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Abstract

A lot of research works have been done to examine connec-
tions between data-parallel and functional programming, as
[8, 2] for example, who define the denotational semantics of
a data-parallel language. Some others show how interesting
it is to keep or associate a geometry with data-parallel ob-
jects: for example, in the automatic parallelization area, a
change of basis makes a space-time mapping explicit. PEI
is a minimal formalism to transform parallel programs [17]:
it gives a framework for the main issues of data parallelism
[16, 18]. The purpose of this article is to show that PEI is
a link between the last two approaches as it offers a geo-
metrical point of view via a change of basis operation and a
simple denotational semantics of its programs.

1 Introduction

A few years ago, the design of SIMD massively parallel
architectures induced a new parallel programming model,
so called data-parallelism. This model, very closed to the
underlying computation, was expressed through some dedi-
cated data-parallel languages, such as C* or PML.

These languages were first designed in order to program
these architectures efficiently. Nowadays, they can be con-
sidered as a parallel programming standard, besides the
control-parallel languages. So, this tends to change the
problem into its converse: general MIMD architecture de-
sign has to ensure convenient capabilities, such as routing
performances, cache prefetching or synchronization barriers,
in order to implement this programming model. Architec-
tures depend then on languages as it was the case for Lisp
machines, uFP or APL ones.

In a programming point of view, the question is to appre-
ciate how a programming model is closed to a computation
one, and conversely how a program matches a specification.
Since it lies on synchronized computations on regularly ar-
ranged data arrays, data-parallelism seems to be a better
candidate than control-parallelism. But like any other one
in the sequential or parallel programming areas, this partic-
ular model recalls a major issue: how imperative languages
can safely describe problems?

As Lisper says in [8], it is hard to use these languages

to express algorithms in the problem domain in an abstract
machine-independent way”. Obviously these languages seem
not abstract enough yet, for reasoning on programs.

Nevertheless a few studies focus on abstract specifica-
tions to derive computable programs: Morgan [13] intro-
duced a reasoning on programs founded on a refinement
calculus for imperative sequential programs. In the clas-
sical functional programming area, equational reasoning is
founded on the fixpoint theorem hypotheses. In [11] Misra
proposed an extension of this model for non-deterministic
programs.

All these approaches confirm that program reasoning
should not depend on some particular computation model,
or at least that such a model should not be imposed as a
general rule. Indeed languages should be associated with
denotational semantics issues which do not impose a given
computation model, a priori.

For example, the concept of program, considered as a
reasoning support, involves the definition of objects: the
abstraction degree of programs then depends on the abstrac-
tion degree of these objects. This point was taken into ac-
count in the past by defining complex abstract data struc-
tures, or hierarchical classes in object oriented languages.
Conversely, we consider a very abstract, unstructured, but
powerful point of view: the mathematical notion of multi-
set of values. Similar approaches were also developped in
the languages LINDA [7] or GAMMA [1]. Of course, the pro-
gramming activity may then imply to put these values in a
convenient organized directory, depending on the problem
terms.

In scientific computations, for example, objects of a prob-
lem are incidentally functions on indices: the index set, that
is the problem domain, is a subset of Z". In fact, this do-
main is only a geometrical abstraction of an other one: the
computation domain. These domains characterize differ-
ent ways of mapping a multiset of values. Their geomet-
rical definition means that programming consists in discov-
ering some change of basis. Many contributions in the auto-
matic parallelization area have enforced this thesis till now
[15, 14, 5, 12]. The geometry specifies a computation sched-
ule and a location number which can be interpreted as a
processor coordinates in a virtual architecture. These works
made increasing the interest to keep or associate a geometry
with a problem since the target architecture has a geomet-
rical framework, such as a grid, a mesh, or a hypercube-like
connection topology.

Concerning programming languages, some of them (AL-
PHA [10], or CRYSTAL [4] for example) were born of this



approach. In these languages, since objects are associated
with geometrical properties, they meet parallel variables in
the data-parallel languages. PEI[17, 16] comes from this ap-
proach too. It is founded on geometrical representations of
multisets and on the equivalence of these representations. It
defines a minimal formal framework in which specifications
and programs are expressed.

