) = (¢ mod 2,i div 2). This relation is expressed in PEI through the equation:

M =align::V
where align = A(i)|(0<i<3).(i mod 2,i div 2)
Any PEI program is composed of unoriented equations, each of them connecting two

data field expressions. On the example, M and align :: V have the same set of value
items, placed in the same fashion in the same reference domain.

2.2 PE1 operations

Expressions are defined by applying operations on data fields. The operations are
second-order functions, and fall into three categories:

— the operation used in the expression align ::V modifies the reference domain
onto which values are mapped. It is called change of basis and is denoted by : :

— another operation “moves” values in the reference domain. It is called geo-
metrical operation (or routing), and is denoted by <. Figure 2(a) shows the map-
ping of values of the data field W defined as W = V < shift. The function shift
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shifts values one place cyclically to the right and is written in PEI as shift =

A(1)|(0<=i<4).((i-1) mod 4). If the function is not injective the operation ex-

presses a broadcast. For instance W = V <1 spread, where spread = A(1)](0<=i<4). (0)
means the value mapped at index point 0 in V is broadcasted to index points 0 to 3,

to form the data field W as shown on figure 2(b).

— the third operation computes the values of a data field, and is called functional
operation. It is denoted by > and performs an element-wise computation on the data
field. For example, W = inc > V, where inc = A(a). (a+3), defines a data field whose
values are computed from the V values having the same indices (figure 3).
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Figure 2 Geometrical operations: (a) one-to-one relation (b) broadcast

The geometrical operation has an inverse in PEIL. It defines the geometrical reduc-
tion, denoted by ;> . It may be used for example, to gather all the values of V¥ at a
particular index point. For instance, the data field W verifying W = merge ;> V, where
merge = A(i)|(0<=1i<4).(0) has all its values mapped at index point 0, listed in a
sequence of arbitrary order. Figure 4 shows a possible solution for W.
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Figure 3 W defined by a functional operation applied on ¥V
The geometrical reduction is defined as the inverse of the geometrical operation since

if it applies on a bijective function it is equal to the geometrical operation applied on
the inverse function.
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Figure 4 W is defined by a reduction operation applied on V

Last, an internal operation is defined on data fields. It is called superimposition and
denoted by /&/ . The superimposition of several data fields results in a new data field
whose values are sequences. Each sequence is the concatenation of values mapped at
the same indices. Figure 5 shows the result of superimposing X and Y.

O 1
]
0 1 2 3 0 1 2 3
X z

Figure 5 Z is defined by Z = X/&/ Y

2.3 PEI programs and Syntactic issues

A PEI statement is a set of equations which expresses the relation between input and
output data fields. It is a system of equations with the input data fields being the
parameters and the output data fields being the unknowns.

A solution is a set of output data fields verifying the system. In the PEI theory,
only some statements are programs.

Definition 1 A PEI statement is a program, if for any given input data fields set,
there exists al most one solution.

The definition implies that we do not consider statements having non-deterministic
solutions as programs.

Let us now make precise some of the syntactic features of the formalism. As typo-
graphic conventions, we will use A, B, X, etc. for data fields, whereas £, g, etc. denote
functions. The general form of a PEI statement includes a header composed of the
tuples D and R of input and output data fields, and an equation set S:
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P:D—R
{ s

We will also use the shorthand P{S} when D and R do not matter.

To improve the readability, only function names appear in the equations, their
definition being reported outside the system. Functions are written using a notation
derived from the lambda-calculus: a function £ of domain dom(f) = {z | P(2)} and
image img(f) = {f(z) | P(x)} is denoted as A(z) | P(z).£(z).

We write f|dom(g) for the part of £ defined on the domain of g, so that f|dom(g)
= g implies that £ and g are equal on dom(g). A function £ defined on disjunctive
sub-domains is denoted as £1 # £2, and the domain of a composed function f o g is
(& € dom(g) | g(z) € dom(z)}.

We will also use the built-in function id, which only matches one-element sequences.
The application of id on one element returns this element. It is frequently used to
define recursive computations, like in the recursive summation of a sequence of num-
bers:

sum = id # A(a;b).(a+sum(b))
The function sum returns the element for one-element sequences and for sequences
made of several elements, it returns the first element plus the sum of the rest of the
sequence.

2.4 Examples

Let us illustrate through a few examples what PEI programs look like:
FEzrample 1 Addition of a matrix and its transpose
MatSum : A — C

A =matrix::A

T = A < transp

C=add> (A /&/T)

matrix = A(i,j)|(0<=1i,j<n).(i,])
transp = A(i,j)|(0<=i,j<n).(j,1)
add = A(ab).(a+b)

— The first equation expresses a pre-condition on the input data field A. It means
that A is invariant by applying the change of basis defined by matrix. The change of
basis is the identity on the square domain {(i,j),0<i,j<n} of Z?: as we will see, it
means that the discrete domain onto which the values of A are placed is bounded to
the square.

