g

-,7
=

&

[ICPS

Informatique et
Calcul Parallele
de Strasbourg

Publication 94-12

A mathematical theory and its environment for
parallel programming

E. Violard

Published in Dagstuhl Seminar on Parallelization Techniques, to appear in
Parallel Processing Letters,199).

ICPS - Université Louis Pasteur
Pole API, Boulevard Sébastien Brant, F-67400 Illkirch

Dirichletpei

<Dir

bro
bro
asy
pre
map

1.

10.

11.

12.

13.

Tchietr : (B,C) > &

Eval

= (bjc)y.(b*c) |> (BL /;/ C2) Abstract
= Mibjed.(b*c) |> (B2 /;/ CL1) Rename
= TL /+f T2 /4 M(EL;12). (110 12) ! T2
T N k) (k=sqri(nd) s+ (@] _Rewrite |7
Nsptd.(e+t) 12 (8 <) pre /;/ 8 <) asym /+/ T
H N{n k)i (k=n)

n & k=trunc{sqri{n))+1) /+/
n & k>trunc{sgrt{n))+1)

i
!

B <| broadcastl

B <} broadcastZ

C <} broadcastZ

map = C / map

<A,). (x-t,x+t) 0 \(n, k)| (1<=k & k<=n & n mod k=B & k>sqrt(n)).(k,k) o \{x,t).(x-t,x+t)~-

adecastl = N(n,k){(1<=k & kd{=n & n mod k=8 & k>sgri{n)).(k,k)
adcast? = “(n,k){(1<{=k & kd{=n & n mod k=B & k>=sqrtin)).(n/k,n/k)
m = “{n,k)(n mad k<>@)

= Nin,kl(n,k-10
= NCH, b (-t mrt)

Fig. 10. The PEI environment

M. Chen and Y. Choo. Synthesis of a systolic Dirichlet product using non-linear
domain contraction. M. Cosnard, Y. Robert, P. Quinton, and M. Raynal, editors, In
Parallel and Distributed Algorithms, pages 281-295. North-Holland, Oct. 1988.

. P.Clauss. Synthése d’algorithmes systoliques et implantation optimale en place

sur réseauz de processeurs synchrones. PhD thesis, Univ. of Franche-Comté, May
1990.

. C. Creveuil. Techniques d’analyse et de mise en oeuvre des programmes

GAMMA. PhD thesis, Univ. of Rennes I, December 1991.

. INRIA - Rocquencourt. Maple Reference Manual, jth Edition, March 1989.
. High Performance Fortran version 1.0, January 1993.

. D. Gelernter. Generative communication in LINDA. ACM Transactions on Pro-

gramming Languages and Systems, 7(1):80-112, January 1985.

. INRIA Sophia-Antipolis, Valbonne. Centaur 1.1, 1991.
. R.M. Karp, R.E. Miller, and S. Winograd. The organization of computations for

uniform recurrence equations. Journal of ACM, 14(3):563-590, July 1967.

. C. Mauras. ALPHA : un langage équationnel pour la conception et la program-

mation d’architectures paralléles synchrones. PhD thesis, Univ. of Rennes I,
December 1989.

P. Quinton. The mapping of linear recurrence equations on regular arrays. Journal

of VLSI Signal Processing, 1, 1989.

S. Rajopadhye. LACS : A Language for Affine Communication Structures. Techni-
cal report, IRISA Rennes, 1993.

E. Violard and G.-R. Perrin. PEI: A language and its refinement calculus for parallel
programming. Parallel Computing, 18:1167-1184, February 1992.

E. Violard and G.-R. Perrin. PEI : a Single Unifying Model to Design Parallel
Programs. A. Bode and M. Reeve, editors, In LNCS 69/, PARLE’93, pages
500-516, Berlin, June 1993. Springler-Verlag.