In this paper, we show how a functional interpretation
of PEI programs can be defined. The natural data-parallel
meaning of PEI establishes then a connection between two
programming paradigms: the functional one and the data-
parallel one.

Section 2 intuitively presents this theory and its geomet-
rical point of view, with the classical example of the convolu-
tion sum. Sections 3 and 4 are formal contributions to define
the issues of PEI and their functional interpretation. A re-
finement calculus is presented in Section 5: it allows some
operational transformations which yield a practical interpre-
tation in terms of mapping and schedule, and some other
denotational ones, to derive functional programs. Both op-
erational and denotational refinements are illustrated with
the convolution sum.

The second part of the paper (Sections 6 and 7) focuses
on functional interpretations: a first one, which maintains
some geometrical issues for a sort of data-parallel computa-
tion, and a second one which rubs these aspects to derive
a standard function, whose parallel evaluation can be elab-
orated with a classical parallel graph reduction technique.
Scan and reduction illustrate these points.

2 A short presentation

Languages which are founded on the recurrence equations
concept, like ALPHA or CRYSTAL, define the denotational
semantics of expressions as functions which map index sets
onto sets of values. Function domains are then built from
integral convex polyhedra in Z". Domains and values are
deduced from equations which define data dependencies.

Example : The convolution sum. Let b be a
series defined on {k | 1 < k < p} and ¢ a series
defined on N*. The convolution sum a of b and
¢ is defined for any n > 1 as:

r
an = g bk X Ck4n—1
k=1

In a recurrence form, any an,n > 1, can be de-
fined on the domain {k | 1 < k < p} of Z by:

Sn71 = bl X Cn (1)
snk = Snk—1+(br X cryn—1) 1<k<p (2)
Qn = Snyp (3)

where s, x are intermediate results. The recur-
rence equation (2) emphasizes uniform depen-
dencies (0, 1) for the calculation of sy .

PEIis a more general notation since it expresses abstract
domains called data fields. These domains allow to address
the values of a multiset by mapping them onto a subset of
Z": they can be considered as a geometrical drawing of mul-
tisets. Of course, any drawing of a multiset can be changed
by applying a bijection: the so called change of basis is then

a major operation on a data field. It results in an equivalent
data field associated with the considered multiset.

A program PEI is a set of equations on data fields. The
two sides of any equation E1 = E2 are expressions defining
the same data field.

Example : The convolution sum (continued). In
PEI1, the previous definition can be expressed in
the following way. Series a and c¢ are expressed
as data fields A and C, whose drawings are N*.
Series b is expressed as the data field B, whose
drawing is {k | 1 < k < p}. This means that
for any k, the values b(k) and c(k) are located
at point kl Of course, any program which lies
on an other drawing for b or ¢ defines an equiv-
alent program, provided its operations result in
an equivalent data field.

Convolution: (B,C) — A
align :: (B> < first) =B
align :: (C’ < first) =C
B" = B’ < spreadl
C" = C’  spread2
S = addprod [> (S < pre /&/B" /&/C")

A = project :: (8 < last)
align = A(n,k) |[(n=1).k
first = A(n,k) |(n=1)
project = A(n,k) |(k=p).n
last = A(n,k) |(k=p)
spreadl = A(n,k) |(k<=p & n>=1).(1,k)
spread2 = A(n,k) |(k<=p & n>=1).(1,k+n-1)

pre = A(n,k) [(1<k). (n,k-1)
addprod = A(b-c). (b*c) +
A(s-b-c) .s+bxc

Data fields B?, C’, B" and C" are intermediate
notations to simplify the definition of S.

The recurrence defining s suggests to draw the
data field 8 in Z*. So, the values of B and C are
drawn in Z? too, by a sort of data alignment: this
change of basis forms the data fields B’ and C’.
Their values are then broadcasted to localize the
right values onto the right locations (data fields
B" and C") in order to compute the recurrence
steps.