— The second equation defines T from A by applying a geometrical operation. It
means that the values of T mapped on points (i, j) are those of A mapped on (j, ¢).
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— The third equation defines the output data field C. The right side defines the
superimposition of A and T, ¢.e. the set of pairs (a;b), where a € A and b € T. The
functional operation above applies the function add to each value of T.

&

Ezample 2 Palindromes detection

A vector A of size n is a palindrome if A; = A,,_1_;, Vi € [0...n—1]. The program
below pairs the symmetric values respectively to the middle of the input vector 4,
and then compares equality of values in each of the pairs, resulting in data field B.
To determine whether A is a palindrome or not, all comparison results defined by B
must eventually be gathered. This is done through the definition of R. If all results
are true then A is a palindrome. The way B values are put together can be written in
at least two ways. Here is a first version:

Palindl : A — R
A = vector:: A
B=equ>> (A /&/A < opp)
R = and > (red ;> B)

equ = A(a;b).(a=b)

vector = A(i)](0<i<n). (1)

opp = A(1)|(0<i<n).(n-1-1)
red = A(1)[(0<ikn) . (0)

and = id # A(a;b).(a& (and b))

In this version, we use a reduction operation that builds a sequence of all the
boolean values of B and put it at index point 0 in R. All sequence elements are then
logically ANDed. Reduction is thus a straightforward means to gather values, but it
is sometimes necessary to indicate an explicit path for the values to be moved.

b&

ERNERE
D R < left

¢ B /&/R < left
=

o
l
E]

Figure 6 Given B, R is a solution of Palind2 last equation
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Palind2 : A — R
A = vector:: A
B=equ>> (A /&/A < opp)
R=band > (B /&/R <« left)

equ = A(a;b).(a=b)

vector = A(i)](0<i<n). (1)

opp = A(1)|(0<i<n).(n-1-1)
left = A1) |(0<i<n-1).(i+1)
band = id # A(a;b).(a&b)

Here, R is recursively defined as the application of a logical AND on the superim-
position of B and R shifted one position left. As we can see on figure 6, the data field R
is a solution of the last equation because it maps at index point 0 the sequence of all
elements of B, the sequence minus one element at index point 1, etc. We thus have a
data field R very similar to the one in Palind1, in that the evaluation of all B values is
in both cases mapped at point 0 (though the order of evaluation might be different).
&

3 SEMANTICS

PE1 semantics is founded on the notion of discrete domain associated with a multiset.
As seen earlier, a data field maps the values of a multiset V onto a domain, such
that each value can be indexed by a point of the domain. The mapping is therefore a
function v : Z" — V.

In the previous section we pointed out that V, whose values {1,2,—3,1} were
mapped on the interval [0..3] of Z, can be deduced from M using the ¢ bijection.
Generally speaking, given a multiset V of values, and the mappings v : Z" — V and
v/ ZP — V| we have the relation v = v’ o o, where o is a bijection which maps
dom(v) to dom(v’).

It means that any mapping of a given multiset is arbitrary and always can be
deduced from a reference mapping (a given processor grid for example) by applying
a bijection. By integrating this bijection into the definition of data fields, we express
the relation between two mappings of a same multiset. Hence, a data field is a pair of
functions (v : o). Moreover, we impose the following constraint: dom(v), called value
domain must be included in the domain of the bijection o, called the reference domain,
so that any transformation of a mapping apply to all the values of the data field. For
instance, considering M on figure 7 as a reference mapping representing a processor
grid, the value 2 mapped at index point 1 by V¥ = (vy : oy) would be computed by
processor oy(1) = (1,0).

Definition 2 Let V be a multiset of values. Let v be a mapping Z" — V and o a
bijection Z™ — ZF, then (v : o) defines a data field if dom(v) C dom(o).
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Figure 7 Relation between two equivalent mappings

3.1 Operation semantics

The data field definition enables us to formally describe the operations in PEI. Let us
first consider the superimposition internal operation, denoted as /&/. Let X; = (v; :
o1) and X = (v : 02) be two data fields. If 01|4om(0,) = T2 OF 02|dom(0,) = 1, the
superimposition defines X;/&/ X, as:

(v1 o) on dom(vy)\dom(va)

(w:o) on dom(vy)Ndom(vs)

(va : o) on dom(vg)\dom(v1)

o1 if dom(o2) C dom(oy)

where w(z) = v1(2);v2(2) and o = { oy if dom(o1) C dom(os).

The other operations in PEI are second-order functions. In the following, £, g, etc.
are functions and X denotes a data field (v : o).