16

broadcastl = \(x,t) | (t+>=x+2 & x=0 & (t+x)/2 mod (t-x)/2=0 &
(t-x)/2>=sqrt ((t+x)/2)) +
\N(x,t) | (+>=x+2 & x>0 & (t+x)/2 mod (t-x)/2=0 &
(t-x)/2>=sqrt ((t+x)/2))
.broadcastl o right (x,t)
broadcast2 = \(x,t) | (t+>=x+2 & x>=0 & (t+x)/2 mod (t-x)/2=0 &

(t-x)/2=sqrt ((t+x)/2) & t+x=2) +
\N(x,t) | (+>=x+2 & x>=0 & (t+x)/2 mod (t-x)/2=0 &
(t-x)/2=sqrt ((t+x)/2) & t+x>2)
.broadcastl o right (x,t) +
\N(x,t) | (+>=x+2 & x>=0 & (t+x)/2 mod (t-x)/2=0 &
(t-x)/2>sqrt ((t+x)/2) &
((t+x)/2 mod ((t-x)/2-1)=0 &
(t+x)<>(t-x)*(($-x)/2-1)))
.broadcast2 o left (x,t) +
\N(x,t) | (+>=x+2 & x>=0 & (t+x)/2 mod (t-x)/2=0 &
(t-x) /2>sqrt ((t+x)/2) &
((t+x)/2 mod ((t-x)/2-1)<>0 !!
(t+x)=(t-x)*((t-x)/2-1)))
.broadcast2 o right (x,t)
asym = \(x,t)|((t+x)/2 mod (t-x)/2<>0)
right = \(x,t).(x-1,t-1)
left = \(x,t).(x+1,t-1)

The refinement process is now completed. The whole description of this linear
systolic array is given in !.

6. Conclusion

The theory we have presented in this paper is founded on the simple mathemati-
cal concepts of multiset and of an equivalence between their representations as data
fields. Program transformations are founded on this equivalence and defined from
a refinement relation. Due to the unifying aspect of this theory, solutions that can
be reached by these transformations are relevant to various parallel programming
models, as systolic processing or data-parallelism.

In this last case, global operations or alignments are modelled through routings
or change of basis operations in PEI, while microscopic operations are the functional
ones. PEI can then be considered as the mathematical domain for a semantics of
data-parallel languages. Transformations and equivalence warrent correct transfor-
mations on data-parallel programs.

The mathematical basis of this theory leads to a nice implementation in CEN-
TAUR 7, using MAPLE * for formal definitions, of an environment whose purpose is
to transform parallel programs (cf. fig. 10).

15

Step 3: uniformization This step consists in uniformizing the dependencies
broadcastl and broadcast2. These routings can be rewritten in the following

way:

broadcastl =

\(n,k) | (1<=k & k=n & n mod k=0 & k>sqrt(n))

+

\(n,k) | (1<=k & k<n & n mod k=0 & k>sqrt(n))

.broadcastl o translatel (n,k)

broadcast2 =
\(n,k) | (1<=k & k<=n & n mod k=0 & k=sqrt(n) & n=1) +
\(n,k) | (1<=k & k<=n & n mod k=0 & k=sqrt(n) & n>1)

.broadcastl o translatel (n,k) +

\(n,k) | (1<=k & k<=n & n mod k=0 & k>sqrt(n) &

(n mod (k-1)=0 & n<>k*(k-1)))
.broadcast2 o translate2 (n,k) +

\(n,k) | (1<=k & k<=n & n mod k=0 & k>sqrt(n) &

(n mod (k-1)<>0 !'! n=kx*(k-1)))
.broadcast2 o translatel (n,k)

translatel = \(n,k).(n-1,k)
translate2 = \(n,k).(n,k-1)

Details of this uniformization are given in

1

Step 4: scheduling and mapping This last step consists in applying of a chan-
ge of basis to express the scheduling and the mapping. Classical technics allow
to determine the following change of basis:

map = \(n,k).(n-k,n+k) map~-1 = \(x,t).((t+x)/2, (t-x)/2)

We obtain the following program:

Dirichlet: (B,C) -> A

{

B1
B2
c1
c2

T1
T2

T}

A=
¥

B <| broadcasti
B <| broadcast2
C <| broadcast2
C <| broadcastil

\(b;c).b*c |> (B1 /;/ C2)
\(b;c).b*c |> (B2 /;/ C1)

(T1 /+/ T2) /+/ \(%1;t2).t1+t2 |> (T1 /;/ T2)

T’ <| \(x,t) | ((t-x)/2=sqrt ((t+x)/2)) /+/
(0 <| asym /+/ T’)

<| \(x,t) [(x>=0 & (t-x)/2=trunc(sqrt((t+x)/2))+1) /+/
\(s;t).s+t |> (S <| left /;/ (0 <| asym /+/ T’))

<| \(x,t) [(x>=0 & (t-x)/2>trunc(sqrt((t+x)/2))+1)

S <] \(x,t) | (x=0)

14

12T

P06 0606 6

Fig. 9. The fields B1 and B2 and the bijection part

Step 2: sum reduction At this step, we complete the previous program by com-
puting the sum of the data field T values. The idea is to accumulate sym-
metrical pairs of values along the symmetry defined in step 1. We obtain the
following program:

Dirichlet: (B,C) -> A

{

B1
B2
c1
c2

T1
T2

A=
¥

<| broadcasti
<| broadcast2
<| broadcast2
<| broadcasti

QoW

\(b;c).b*c |> (B1 /;/ C2)
\(b;c).b*c |> (B2 /;/ C1)

(T1 /4/ T2) /+/ \(+1;t2).t1+t2 |> (T1 /;/ T2)

T’ <| \(n,k) | (k=sqrt(n)) /+/
(0 <| asym /+/ T’)
<] \(n,k) | (k<=n & k=trunc(sqrt(n))+1) /+/
\(s;t).s+t |> (S <| pre /;/ (0 <| asym /+/ T’))
<| \(n,k) | (k<=n & k>trunc(sqrt(n))+1)

S <] \(n,k) | (k=n)

asym = \(n,k)|(n mod k<>0)
pre = \(n,k).(n,k-1)

13

T \(b;c).bxc |> (B’ /;/ C’ <| div)

¥
broadcast = \(n,k)|(1<=k & k<=n & n mod k=0).(k,k)
div = \(n,k).(n,n/k)

We present herebelow the steps to reach a systolic solution:

Step 1: contraction This first step lies on the symmetry of k£ and n/k along the

curve k = y/n 1. It consists in associating the points (n, k) where £ > /n
with the points (n, k') where k¥’ < /n and k' = n/k when k divides n. This
operation is called contraction in the theory CRYSTAL . It is defined by a
change of basis from Z? to {0,1} x Z4. In the present case, this change of
basis is defined by the bijection part as follows:

part = \(n,k)|(1<=k & k<=n & n mod k=0 & k>sqrt(n)).(0,n,k) +
\(n,k) | (1<=k & k<=n & n mod k=0 & k<=sqrt(n)).(1i,n,n/k)

The inverse of this bijection is:

part™-1 = \(p,n,k) | (1<=k & k<=n & n mod k=0 & p=0 & k>sqgrt(n)).(n,k) +
\(p,n,k) | (1<=k & k<=n & n mod k=0 & p=1 & k>=sqrt(n)).(n,n/k)

This change of basis induces a partition of fields B’, €’ and T. For example,
the field B’ is partitioned as follows:

B’ / part = B’ / part <| \(p,n,k)|(p=0) /+/
B’ / part <| \(p,n,k)|(p=1)

We define the fields B1 and B2 associated with two parts of B’ as:
B1 / \(n,k).(0,n,k) = B’ / part <| \(p,n,k)|(p=0)
B2 / \(n,k).(1,n,k) = B> / part <| \(p,n,k)|(p=1)

The first step leads to the following program, equivalent to the previous one:

Product: (B,C) -> T

{

Bl = B <| broadcastil
B2 = B <| broadcast2
C1 = C <| broadcast2
C2 = C <| broadcasti

T1 = \(b;c).b*c |> (B1 /;/ C2)
T2 = \(b;c).b*xc |> (B2 /;/ C1)
T =T1 /+/ T2 <| div

¥
broadcastl = \(n,k)| (1<=k & k<=n &
n mod k=0 & k>sqrt(n)).(k,k)
broadcast2 = \(n,k)| (1<=k & k<=n &

n mod k=0 & k>=sqrt(n)).(n/k,n/k)

12

This change of basis defines a part of o that shows the scheduling of the
solution.