For sake of simplicity, this intuitive explanation
referred to the data-parallel programming issues.
Nevertheless this imperative presentation must
not confuse the reader: PEIis a declarative lan-
guage which expresses equations on data fields.
So, here is a more complete comment on every
equation:

The first equation implicitely defines B’. The func-
tion align, defined in Z?, applies a change of
basis (notation ::) which expresses that the pro-
jection of its argument (B’ < first, supposed to
be a row) on an unidimensional domain, is equal
to B. The argument B’ < first, itself, applies a
geometrical operation (notation <) which selects
the first row of B’ (see Fig. 1).

!Notice that this matches the natural drawing for series. Obvi-
ously this simplification hypothesis can be done for any data field
which expresses a wectorial data structure (vector, matrix, and so
on) as in data-parallel programs, without loss of generality.



Figure 1: The data fields B, B” and B”

All these functions define the context of the pro-
gram: they are expressed as A-expressions, in
which the separator | allows to define the do-
main of the function (the constant predicate true
may be omitted), and the ”.” begins the function
body (the function identity may have an empty

body).

The second equation similarly defines C’ from C
(see Fig. 2).

-+

Figure 2: The data fields C, C” and C”

The data field B" results of the application of
the geometrical operation spreadl on B’. This
operation broadcasts the values of the data field
B’ in the direction (1,0) in Z*. Similarly, the
values of C’ are broadcasted by using spread? to
form the data field C". This operation broadcasts
the values of the data field C’ in the direction
(1,—1) in Z°.

In the fifth equation, the data field S results from
the application of a so called functional operation
(notation [>) addprod on three data fields. The
first one results of a geometrical operation on 3
which expresses the dependency (0,1) in Z?. The
other ones are the data fields B’ and C’.

The last equation defines the data field A, by a
change of basis: it projects the part of S whose
drawing is {(n,p) | n > 1} in Z.

3 Data fields and functional interpretation

In the theory PEI, objects called data fields, represent mul-
tisets in a geometrical way by associating a coordinate in Z"
with any of their values. In a data-parallel point of view,
the coordinate defines the location of the PE (processor el-
ement) which computes the value, and the schedule of the
computation.

Definition 1 A drawing v of @ multiset M of values in V,
is a partial function from 2", n € N, in V such that M =
< v(z), z € dom(v) .

This notion of drawing seems to define a natural func-
tional interpretation of a data field X: it can be denoted as
[X] = v. Since drawings of a given multiset can be deduced
one another from a bijection, we consider in fact a data field
X as the abstraction of any drawing, i.e. a data field is a
drawing within some bijection. A change of basis operation
is then defined in PEI it allows to redraw a data field X by
applying a bijection h.

From the previous definition, we have [k :: X] = v o
h~!. Of course, the equivalent data fields X and h :: X
should have the same functional interpretation: so, this first
natural interpretation is not sound. A relevant one is given
hereunder: it is founded on the following definition of a data

field.

Definition 2 A data field X is a pair (v : o), composed of
a drawing v of a multiset My and of a bijection o such that
dom(v) C dom(o)?.

Definition 3 The functional interpretation of a data field
X = (v: o) is defined as [X] =voo™'.

The type of the values of any data field is the type se-
quence, i.e. for any set T' the cpo of sequences of elements in
T with prefix order and the empty sequence as least element.
In the following we will use two operators on sequences: an
associative constructor denoted as ”-” and the function id
which is the identity on sequences of one element.

4 Operations on data fields

Data fields are built from an internal associative operation,
called superimposition and denoted as /&/. The drawing of
any data field obtained by this operation is the union of its
arguments drawings. The values of the resulting data field,
associated with the intersection of its argument drawings,
are the sequences of their values.

External operations either define the computations of the
values of a data field, or express data dependencies, or else
redraw a data field. These operations apply a partial func-
tion on a data field. According to the way the function is
applied, the operation is called a functional operation, or a
geometrical one, or else a change of basis operation.