— Functional operation. Let £ be a function. When applied on a X such that
img(v) C dom(£), the functional operation on £, denoted as £ >, defines the element-
wise application of £ on X. It means that £ > X is (fo v : o).

— Geometrical operation. Let g be a function. When applied on a X such that
dom(g) C dom(c) and img(g) C dom(v), the geometrical operation on g, denoted as
< g, defines the data field X < g as (vo g: o).

Conversely, let g be a function. When applied on a X such that dom(g) C dom(v) and
img(g) C dom(o), the geometrical reduction on g, denoted as g; >, defines the
data field g ;> X as some data field (w : ¢) such that dom(w) = g(dom(v)) and w(z)
is a sequence of the values v(y), y such that g(y) = z. As a consequence, the next
property links reductions and geometrical operations:
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Property 1 The operation g;> is equal to the operation < g=* if and only if g is
bijective.

— Change of basis operation. Let h be a bijection. When applied on a X such that
dom(v) C dom(h), the change of basis on h, denoted as h::, defines the data field
h::Xas(voh':goh™)

Remark — The operations are very similar to the classical Bird-Meertens functions
on lists, such as map or reduce. They differ in that PEI operations include some
geometrical aspects in order to meet the data parallel paradigm.

3.2 Equation semantics

Let E denote a data field expression equal to (v : o) and E’ denote a data field
expression equal to (v' : ¢'). Equation F = E' semantics, denoted as [E = E'], is
the boolean expression (v = v') A (¢ = ¢') A C, where C is the conjunction of all
the conditions involved by the operations appearing in the equation. If the expression
equals true, we will say that data fields appearing in the equation verify the equation.

For example, given data fields A = (v; : 04) and B = (v : 0), the semantics of the
equation A = add > (size::B) is the boolean expression:

vp = addowvgosize ! Aoy = ggosize™!

A dom(vg) C dom(size) A img(vs) C dom(add)

The definition can be extended to an equation set, since data fields must verify all
the equations. The semantics of an equation set is therefore the conjunction of the
semantics of each equation.

3.3 Data field equivalence

As mentioned in section 2.1, two data fields may be intuitively considered as equivalent
if they represent the same multiset of values. In this case, according to semantics we
will say that these data fields are weakly equivalent since only their value domains are
considered. Moreover if the data fields have the same reference mapping, we will say
that they are strongly equivalent.

Definition 3 Let X and Y be two data fields. We say that X and Y are strongly equiv-
alent if and only if there exists a bijection h such that Y = h::X and dom(oy) C
dom(h).

The change of basis operation gives an intuitive idea about strong equivalence
of data fields, because it modifies the mapping of the same multiset of values but
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maintains the same reference mapping. For example, consider h as the permutation
A(1)|(0<=i<4).((i-1) mod4)) and the data field W = h :: V, V being the data field
presented on figure 7. We observe on figure 8 that the value 2 in W is associated with
the same point in the reference mapping as for V: v4(0) = vy o h™ (0) = vy(1) = 2 and
ow(0) = oy oh™(0) = oy(1) = (1,0).

Figure 8 Weak and strong equivalence between data fields

Now, consider the definition Z = (h :: V) < hin which Z and V are not strongly equiv-
alent since o7 # oy (0z = oy o h'l) though v; = wy: they thus are weakly equivalent.
By contrast to the previous case, the value 2 in Z (vz(1) = vyoh™ oh (1) = wy(1) =
2) is associated with oz(1) = oy oh™(1) = ay(2) = (0,1).

Definition 4 Let X and Y be two data fields. We say that X and Y are weakly equiv-
alent if and only if they represent the same multiset of values.

Weak equivalence of data fields can be characterized in PEI expressions, by the
following property:

Property 2 Let X be a data field and Y a data field expression depending on X. X and
Y are weakly equivalent if and only if there exist three bijections h, h’ and g, such
that:

—either (h::X) dg="h"::Y and h(dom(vx)) = imy(g),
- or h:: (X< g =h"::Y and dom(vy) =imy(g).
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4 REFINEMENT AND ABSTRACTION

4.1 General definition

Refinement is a classical process for designing or transforming programs (Back 1988,
Morgan 1990). It enables to build a program which satisfies any specification that an
initial program satisfies. Refinement is usually defined in the following way, given a
satisfaction property, denoted as sat :

Definition 5 Let P and P’ be two programs, we say that P is refined by P', and we
note P C P’, if and only if for any specification S

Psat S = P'sat S

In imperative programming, the satisfaction property may be safety and termina-
tion for example. The weakest pre-conditions of Dijkstra, denoted wp(P, post), where
P is a statement and post a predicate can then be used: wp(P, post) is the weakest
predicate for which carrying out of P ends in a state which satisfies post. It allows to
rewrite the previous definition as follows:

PC P’ ifand only if VYr- wp(P,r) = wp(P',r)

Refinement is a continuous process which allows successive statements to be built,
from a specification until a program. It defines a partial order between statements,
called refinement relation. Refinement is usually extended to specifications (Morgan
1990). Using pre- and post-specifications noted as [pre,post], two particular cases often
arise:

[p,ql C [P, q] if p=p" (pre-conditions weakening)
[p, 9] C [p,¢'] if ¢ = ¢ (post-conditions strengthening)

Knapp (Knapp 1990) defines refinement in a different manner in order to apply it
to UNITY programs (Chandy & Misra 1988). The definition is equivalent, but changes
in its formulation because it adapts to specifications expressed in a modal logic. Let
s and s’ be two states, where s(p) and s'(¢) mean that s and s’ satisfies p and ¢
respectively. Intuitively, a specification S has the following form:

S :Vs(p)-3s'(q) - s~ s (1)

where the notation s ~+ s’ means that s’ is a reachable state from the initial state s.
The definition of refinement becomes:

Definition 6 Let S and S’ be two specifications of the form (1):
SC S ifand onlyif S'= S
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4.2 Refinement of PEI statements

Refinement relation.

The refinement in PEI is close to Knapp’s definition, but reasoning is based on first
order logic. Let us consider a statement P{S}. The equations of S can be parsed into
two exclusive types: the equations which only bind input data fields of P (they form
a subset S; of S), and the equations which have intermediate or output data fields
(these equations form the complementary subset Sy of S). We call the equations of
S1 the pre-equations of P, and the equations of Sy the post-equations of P.

According to the previous semantics definition we can state a property which is
satisfied by a statement PEI. Let us call sat(P) the property satisfied by statement
P: it means that for all input data fields verifying S7, the solution is a set of output
data fields which verify Ss. Alternatively, we can write:

sat(P) : [S1] = [S2]

For example, we associate with the following statement

P1 : A—B
A —matrix::A
{ B = A Q transp
matrix = A(i,j)](0<=1i,j<n).(i,])
transp = A(i,j)[(0<=i,j<n).(j,1)

the property sat(P1) : [(A =matrix::A)] = [(B= A < transp)]
which means:
sat(P1) : (va = vy omatrix™) A (04 = oy omatrix™)
A (dom(vy) C dom(matrix))
= (vg = vaotransp) A (o = 04)
A (dom(transp) C dom(os)) A (img(transp) C dom(vy))

The constraints on domains arise from the operations definition : for example h :: X
is correctly defined only if dom(vx) C dom(h).

Definition 7 Let P and P’ be two statements in PEIL. P is said refined by P’ —or P
abstracts P’ — denoted as P C P, if sat(P’) = sat(P).

Here is some classical examples of refinements in programming languages, such as
the weakening of pre-conditions or the strengthening of post-conditions. In PEI, such
transformations are expressed through the following property:

Property 3 Let P{S1,Sa} and P’ {S],S4} be two statements, where Sy, S| are sets
of pre-equations, and So, S} are sets of post-equations:
PC P if [S2=054] and [Si] = [57]
or [S1=51] and [S5] = [S=]



14 Refinement of data parallel programs in PEI

Proof. Let us assume [S1] = [S1], then ([Si] = [Sz2]) = ([S1] = [Sz2]). Similarly,
[S2] = [S:] implies ([S1] = [S5]) = ([S1] = [S=2])- OO

Ezxample 3 Weakening pre-equations

P2 : X— Y P3 : X—Y

X = vector:: X {sz

Y =X
specified by sat(P2) : specified by sat(P3) :
[X = vector :: X] = [Y = X] true = [Y = X]

Let us demonstrate sat(P3) = sat(P2): sat(P3) can be simplified to (Y = X) and the
property [Y = X] = ([X = vector :: X]]) = [Y = X]) is true.
&

Ezxample 4 Strengthening post-equations

P4 : X— Y
vector::Z =X
Y = vector:: Z

specified by sat(P4) : true = [vector::Z=X] A [Y = vector :: Z]

We have P3 C P4 since ([vector::Z =X] A [Y = vector :: Z]) = [Y = X].
&

Refinement calculus.

In a more operational way, we define a refinement calculus allowing to build a refined
statement from a given one. In PEI, the calculus consists in replacing one equation in
the initial statement with another one. This can be done

— either by replacing equal by equal data fields expressions (cf. Algebraic laws here-
under),

— or by changing the reference domain of the equation (cf. Change of reference do-
main),

— or by substituting an equivalent data field for a given one. This requires the def-
inition of a more general refinement relation including data fields equivalence (cf.
Refinement within the equivalence).

Algebraic laws.