At this step we consider that the refinement process is completed. The
scheduling and a regular mapping are determined, which describe the fol-
lowing systolic array (drawn for p = 5). The routing operation left and
right define the processor links. The routing operation init defines a mem-
ory cell. The systolic array topology is defined by the set {z, 1 <z <p} which
is deduced from the data field drawing (cf. fig. 8).

t X
o—
cl-c2-c3-c4-..
bl b2 b3 b4 b5
..0000 result stream

Fig. 8. A processor array for the convolution sum

5. A further example

In the previous section we have considered the convolution sum problem. It is a
very classical example in the area of systolic algorithms synthesis for its affine data
dependencies. A more complicated example is the Dirichlet product which shows
non-affine dependencies.

Example: The Dirichlet product. Let b and ¢ be two functions defined
on N*. Let a be the Dirichlet product of b and c. It is the function
defined on N*, for all n > 0 by:

an = Zbk X Cn/k

k|n
where k|n means k divides n.

Thus, theories of parallel program transformation relying on convex manipula-
tions fail on such examples. In !, the authors emphasize this point and develop a
metalanguage to transform CRYSTAL statements. In our theory, such transforma-
tions are realized inside the mathematical model itself.

In the following, we present the derivation of a systolic architecture for the
Dirichlet product. This derivation of a solution is organized in two steps. First,
we consider the computation of the products b(k) x ¢(n/k). Then, we deduce an
appropriate reduction for the sum of these terms. The field T whose values are the
terms of the sum can be defined by the following program:

Product: (B,C) -> T

{
B’ = B <| broadcast
C’ = ¢ <| broadcast

11

Step 1: uniformization From this statement, in order to determine a regular
mapping of the solution, we rewrite routings broadcast1 and broadcast2 as
follows:

\(n,k) | (n=1) +
\(n,k) | (n>1) .broadcastl o translatel (n,k)
translatel = \(n,k).(n-1,k)

broadcast1

broadcast2 = \(n,k) | (n=1) +
\(n,k) | (n>1) .broadcast2 o translate2 (n,k)
translate2 = \(n,k).(n-1,k+1)

Step 2: scheduling Considering the change of basis operation map defined as
\(n,k). (k,2*n+k-1) (its inverse is map~-1 = \(x,t).((t-x+1)/2,x)) and
the routing ones in the previous program, the application of rule (6) and of
the substitution rule leads to the following equivalent program:

Convolution: (B,C) -> A

{
B’ = B <| broadcastil
C’> = C <| broadcast2
S =0 <| \(x,t)|(x=0) /+/
\(s;b;c).s+b*c [> (S <| right /;/ B’ /;/ €°) <| \(x,t)|(x>0)
A =38 <| \(x,t) | (x=p)
¥
broadcastl = \(x,t) | (t=x+1) +
\(x,t) | (t+>x+1) .broadcastl o init (x,t)
broadcast2 = \(x,t) | (t=x+1) +
\(x,t) | (t>x+1) .broadcast2 o left (x,t)
init = \(x,t).(x,t-2)
left = \(x,t).(x+1,t-1)
right = \(x,t).(x-1,t-1)

that is equivalent to

Convolution: (B,C) -> A

{
B’ = B <| \(x,%)|(t=x+1) /+/ B’ <| init <| \(x,t)|(t>x+1)
€’ = C <| \(x,t)|(t=x+1) /+/ C’ <| left <| \(x,t)|(t>x+1)
S =0 <| \(x,t)|(x=0) /+/
\(s;bj;c).s+b*c |> (8 <| right /;/ B’ /;/ €’) <| \(x,t)]|(x>0)
A =8 <| \(x,t) | (x=p)
¥
init = \(x,t).(x,t-2)
left = \(x,t).(x+1,t-1)
right = \(x,t).(x-1,%t-1)