The notation PE1 for partial functions is derived from
the lambda-calculus: any function f of domain dom(f) =

{z | P(z)} is denoted as Az |(P(z)).f(z). Moreover, we

?the function v 0 ¢~ ! defines then an other drawing of My.



denote Az. f(z) for Az |(true).f(z), and Az |(P(z)) for
Az | (P(z)) .z
A function f can be defined as a partition f; + fz of

functions where the f; are defined on disjunctive sub-domains.

Definition 4 Let f be a partial function from V to W and
X = (v : o) a data field of values in V. The functional
operation defines the data field f > X of values in W as the
data field (fov: o).

Proposition 1 [f> X] = f o [X].

Definition 5 Let g be a partial function from Z™ to dom(v)
and X = (v : o) a data field drawn in Z". The geometrical
operation defines the data field X < g as (vog: o).
Proposition 2 [X < g] = [X]ooogoo™t.

Definition 6 Let h be a bijection from dom(v) onto ZP and

X = (v : o) a data field drawn in Z". The change of basis
defines the data field h :: X as (voh™' :goh™!).

Proposition 3 [k :: X] = [X].

Proof : [h::X]=voh™lo(coh™!)™!
=voh lohoo™!
=voo !

=[x]

This last result shows the soundness of the functional
interpretation of a data field. It emphasizes the difference
between a denotational semantics and an operational one:

e in the context of data-parallelism, equivalent data fields
may define different geometrical implementations, such
as different data alignments or computation schedules,
which lead to different program executions,

e whereas, in a functional interpretation domain, these
programs define the same function.

To complete the presentation of PEI, let us observe that
an elegant expression for specifications may use inverse func-
tions. These functions have then to be refined to design
deterministic executable programs. This leads to introduce
inverse operations in PEI. Of course the inverse of a change
of basis operation is a change of basis too, which is defined
from the inverse of its bijection h. Other inverse operations
are crucial since they define so called reduction operatorsin
data-parallel languages [18].

Definition 7 Let f be a partial function from W to V and
X = (v: o) adata field of values in V. A data field, denoted
as X < - f, is said to be a functional inverse of X by f iff
its functional interpretation [X < - f] is a partial function w
such that:

o dom(w) = {z € dom(v) | Ju € dom(f) - f(u) = v(z)}

o w(z) is a sequence of the values of < u, f(u) = v(z) =
Definition 8 Let g be a partial function from dom(v) to
Z" and X = (v : o) a data field drawn in Z". A data field,
denoted as g - > X, is said to be a geometrical inverse of X

by g iff its functional interpretation [g- > X] is a partial
function w such that:

o dom(w) = g(dom(v))
o w(z) is a sequence of the values of < v(y),g(y) =z =

Example : The convolution sum (continued). In
PEI, the convolution can also be expressed in the
following more abstract way by using a geomet-
rical inverse operation.

Convolution: (B,C) — A
align :: (B> < first) =B
align :: (C’ < first) =C
B" = B’ < spreadl
C" =G’  spread2
P = prod > (B" /&/C")
A = project :: (sum [> (reduce - > P))

align = A(n,k) |(n=1) .k
first = A(n,k) |(n=1)

project = A(n,k) |(k=p).n

reduce = A(n,k).(n,p)

spreadl = A(n,k) |(k<=p & n>=1).(1,k)
spread2 = A(n,k) |(k<=p & n>=1).(1,k+n-1)
prod = A(b-c) . (bxc)

sum id + A(a'b) .atsum b

The intermediate data field P contains all the
products bg * cpyr—1. The geometrical inverse
operation A(n,k).(n,p) puts some sequence of
all the values of points (n,k) of P at the index
(n, p). These values are then added by using the
functional operation sum. This program can be
refined and leads to the previous one. This con-
cept of refinement is presented in the next sec-
tion.