Some algebraic laws on operations can be proved. Assuming some hypotheses, they
allow to replace a data field expression by another one in equations. In table 1, we
note as £ — FE’ the rewriting of equation E in equation E’ by applying such a law.
The laws are the basis for the refinement calculus, as stated in the following property.
We note as S[E\E] the equation set S in which an equation E has been rewritten as
E’, according to the laws.
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Y=Ff1p> (£f2::X) — Y =1£2::(f1 > X)
Y=f2::(f1 > X) — Y=£f1p (£f2::X)

Y=(f1 > X)4Qf2 — Y=Ff1D> (X 4 £2)
Y=FfI1pD (X < f2) — Y=(f1 > X) Q £2

Y=(f2::X) <fl — Y=1£2:: (X < £27'of10£2)
with dom(£1) Uimg(£1) C img(£2) A dom(vy) C dom(£2)
Y=f2::(X 4 f1) — Y= (f2::X) < f20flof27!
with dom(f1) Uimg(£1) C dom(£2)

Y=Ff1;> (f2::X) — Y=1£2::(f27'of10f2 ;> X)
with dom(£1) Uimg(£1) C img(£2) A dom(vy) C dom(£2)
Y=1£2::(f1 ;> X) — Y=1f20f10f27! ;> (£2::X)
with dom(f1) Uimg(£1) C dom(£2)

Y=(flof2) DX — Y=£f1D (f2 > X)
Y=Ff1p> (f2 > X) — Y= (flof2) > X

Y=X< (flof2) — Y=(X « f1) <« £2
Y= < f1) 9f2 — Y=X (f10f2)
with img(£2) C dom(£f1) C dom(ox)

Y=(f10f2) ;> X — Y=1£1;p> (£2 ;> X)

Y=(flof2)::X — Y=Ff1::(f2::X)
Y=Ff1::(f2::X) — Y= (f10f2)::X
with £1 and £2 two bijections

Y=(X1/8/X2)af — Y=(X1 < £f) /&/ (X2 < £)
Y=(F1 < f) /& (X2 <9 f) — Y=(X1 /&/X2)«f
with dom(f) C dom(oxs) N dom(oxa)

Nimg(£) C dom(vxs) N dom(vxa)

Y=X<Q(f1#£2) — Y=(X < f1) /&/ (X < £2)
Y=(X <« f1) /&/ (X € £2) — Y =X < (f1#£2)
with dom(£1) N dom(£2) =0

Y=(f1#£2);>X — Y=(£f1 ;> X) /&/ (f2 ;> X)

Y=(f::X1) /&/ (f::X2) — Y==F::(X1 /&/X2)
Y=Ff::(X1 /&/X2) — Y= (f::X1) /&/ (f::X2)

Table 1 Rewriting of equations
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Property 4 Let E and E' be two equations in a PEI statement P{S}:
- if E — E' and E, E' are pre-equations, then P{S[E\F']} C P
- if E — E' and E, E' are post-equations, then P C P{S[E\E']}

Proof. We only report the proof for two rules in this paper, assuming they apply in
a post-equation.

— Let us consider rule (5a) and prove p’ = p, where:

p = (vy = vy o £f10£2) A (oy = 0y)
A (dom(£1 0 £2) C dom(ox)) A (img(£1 o £2) C dom(vx))
p = (vy = vx o £10£2) A (oy = 0%x)

A (dom(£1) C dom(ox)) A (dom(£2) C dom(ox))
A (img(£f1) C dom(vx)) A (img(£2) C dom(vx o £1))
The proposition reduces to:
vy = vxoflof2
) oy = oy = () { img(f1 o £2) C dom(vy)
img(£1) C dom(vx) dom(£1 o £2) C dom(ox)
img(£2) C dom(vy o £1)
Let us assume (2) holds. Since dom(vx o £1) C dom(f1), we have img(£f2) C
dom(£1) and from function composition, img(f1 o £2) = img(£1). So img(£f1) C
dom(vy) can be rewritten img(£1 o £2) C dom(vx). Moreover, it implies dom(£1 o £2)
dom(vy o £1 o £2) which equals dom(vy). From data field definition we have dom(vy) C
dom(oy) and, since oy = oy, dom(f1 0 £2) C dom(oy).

— Concerning rule (7a), let us prove p’ = p, where:

p = (vy =vgof2 ' o f1™) A (0y = ox 0 £271 0 £171)
A (dom(vy) C dom(£1 0 £2))
p = (vy =vx0f2 1o f1™) A (oy = oy 0 f27' 0 £171)
A (dom(vx) C dom(£2)) A (dom(vx 0 £27') C dom(£1))

The proposition reduces to:
) { dom(vx) C dom(£2)
dom(vy 0 £271) C dom(£1)
Let us assume (2) holds. Since dom(vx) C dom(£2) we have:
dom(vy 0 £271) C dom(£f1) = £2(dom(vy)) C dom(£1)
= f27(£2(dom(vx))) C £27!(dom(£1))
= dom(vx) C dom(f1o£2)

= (1) {dom(vx) C dom(£1o£2)

O

Change of reference domain.