10

The choice of the order relation < on Z™ predetermines the operational definition
of a program. In fact, the aim of the transformations is to make explicit or to build
a ”nice” bijection o which introduces the ”convenient” order to define a ”nice”
operational behaviour of the program. These transformations lie on the change of
basis operation. It is shown in the following sections devoted to program derivations.

Examples: Let us consider a bijection o from Z" to Z™ such as o(z) =
(p(z),t(2)), where p is a function from Z" to Z™~! and ¢ a function
from Z™ to N. Note that such a definition is a classical way to define a
scheduling and a mapping of the computations on a processor set.

e Let < be an order on Z™ such that o(z) < o(z') iff ¢(z) < ¢(z') on
N. The induced operational definition only defines computations
scheduling.

e Let < be an order on Z™ such that o(z) < o(2’) iff p(z) = p(z') A
t(z) < t(2'). The induced operational definition defines computa-
tions mapping and the scheduling of the processors.

4. A complete example

The design of a systolic solution for a given problem requires a bijection o
such as o(2) = (p(2),t(2)) by determining a convenient change of basis in order
to define the computation scheduling ¢. It may happen that the existence of such
a scheduling requires a transformation of the initial equation set to re-arrange the
data dependencies. In PEI, these preliminary refinement steps consist in introducing
sub-data fields and possibly in changing some basis by applying an equivalence
rule. In order to determine a nice mapping function p, next steps may consist in
uniformizing the dependencies to reach local routings: this is achieved in PEI by
decomposing functional and routing operations. These points are illustrated below
with the convolution sum.

Step 0: simplification By applying the classical equivalence rule to change the
representation of inputs and outputs, we can simplify the previous program
as follows:

Convolution: (B,C) -> A

{
B’ = B <| broadcastl
¢’ = C <| broadcast?2
S =0 <| \(n,k)|(k=0) /+/
\(s;b;c).s+b*c |> (S <| pre /;/ B’ /;/ C’) <| \(n,k)|(k>0)
A =35 <| \(n,K) | (k=p)
¥

broadcastl = \(n,k) | (n>=1).(1,k)
broadcast2 = \(n,k)| (n>=1).(1,k+n-1)
\(n,k).(@m,k-1)

pre

Intuitively, we will say that two programs are equivalent if the input data fields and
the output data fields are equivalent. This notion of equivalence is formally defined
from a refinement relation 1213,

In practice, one can manipulate structured data as arrays. For example, data
field B in the convolution could precise its structure by showing the indexes. To
make the presentation simple, we have ignored this technical point.

3.5. Transformation rules

Transformation rules come in three types: the first rules are derived from op-
eration properties, the following ones are derived from equations systems and the
last ones are equivalence rules.

3.5.1. Operation properties rules

These rules consist in substituting a data field expression for an other one,
that can be proved equal from some operation property or from the mathematical
structure of data fields set. These rules maintain the equality of programs.

fF > > = f of I>X (1)
X<l g <lg = X<l g og (2)
X/ h) /R = X/k ok (3)
(f I>X) <lg = f I>&<lg (4)
(f 1>X) /h = F I>Q&/h (5)
X<lg /h = (X/h) < h og oh-1 (6)
f 1>@&/+/ %) = f >X/+/f >x (7
(X /;/ %) <lg = X<lg /;/%X <lyg (8)

3.5.2. Equations systems rules

These rules are more general than the preceeding ones. They modify not only
expressions, but also equations of the program. The transformed system is a new
system which has the same solutions: these rules maintain the equality of programs.
Substitution or internal operation application are examples of such rules.