5 Refinement

Refinement of specification is a powerful programming con-
cept [13]. In the previous sections, we have discussed PEI
programs. More generally, a statement PEI defines a prob-
lem P as a relation between multisets. Its graph is a set of
pairs (D, R) where D and R are tuples of multisets, respec-
tively called input and output multisets. Such a relation is
specified as a system of unoriented equations, each of them
defining two equal expressions of some data field. A spec-
ification states the inputs and outputs: inputs are the pa-
rameters of the system and the outputs are its unknowns.
Any equation whose arguments are only inputs defines pre-
conditions on these input data fields. Any other one, whose
arguments may be intermediates or outputs defines postcon-
ditions on these data fields.

Intuitively, we will say that a specification S is refined
by a specification S’ if any solution of S’ is equivalent to
a solution of S for some equivalent parameters, where this
equivalence means that equivalent data fields are associated
with the same multiset, as it was said in Section 2.

Definition 9 Let S and S’ be two specifications. S is said
refined by S’°, denoted as S C S’

o cither if Pre = Pre’ A Post’ = Post, where Pre,
Pre’ and Post, Post' are the predicates associated with
pre- and postconditions of S and S,

e or if S s identical to S’ by substituting the data field
h :: X for all occurrences of X.



These two kinds of refinement, respectively called the
denotational refinement and the operational one, may apply
whatever the step in the design of a solution. Since it is
monotonic, this refinement definition induces a refinement
calculus which is founded on the following rules:

Y=flof2X
Y=X<<glog2
Y=hloh2 :: X
Y=(f>X)<Qg
Y=(h::X)<yg
Y=(g91 + g2)->X
Y=(g9log2) ->X
Y=X<-(f1 + f2)
Y=X<-(flof2)

Y= f1> (f2> X)
Y=(X<gl)<g2
Y=~h1:: (h2 ::X)
Y=fD>(X<Qg)
Y=h::(X<ahlogoh)
Y=gl ->X/&/g2->X
Y=gl > (92 - > X)
Y=X- f1/8/X - f2
Y=(X<-f1)<- f2

M I

Associated with the following propositions, the last four
rules define denotational transformations of reductions in
some compositions of functional or geometrical operations.
This kind of transformation is used to refine the convolution
example in its first form.

Proposition 4 The data field X < - f is equal to f~' > X
off f s bijective.
Proposition 5 The data field g - > X is equal to X < g~*
off g s bigective.

On the other hand, an operational refinement consists in
defining some operational order from an initial specification,
in the following sense: a program is a particular specifica-
tion, which defines a function between input and output
data fields. In order to get an operational definition of this
function, i.e. the set of computations of an abstract com-
puter it envolves, it is necessary to introduce a partial order
on the data field elements. This order is defined by using
the bijection o of the considered data field.

Definition 10 Let < be any partial order on Z"™ and (v : o)
a data field whose bijection o is a function from 7" to Z™.

The relation b defined as
Vz,2' € dom(v) - v(z) Fu(2') iff o(2) < a(2)
is a partial order on dom(v), called an operational order.

The choice of an order < on Z™ predetermines the op-
erational definition of a program, for example in defining a
schedule and maybe a mapping of the computations onto a
set of virtual processors. The aim of program transforma-
tions, indeed, is to make explicit a bijection o which intro-
duces a convenient operational order. These transformations
lie on the change of basis operation.

The following example illustrates the result of an op-
erational refinement, applied on the first statement of the
convolution sum.

Example : The convolution sum (continued).
The inital statement can be refined to the fol-
lowing one, which explicits an operational order:

Convolution: (B,C) — A
B" =B /&/B" « init
C" =C/&/C" < left
S = addprod > (S < right /&/B" /&/C")
A=38< Xx,t) |(x=p)

init Alx,t) |(t>x+1) . (x,-2)
left Alx,t) [(t>x+1) . (x+1,t-1)
right = X(x,t) [(1<x<=p).(x-1,t-1)
addprod = A(b-c).(b*c) +

A(s-b-c) .s+bxc

Refinement steps for this program can be found
n [16]. This statement determines a computing
schedule and a regular mapping, which describe
a systolic array (drawn for p = 5 in Fig. 3). The
geometrical operations left and right define the
processor links. The geometrical operation init
defines a memory cell. The systolic array topol-
ogy is defined by the set {z | 1 < z < p} which
is deduced from the data field drawing.

t x

H
cl.c2.c3...