An other way to refine a PEI statement is to change the reference domain of an
equation by applying a change of basis on both sides. This fact is expressed by the
following rules on which property 4 also applies:

Y=X — h::Y=h::X
with dom(ox) C dom(h) A dom(oy) C dom(h)
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h::Y=h:: X — Y=X
with dom(vx) C dom(h)

Proof. Let us prove the first rule. Let p be the property deduced from the equation Y
= X (the left part of the rule) and let p’ be the one deduced from the right part. We
have:

rp = ('UY = Ux) (O'Y = 0'x)

p = (Uyohizvxohi)/\(ayoh'i:o'xoh'i)
A (dom(vx) C dom(h)) A (dom(vy) C dom(h))
A (dom(ox) C dom(h)) A (dom(oy)C dom(h))

~

Let us show that p’ = p: from vyoh™ = vyoh™ and oyoh™ = oy oh™, we de-

duce vx|dom(n) = Vv|dom(n) and Ox|dom(n) = Ov|domm) Tespectively, and since dom(vy),

dom(vy), dom(ox) and dom(oy) are subsets of dom(h), it follows vy = vy and oy = oy.
The proof of the second rule is quite similar. [

Refinement within the equivalence.
A more general way to refine a PEI statement consists in substituting an equivalent
data field for a given one, according to the weak or strong equivalences which were
introduced in section 3.3. This can be done by generalizing the previous definition of
refinement (definition 7), in order to take equivalence into account.

In the following, we note S[X\X'] the equation set S in which one occurrence X has
been replaced with another expression X’ of the same data field, and S[X\X']* when
all occurrences of X have been replaced by X'.

Definition 8 LetP and P’ be two statements, and S be the equation set of P. We say

that sat(P?) implies sat(P) within data field equivalence, denoted as sat(P’) = sat(P)
if and only if sat(P’) = sat(P) with:

— either P = P{S[X\e(X)]*}, where e(X) is an expression depending on X and satisfies:
for any data field denoted as this X, there exists a strongly equivalent data field, say
X', such that e(X') and X denote the same data field,

~orP = P{S[E\e(E)]}, where ¢(E) is an expression depending on E and satisfies: for
any data field denoted as this expression E, there exists a weakly equivalent data
field expression, say E', such that e(E') and E denote the same data field.

It allows to generalize the previous definition 7 of refinement in PEI as follows:

Definition 9 Let P and P’ be two statements. P is said refined by P’ if and only if
sat(P?) = sat(P).
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Ezample 5 Refinement within the equivalence

Let us consider the two programs P5 and P86, and show that P5 C P6 using data fields
equivalence.

P6 : X—Y
P5 : XY
X = square:: X
X = square:: X
X Z=X

transp:: Y =12

square = A(i,j)|(0<=1i,j<n).(i,])
transp = A(i,j)|(0<=1,j<n).(j,1i)

Let us consider P5 obtained from P5 by replacing Y with (transp::Y’) and then
by renaming Y’ as Y (since Y and Y’ are strongly equivalent). The properties we
consider are then:

sat(P5) : [X = square :: X] = [transp::Y=X]
sat(P6) : [X = square ::X] = ([Z = X] A [transp::Y = Z])

It is straightforward that sat(P6) = sat(lgg) because the equality on data fields is

transitive. Then sat(P6) = sat(P5) and P5 C P8.
O

5 CASE STUDY: GAXPY

The example studied in this section is a variant of the Gazpy operation (Golub &
Loan 1989), which is merely a computation of the form: ¢ = Az +y, A € R™*?,
z € R™ y € R™. We only consider in this article the particular case where y = z,
which operation is often iterated to compute A(...(A(Az+x)+z)...)+, for example
in the conjugate gradient method.

Due to its extensive usage in numerical computations, many implementations of
the operation have been proposed for parallel computers. We show two data parallel
versions of the algorithm: the first version takes into account hardware restrictions
that are sometimes encountered (for instance, diagonal values cannot be broadcasted
along a dimension on CM-200 and CM-5 computers (Petiton & Emad 1996)), whereas
the second version does not consider this restriction. Thus the two algorithms differ
in their data placement, and we show that one algorithm can be deduced from the
other.