3.5.3. Equivalence rules

These rules are more general than the preceeding ones. They transform a pro-
gram into an equivalent but not forcefully equal one. For example, a classical
equivalence rule allows to change the representation of inputs and outputs.

3.6. Operational aspects

Operational aspects define the set of computations associated with some data
field definition. This means the definition of an order on the data field elements.
This order is a partial order for parallel computations. We define this order, denoted
as I, for some given partial order < on Z™, by considering the bijection ¢ from Z"
to Z™ which characterizes a data field.

Let X = (v : o) a data field where o is a bijection from Z" to Z™,

Vz,2' € Dy, v(z) Fv(z') & o(z) < o(2')

Example: Figure 6 represents a data field X and the data field
X <l N4, 1 GE=j-1).(E+1,j-1)

2 4
+ + & + + + & +
3 4 5
+e+e/{\ +e++/{\
2 5 2
& + @& + = & + + +

I
Dr
.
.

I
.
.
.

Fig. 6. An example of geometrical operation

Points above the diagonal receive values following vector (—1,1) while
other ones are cleared for they don’t occur in the function domain.

3.3.3. Change of basis operation

Let E be a data field expression where E = (v : o) and D, C Z". Let h be a
bijection from Dy, to Z™ (Dp, C Z™). The change of basis operation defines the data
fieldE / has(voh™l:00h™1).

Example: Figure 7 represents a data field X and the data field
X/ \(,3).(5-1,3)

2 2
+ + & + + & + o+
3 4 4 3 _
+ & + e/{\ & + & + ‘o
2 5 — 5 2/\
® + © + + & + @

I
Dr
+
+

i
+
Dr
+

Fig. 7. An example of change of basis operation

3.4. Programs and equivalence

In PEI, a program is a function which applies data fields onto other data fields.
Transformations of program in PEI are based on an equivalence of data fields and
programs. It is the foundation for our transformational approach to derive solutions
from a program statement.

We will say that two data fields are equivalent if they represent the same multiset.

X=X & My = My,

intersection of the argument drawings, are ordered sequences of values. In PEI,
sequences are built using an associative operation denoted as ;. The functions tail
and head are classical functions on sequences. Restrictions of this superimposition
operation to disjunction and intersection of drawings are called sum and product
operations. We denote them respectively as /+/ and /;/ .

3.3. Ezternal operations

External operations either define the computations of the values of a data field,
or express data dependencies, or else redraw a data field. These operations apply
a partial function onto a data field. According to the way the function is applied,
the operation is called a functional operation, or a geometrical one, or else a change
of basis operation. The notation PEI for functions is derived from lambda-calculus.
When no ambiguity results, any function f of domain D; = {z,P(z)} can be
denoted as \z | P(z). f(z). Moreover, we introduce the following simplifications:

\z.f(z) is equal to \z|true.f(z) \z|P(z)is equal to \z|P(z).z

A function f can be defined as a partition f; + f» + ... + f, of functions

where the f; are defined on disjunctive sub-domains.

3.3.1. Functional operation (or calculus)

Let E be a data field expression whose values are in V' and where E = (v : o).
Let f be a function defined on a subset of V. The functional operation defines the
data field f |> Eas (fov:o).

Example: Figure 5 represents a data field X and the data field
\x| (x mod 2=0).x/2 |> X

2 1
+ + & + + + & +
3 4 2
+$+®/{\ +++®/{\
2 5 1
& + @& + s ® + + +

I
Sr
.
.

.
S
.
.

Fig. 5. An example of functional operation

Even values are divided by two while other ones are cleared because
they don’t occur in the function domain.

3.3.2. Geometrical operation (or routing)

Let E be a data field expression where E = (v : ¢) and D, C Z". Let g be a
function from Dy to Z" (Dy C D,). The geometrical operation defines the data
field E <| gas(vog:o).