Figure 3: A processor array for the convolution sum

This powerful refinement concept, and its dual called pro-
gram abstraction, are founded on the intrinsic geometry of
data fields : it yields transformations which abstract classi-
cal functional transformations.

6 A functional interpretation of PEl Programs

Since data fields are interpreted as functions and sequences
of elements can be interpreted as lists, PEI programs, such as
the previous one, can be interpreted as functional programs
associated with graph reduction.

In order to express such functional solutions, we intro-
duce a MIRANDA-like notation [9].

The notation for function application is only a juxtapo-
sition, as in £ x. Function application is left-associative, so
f xy= (f x) y. This assumes the currying of any func-
tion of two or more arguments. A list is written in square
brackets: [] is the empty list, and [a,b,c,d] contains four
elements. x:xs denotes the list xs with x attached to the
front. The enumeration syntax is just a shortland for con-
structing the list with ”7:”, so [a,b,c,d] = a:b:c:d:[].
Lists may be appended by the ”++” infix operator. Any
function f is defined on lists, assuming that £ [1 = [].

Now, let us come back to the convolution sum, to propose
a functional interpretation of the previous systolic solution.

Example : The convolution sum (continued).
The following program expresses the functional
interpretation of the previous PEI program:

Convolutionl (b,c) = a
where
b" [(x,t)] = superimpose b
(compose b" init) [(x,t)]
c" [(x,t)] = superimpose c
(compose c" left) [(x,t)]
compose addprod (superimpose
(compose s right)
(superimpose b" ¢")) [(x,t)]
a [(x,t)] = compose s last [(x,t)]

s [(x,t)]



Functions compose and superimpose are higher
functions which are the interpretation of map-
ping an external or internal PEI operation. They
can be defined as following:

compose £ g x = £ (g x)
superimpose f g x = f x ++ g x

Functions addprod, init, left, right and last
can be defined as:

addprod [b,c] [b*c]
addprod [s,b,c] [s+b*c]
addprod a:b:c:d:xs = []
addprod [al = []

init [(x,t)] [(x,t-2)], t>x+1
[1, otherwise
[(x+1,t-1)], t>x+1
[1, otherwise
[(x-1,t-1)], 1<x<=p
[1, otherwise
[(x,t)], x=p

[1, otherwise

left [(x,t)]
right [(x,t)]

last [(x,t)]

Let us consider a new example, which is significant in
the data-parallel approach.

Example : The partial sums of n numbers. This
PEI program computes all partial sums of a series
(2i);-, ,, of n numbers. It is a scan operationin
data-parallel languages.

PartialSums:X+— S

{ S =add > (X /&/S < pre)

pre = Ai |(1<i<=n).i-1
add id + A(s-x).s+x

This PEI program can be translated as following, in a
functional style by introducing data fields as functions and
sequences as lists.

Example : The partial sums of n numbers (con-
tinued).
PartialSumsl x = s

where

s [i] = (compose add

(superimpose (compose s pre) x)) [il
Functions add and pre can be defined this way:
add [a]

add [a,b] a+b]
add a:b:c:xs = []

[al
=[

[i-1], 1<i<=n
[1, otherwise

pre [i]

This example shows how the functional interpretation of
PEI programs defines functional programs. The dual prob-
lem of determining a parallel computation associated with
a functional program can find several solutions:

e it may consist in implementing its reduction graph
onto a parallel architecture,

e or in coming back to the original PEI program and
transforming it by using the refinement calculus in or-
der to explicit an operational order.

These first functional solutions can be considered as hy-
brid solutions since the functions refer to geometrical ele-
ments such as indices x, t or i on the previous examples.
Of course, the natural meaning of these elements may induce
data-parallel solutions.