The initial algorithm is described on figure 9(a) and is transcribed by the program
Gaxpx1: it consists in aligning « (represented by data field X) on the first row of the
matrix (BO). Then, z is replicated on all the matrix rows to form the data field B. Such
an alignment enables to compute all the products at one time (P). All P values have
then to be added row-wise to obtain Az, the result being arbitrarily placed on last
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column (€0). The addition of Az with # requires CO to be transposed (C1); eventually
the result Az + z lies on first row of the matrix (C).

BO

>
¥ r N
VEFPN
VEFPN

3

P=A*B

P=A*B ﬁ\ O 3
AN :
Cco C1
C=B0+C1
(a)
Figure 9 (a) Initial algorithm
Gaxpxl : (4,X) — C

A = matrix::A

X = align::BO

B = BO < spread

P = prod > (A /&/B)
CO = sum > (red ;> P)
C1 = CO < col2row

C =add > (BO /&/C1)

Co C=B0+C0

(b)

(b) Improved algorithm

matrix = A(i,j)|(0<i,j<n).(1,])
align = A(i,j)|(i=0&0<j<n).(j)
spread A(i,j)](0<i,j<n).(0,3)

red = A(i,j)|(0<i,j<n).(i,n-1)
col2row = A(i,j)|(i=0&0<j<n).(j,n-1)
add = A(ab).(a+b)

prod = A(a;b).(a*b)

sum = id# A(a;b).(a+sum b)

If the hardware requirements support broadcast of diagonal values, then we can
design a more efficient program, as sketched on figure 9(b). Hence, the alignments of
and Az on the diagonal makes the transposition phase useless. On parallel computers,
such an operation involves a costly interprocessor communication so that removing
this phase results in an important performance gain.
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We show that the new program can be obtained from Gaxpx1 using the refinement
calculus. The idea is to realign BO and CO by mapping them onto the diagonal.

5.1 Vector realignments

First, we change the definition of BO relatively to X (we change X alignment) by
applying the following change of basis (equal to its inverse), that swaps diagonal and
first row points:

row2diag = A(i,j)|(i=0&0<j<n).(j,j) #
A(1,j)|(i£0&i=j&0<j<n).(0,j) #
A(i,3)|(1#0& i#j £0<i,j<n).(i,7)

From definitions 8 and 9, a refined program is obtained by replacing all occurrences
of BO by (row2diag::B0):

Gaxpxl’ : (A,X) — C

A —matrix:: A

X = align:: (row2diag:: BO) (2)
B = (row2diag:: B0) < spread (2%)
P = prod > (A /&/B)

CO = sum > (red ;> P)

C1 = CO < col2row

C = add > (row2diag::B0O /&/C1)

We obtain a new alignment from the previous statement, by applying some alge-
braic rules:

(i) — 7 rewriting rule (7b)"
X — alignorow2diag:: BO
— 7 function renaming’,
let align2 = align o row2diag = A(i,j)|(i=j&0<j<n).(j)
X = align2:: B0

Intuitively, the data field B has the same values in both versions, but their origins are

different; it is a typical case of weak equivalence. From definition 8 and 9, (i7) may
be replaced by

B = (row2diag:: ((row2diag::B0) < spread)) < row2diag

The expression can be successively transformed into the following equations where
i denotes the identity on Z2:
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B = (row2diag:: ((row2diag::B0) < spread)) < row2diag

l

" rewriting rule (3a)”,
as img(spread) C img(row2diag)
and dom(vgg) C dom(row2diag) from (i),
and ” function renaming’,
let spread2 = row2diago spread o row2diag

= A(i,j)|(0<i,j<n). (3,3)
B = (row2diag:: (row2diag:: (BO « spread2))) < row2diag
" rewriting rule (7b)
B = (i|dom(ronzdiag) :: (BO <1 spread2)) < row2diag
” simplification” | since dom(spread2) C dom(row2diag)
B = (BO « spread2) < row2diag
" rewriting rule (5b)", since dom(spread2) C dom(og)
B = BO < spread2orow2diag

Ll

" definition of spread2”, spread2 = spread2 o row2diag
B = BO < spread2

The following refined program summarizes the previous refinements:

Gaxpx2 : (A,X) — C

A —matrix::A

X = align2::B0O

B = BO < spread2

P = prod > (A /&/B)

CO = sum > (red ;> P)

C1 = CO0 < col2row

C = add > (row2diag::B0 /&/C1)

Similarly, we change the alignment of Az (C0) using the change of basis:

col2diag = A(i,j)|(j=n-1&0<i<n).(i,i) #
A(1,7)|(j#n-1&i=j &0<i<mn).(i,n-1) #
A(i,3)|(G#n-1&i#j&0<i,j<n).(i,j)

From definitions 8 and 9, we can refine Gaxpx2 in:

Gaxpx2’ : (A,X) — C

A —=matrix:: A

X = align2::BO

B = BO < spread2

P = prod > (A /&/B)

col2diag::CO = sum > (red ;> P)  (iif)
C1 = (col2diag::C0) < col2row (iv)
C = add > (row2diag:: B0 /&/C1)
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As shown on figure 9(b), P values are gathered on the diagonal to form €0. The
data field P and (col2diag::P) < col2diag are weakly equivalent. We obtain a new
reduction by applying some rewriting rules on the following expression:

col2diag::CO = sum [> (red ;1> ((col2diag::P) < col2diag))

—  7rewriting rule (3a)”, since dom(vp) C dom(cold2diag)
col2diag::CO = sum [> (red ;1> (col2diag:: (P < col2diag)))
—  "rewriting rule (3c) and function renaming”,
let red2 = col2diago redo col2diag = A(i,j)|(0<i,j<n).(i,i)
col2diag:: CO = sum [> (col2diag:: (red2 ;1> (P <« col2diag)))
—  7rewriting rule (1a)”
col2diag:: CO = col2diag:: (sum > (red2 ;> (P < col2diag)))
—  "change of reference domain”

as dom(veo) C dom(col2diag) from equation (1v)
CO = sum > (red2 ;> (P < col2diag))

The following steps allows the routing col2diag to be removed in the last expres-

sion:

— 7definition of red2”, red2 = red2o col2diag
CO = sum > (red2 o col2diag ;> (P < col2diag))
" rewriting rule (6) and property 17, col2diag equals to its inverse
CO = sum > (red2 ;> ((P <« col2diag) < col2diag))
" rewriting rule (5b)”, since dom(col2diag) C dom(op)
CO = sum > (red2 ;> (P < i|dom(cor2diag)))

Ll

” simplification” | since dom(col2diag) C dom(vp)
CO = sum > (red2 ;> P)
We thus have:

Gaxpx3 : (A,X) — C

A —matrix:: A

X = align2::B0O

B = BO < spread2

P = prod > (A /&/B)

CO = sum > (red2 ;> P)

C1 = (col2diag:: C0) < col2row (vi)
C = add > (row2diag::B0 /&/C1)

5.2 Transposition removing

Intuitively, CO and BO are both aligned on the diagonal, making the transposition
defined by C1 useless. As BO is aligned using row2diag, we have to introduce row2diag
in the expression of C0. The idea is to decompose col2diag using row2diag. Since
col2diag realigns BO onto the last column, we have to complete row2diag by a change
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of basis that swaps the last column and the first row. Let row2col be this change of
basis:

row2col = A(i,j)|(j=n-1&0<i<n).(0,i) #
A(1,j)|(j#n-1&i=0&0<j<n).(j,n-1) #
A(i,7)|(j#An-1&i£0&0<i,j<n).(i,]j)

Since col2diag and row2col o row2diag are equal on the value domain of CO, the data
fields col2diag:: CO and row2col o row2diag :: CO are weakly equivalent. Moreover,
row2col o row2diag:: CO can be rewritten as row2col : : (row2diag:: CO) from rewrit-
ing rule (7a), and col2row is equal to row2col on the first row (i.e. the value domain
of row2diag : : C0). Therefore we can conclude that data fields €1 and row2diag :: CO
are weakly equivalent. This allows the new statement Gaxpx3 to be obtained by substi-
tuting row2diag : : CO for C1 definition, using weak equivalence implication (definition

8):

Gaxpx3’ : (A,X) — C
A —matrix::A
X = align2::B0O
B = BO < spread2
P = prod > (A /&/B)
CO = sum > (red2 ;> P)
C = add > (row2diag::BO /&/row2diag:: CO)

We obtain the final statement from the previous one by applying the change of basis
defined by row2diag on C and by using rules (11a), (1a) and the change of reference
domain in the last equation.

Gaxpx4 : (A,X) — C
A —matrix:: A
X = align2::B0O
B = BO < spread2
P = prod > (A /&/B)
CO = sum > (red2 ;> P)
C = add > (BO /&/CO)

6 CONCLUSION

We have presented in this paper a formalism designed for the construction and deriva-
tion of parallel programs. In particular, it has shown to be well suited to data paral-
lel programs specifications, and the case study in last section showed a specific but
nonetheless crucial kind of transformation for that model, which mainly concerns data
alignments. In addition to the PEI theory, some tools have been developed to ease the
use of PEI:
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— a type-checker that infers the domains of the data fields in a statement, and there-
fore controls the data fields consistency. Furthermore, the inference of domain in-
formation allows conditions required by refinement rules to be easily checked,

— the refinement calculus can be done through a dedicated tool. It browses a state-
ment, in which any data field expression may be selected and refined, the appro-
priate rewriting rule being automatically applied,

— some other prototype tools, such as a PEI-CAML and PEI-HPF compiler, should
also enlarge the potential use of PEL.
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