+
Do
+

LIS

[
&
+
+

Fig. 3. A geometrical representation of a multiset

is associated with a value of the multiset by this representation. There are infinitely
many geometrical representations for a given multiset. They differ from one another
by a bijection. This is expressed by the concept of data field.

Definition 1 A data field X is the association of a geometrical representation v of
a multiset and a bijection o such that v o o is an other representation for the same
maultiset.

A data field will be denoted as (v : o). Its representation v is said to be defined
within ¢. The drawing of X, denoted as Dy, is the drawing of v. The multiset
< v(z),z € D, > associated with X is denoted as My.

Figure 4 represents an example of data field associated with the previous mul-
tiset.

+
+
>IN
+

3 4
+ & + & il
® + © +

a geometrical representation
defined within «

[
SN
+
+

Fig. 4. An example of data field

3.2. Internal operations

Internal operations define the way data fields are built. They are based on
a single associative binary superimposition operation: the drawing of a data field
obtained by applying the superimposition operation is the union of its arguments
drawings. The values of the resulting data field, which are associated with the

the change of basis operation \k.(1,k) on C. In the context, the func-
tion broadcast2 is defined as \(n,k) | (n>=1).(1,n+k-1). It defines
a geometrical operation which broadcasts the values of the data field
C / \k.(1,k) in the direction (1, —1) (cf. fig. 2).

C/ \k.(Lk)

Fig. 2. Broadcast of the field C values

The data field S is the sum of two sub-data fields. The first sub-data
field of S whose drawing is {(n,k), k =0 A n > 1}, is a constant
data field whose values are 0. The complementary sub-data field of S
whose drawing is {(n, k), £ >0 A n>1}, is equal to the application
of the functional operation \(s;b;c).s+b*c on a product of three data
fields. The first one is the result of the geometrical operation pre equal
to \(n,k).(n,k-1) on S which expresses the dependency (0,1). The
second is the field B’ and the third is the field C’.

Last, within the change of basis \n. (n,p), the data field A is the sub-
data field of S whose drawing is {(n, k), k=p A n>1}.

3. The theory PEI

3.1. Data fields and equations

Data fields are mathematical structures based on geometrical representations of
multisets. Intuitively, a multiset is a set in which an element can appear more than
once. A multiset can be denoted between < and >.

A geometrical representation of a multiset consists in associating a geometrical
coordinate in Z™ with any value. A geometrical representation v of a multiset M,
whose values are in V, is a function from Z" to V', n € N such that:

M =< v(2),z € D, »

where D,, the domain of v, is called the drawing of the representation.
Fig. 3 shows a geometrical representation in Z2 of the multiset < 5,2,2,4,3,2 >.
The circled points form the drawing of the representation. Any point of the drawing

Example: The convolution sum (continued). In PEI, the previous defini-
tion can be expressed in the following way. Series a and c are represented
by data fields A and C whose drawings are N*. Series b is represented by
data field B whose drawing is {k, 1<k <p]}.

Convolution: (B,C) -> A

{

B’ =B / \k.(1,k) <| broadcasti
¢’ =¢C / \k.(1,k) <| broadcast2
S =0 <| \(n,k)|(k=0) /+/

\(s;b;c).s+b*c |> (S <| pre /;/ B’ /;/ C’) <| \(n,k)|(k>0)

A / \n.(n,p) =8 <| \(n,k)|(k=p)

¥
broadcastl = \(n,k) | (n>=1).(1,k)
broadcast2 = \(n,k)| (n>=1).(1,k+n-1)
pre = \(n,k).(n,k-1)

The data fields B’, C’ and S are intermediate data fields. The values
of data fields B and C, drawn in Z2, are broadcasted to form data fields
B’ and C’. The data field S values are the intermediate results for the
convolution sum.

The data field B’ is equal to the result of the application of the geo-
metrical operation broadcastl on the result of the application of the
change of basis operation \k.(1,k) on B. In the context, the function
broadcast1 is defined as \(n,k) | (n>=1).(1,k). It defines a geometri-
cal operation which broadcasts the values of the data field B / \k. (1,k)
in the direction (1,0) (cf. fig. 1).