Conversely, a pure functional solution consists in substi-
tuting some abstract data types, such as lists or trees for
functions: this leads to rub any geometrical reference for a
parallel computation.

7 Functional programming

In order to emphasize the relationship between functional
and data-parallel programming, this section illustrates the
way the functional interpretation of PEI programs leads to
pure functional programs. As a first illustration, let us come
back to the previous example PartialSums1.

Example : The partial sums of n numbers (con-
tinued). In functional programming this problem
may be solved by representing functions as lists.
The following program explicits the previous so-
lution:

PartialSums2 [] = []
PartialSums2 x:xs = flat_map add
(combine2 (PartialSums?2 xs) (x:xs))

where flat_map and combine2 implement com-
position and superimposition:

flat_map f x:xs = £ x ++ flat_map f xs

flat_map £ [1 = []

combine2 x1:x1s x2:x2s = [x1,x2]:combine2 x1s x2s
combine2 x1:x1s [] = [x1]:combine2 x1s []
combine2 [] x2:x2s = [x2]:combine2 [] x2s
combine2 [1 [1 = []

and assuming that list [xn,...
series (z;)

,x2,x1] represents

i=1l..n"

Note that this functional program is a particular way to
implement the classical scan-from-right function® scanr (+)
which collects partial results into a list. Here is its definition
for n = 3:

scanr (+) [x3,x2,x1] = [x3+x2+x1,x2+x1,x1]

The functional program PartialSums2 is obtained from
the program PartialSumsl by representing functions x and
s by lists: let 1x and 1s be these lists. PartialSumsl x = s
can be rewritten as PartialSums2 1x = 1s.

Let List denotes the representation function, such that
List 1x = x and List 1s = s. It is defined as follows:

1
[x], i=(length xs)+1
List xs [i], otherwise

List [1 [i]
List x:xs [i]

3Functions scanr or scanl are generally considered as primitives in
data-parallel languages.



Conversely, the functional program PartialSums1 can be
obtained from the program PartialSums2 by using the func-
tion List in order to represent lists as functions: this repre-
sentation introduces a geometry again, as it is presented in

[8].

The same remark can be made for the convolution sum.
The last statement emphasized a functional interpretation
of the systolic solution. Assuming c is a finite series, we can
rewrite this first functional program by substituting lists for
functions.

Example : The convolution sum (continued).

Convolution2 (1b,[1) = []
Convolution2 (1b,xlc:xlcs) =
(sum 1b xlc:xlcs):Convolution2 (1b,xlcs)

where
sum 1b [] = []
sum [] 1c = []
sum x1b:x1lbs xlc:xlcs = flat_map addprod
(combine3 (sum x1bs xlcs)
x1b:x1bs xlc:xlcs)

Let us consider a last example, from a PEI program until
a pure functional one.

Example : The sum of n numbers. The follow-
ing PEI program can be obtained by performing
a reduction via some refinement rules. It com-
putes the sum of n numbers in the particular
case where n = 2%,

Sum:X — 3
Y=add > (X /&/Y < low /&/Y < diag)
S =Y < root
low = A(i,j) |(j>0).(i,j:1)
diag = A(i,7) [(350).(i-205-1),3-1)
root = A(i,j) [(i=n & j=k)
add = id + A(ab).atb

Figure 4: The data field Y drawn on a tree

The data field X represents a multiset composed
of n numbers. It is drawn on plane in the interval
[1..n,0]. Here is the functional interpretation of
this program:

Suml x = s
where
y [(i,j)] = compose add
(superimpose x (superimpose
(compose y low)
(compose y diag))) [(i,j)]
s [(i,j)] = compose y root [(i,j)]

Functions low, diag and root can be defined this
way:

low [(i,j)] = [(i,j-1)], j>O
[1, otherwise
[(i-27(j-1),j-1)]1, j>0
[1, otherwise
[(i,j)], i=n & j=k
[1, otherwise

diag [(i,j)]

root [(i,j)]

A classical functional interpretation of this program may
consist in representing the function x as a binary tree with
numbers on the leaves. Such a tree can be formally defined
as the following structured type:

tree ::= LEAF num | BRANCH tree tree

A tree is either a LEAF, which contains a number, or a
BRANCH, which connects two smaller trees: LEAF and BRANCH
are then constructors of the type tree, like 7:” is a con-
structor for the lists*. This leads to the following functional
program, on which only a parallel graph reduction can ap-
ply.