B/ \k.(1,k)

Fig. 1. Broadcast of the field B values

Similarly, the data field C’ is equal to the result of the application of
the geometrical operation broadcast2 on the result of the application of

of computations can be associated with some data field definition, by ordering its
elements: a partial order means parallel computations.

The design of such solutions consists in transforming statements and maintaining
the global semantics. These transformations are expressed in PEI too. They are
founded on an equivalence relation on data fields.

This paper presents the main concepts of PEI and emphasizes its derivation
power. The mathematical basis of this theory leads to an elegant implementation
in CENTAUR 7 of an environment whose purpose is to assist in transforming parallel
programs. It is illustrated by two related examples: the convolution sum and the
Dirichlet product. The second one uses non-affine dependencies that can be easily
taken into account using PEI.

2. A short presentation

Some languages such as GAMMA 2 or LINDA © are founded on non-deterministic
transitions on a multiset of values. The main problem for these formalisms is to
define an efficient execution model. Nevertheless they express in a nice abstract
way a very large class of problems.

Other languages founded on the recurrence equations concept (ALPHA ° or
CRYSTAL ! for example), define a denotational semantics of expressions as func-
tions which map index sets to sets of values. Function domains are then built from
integral convex polyhedra in Z"™. Domains and values are deduced from equations
which define data dependencies.

Example: The convolution sum. Let b be a series defined on {k, 1<k <
p} and ¢ a series defined on N*. Let a be the convolution sum of b and
c. It is the series defined for all n > 0 by:

V4
Qp = § bk X Ck4n—1
k=1

In a recurrence equation form, any a,,n > 0, can be calculated on the
domain {k, 1<k <p} of Z by:

Sn,0 = 0 (1)
Spk = Smk-1+br Xcryn—1 1<k<p (2)
27 = Sa,p (3)

where s, ; are intermediate results for the convolution sum. The re-
currence equation (2) emphasizes uniform dependencies (0,1) for the
calculation of sy, .

On the contrary, PEI is a notation for abstract domains, which are geometrical
drawings of multisets. These mathematical objects are called data fields.

A program is a set of equations describing a function whose unknowns are out-
puts and parameters are inputs. In PEI, each equation E1 = E2 of a program,
specifies that the two data fields E1 and E2 are the same mathematical object.
The two sides of any equation are expressions composed of data field names and
operations on data fields.

A mathematical theory and its environment
for parallel programming

Eric Violard

University of Franche-Comité
Laboratoire d’Informatique
F-25030 Besancon cedex

e.mail: violard@comte.univ-fcomte.fr

ABSTRACT

This paper presents the main concepts of the mathematical theory PEI for parallel
programming and emphasizes its derivation power. The mathematical basis of this theory
leads to a nice implementation in CENTAUR 7 of an environment whose purpose is to
transform parallel programs. It is illustrated by two similar examples: the convolution
sum and the Dirichlet product. The second one uses non-affine dependencies that can
be easily taken into account using PEI.

Keywords: parallel programming, transformation, domains, environment

1. Introduction

Karp, Miller and Winograd & presented a convenient framework for programs
as a set of recurrence equations. The introduction of uniform recurrence equations
provided a formal framework for dealing with the classical notions of data depen-
dencies, potential parallelism and computation scheduling. Since their work, many
generalizations have been proposed. Affine recurrences on integral convex domains
are mainly studied for systolic synthesis 10:2,

More recent developments in data-parallel languages ° emphazise virtual array
structures and global operations such as data alignment and communications. These
operations also consider affine transformations and meet more general geometrical
models as in Lacs 1,

The class of problems that can be adressed by such a modeling suffers from these
drastic geometrical constraints. This point can be overcome by defining an abstract
structure of domains which are only considered as geometrical drawings of multisets.
PEI is a mathematical notation for these domains, called data fields. In PEI, names
refer to mathematical objects and operations are mathematical operations. A set