Example : The sum of n numbers (continued).

Sum2 (LEAF num)
Sum2 (BRANCH t1 t2)

num
(Sum2 t1) + (Sum2 t2)

A geometrical representation of a tree can be determined
by the following function Tree:

Tree (LEAF num) [(i,j)] = [num], i=1 & j=0
Tree (BRANCH t1 t2) [(i,j)]
= Tree t1 [(i,j)], i<=2"(depth t1)
= Tree t2 [(i-2"(depth t2),j)], otherwise

By applying this representation function of a tree, the
previous program Suml can be obtained, which introduces a
convenient geometry again for a parallel computation.

8 Related works

The purpose of Lisper in [8] is to define a denotational
semantics for some common concepts of data-parallel lan-
guages. The main objective is to guide the design of data
parallel languages with a higher level of abstraction: this
supposes to capture these different concepts in a more gen-
eral model.

Conversely, PEI is an abstract model based on the geo-
metrical representation of multisets. The operations which
are defined in this model generalize data parallel primitives,
such as data alignment, global operations, scans and reduc-
tions, communications, etc. PEI claims that a formalism
should not a priori impose a computation model: a compu-
tation is only determined from the geometry of the objects.

Lisper view is close to the concepts underlying the lan-
guage CRYSTAL. ALPHA [10] and CRYSTAL [4] were origi-
nally founded on the recurrence equations concept. Only
the ”spatial” properties of the objects defined in these lan-
guages meet the data parallel primitives. As an example,
data alignment or reduction are external operations in these
languages.

PEI is born of the influence of an other complementary
approach. The refinement of non-determinstic programs

4 A similar abstract parallel tree architecture is defined in [6], in
order to reason formally about the parallel scan algorithm.



which defines step by step an executable program from a
specification. UNITY [3] and GAMMA [1] follow this ap-
proach. The main problem for these formalisms is to define
efficient solutions.

Geometry is the foundation for our transformations. The
previous examples show the interest to keep or associate
a geometry with objects in order to define an operational
semantics of programs, due to the geometrical properties of
parallel architectures.

An other point of view is the one of O’Donnell in [6],
which consists in defining an architecture via an algebraic
data type. Architecture and algorithm are thus considered
as two functions, and computation consists in applying the
algorithm on the architecture. This view is a sort of ab-
straction of the classical graph reduction model associated
with functional programming. Our view is different since the
specification of the problem is transformed to match a tar-
get architecture. These transformations explicit algorithm
and architecture from the problem specification.

9 Conclusion

The theory PEI is founded on the simple mathematical con-
cepts of multiset and of an equivalence between their rep-
resentations as data fields. Program transformations are
founded on this equivalence and defined from a refinement
relation. Due to the unifying aspect of this theory, solutions
that can be reached by these transformations are relevant to
various parallel programming models, as systolic processing
or data-parallelism.

This article shows that a specification PEI can be refined
until a program can be described in a functional language.
To parallelize a program for a particular machine consists
then in implementing its reduction graph or directly inter-
pret it as a parallel algorithm on an architecture. This last
point of view is clearly captured in PEI

As a future development, refinement rules can be used
in the reverse order to abstract a specification and detect
reduction: any recursive definition in PEI can be abstracted
with a non-recursive one by using a reduction. Abstraction
increases non-determinism and leads to perform multiset
operations. This new issue may show equivalence between
functional programs. In this sense, PEI is also a contribution
to derive parallel implementation from functional programs.
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