Tt
3\
\

W

[ICPS

Informatique et

Calcul Parallele
de Strasbourg

Publication 94-13
Reduction in PEI

E. Violard and G.-R. Perrin

Published in CONPAR’94, September 6-8, 1994, Linz (Austria), Lecture Notes
in Computer Science 854, p. 112-123, Springer Verlag FEd.

ICPS - Université Louis Pasteur
Pole API, Boulevard Sébastien Brant, F-67400 Illkirch

Reduction in Pei

E. Violard and G.-R. Perrin

University of Franche-Comté,
F-25030 Besangon
Laboratoire d’Informatique
e-mail: {violard, perrin} @comte.univ-fcomte.fr

Abstract. Reduction is one of the major issues in data parallel lan-
guages : it can be defined as a rule of program refinement. This article
presents a theoretical framework, called PE1, the foundation of a formal-
ism for parallel programming, where this rule can easily be expressed
and applied. This formalism is founded on a small but powerful set of
primitives : they are three operations on data fields and inverse opera-
tions. They induce a clear refinement calculus to transform specifications
in executable programs by ensuring a safe process of design or optimiza-
tion. We show how this approach allows to generalize the classical notion
of reduction, by introducing a geometrical reduction and a functional one.

Keywords. Multiset, Parallel programming, Reduction operator, Re-
finement, Transformations.

1 Introduction

This article is concerned with program transformations. Many and various the-
ories have been presented with the aim to derive correct programs on a target
architecture. Some of them (ALPHA [Mau89], CrRysTAL [CCL91], Lacs [Raj93],
etc.) define a program as a set of recurrence equations. Other ones (GAMMA
[BM90], LINDA [Gel85], UNiTY [CMB88], etc.) are based on a refinement calcu-
lus : specifications are then expressed as predicates.

The theory PEI was defined [VP92, VP93, Vio94] in order to unify these two
approaches in the same context. The goal is to benefit from the advantages of
these two philosophies. PEI provides a formal frame, which permits to describe
problem specifications and to reason on programs. It is founded on the notion
of multisets of values. In order to address these values they are mapped onto
geometrical domains, and form data fields. The set of data fields is supplied with
three external operations, which either compute values of data fields (functional
operation), or express data dependencies (geometrical operation), or else redraw
a data field (change of basis operation).

In order to overcome the determinism of definitions expressed as recurrence
equations, most of these languages (CRYSTAL or ALPHA [Lev91]) include a non-
deterministic notation of operator, called reduction operator. Such an operator

is one of the major issues in data parallel languages too. It means the definition
of a n-ary operation from a binary one, for example to express the sum of a
series of n numbers such as § = Eiel..n a;. The computation of this sum can be
done in different ways. Indeed, this operator is non-deterministic since it allows
different choices in the calculation order. A sort of program refinement consists
in reducing this non-determinism (”fan-in reduction” in CRYSTAL), in order to
generate an efficient code for some target machine.

In PEI any such computation is defined through a path, which expresses the
building of some sequence of all the values a;. This characterizes the macro a
compiler of any data parallel language would address in order to generate an
efficient code for such a n-ary operation.

The aim of this article is to present the reduction in PE1, i.e. the way an effi-
cient solution can be derived by a refinement process. Reduction operators are
presented as tnverse operations of basic operations. PEI defines two kinds of re-
duction : a geometrical reduction, which generalizes the notions of reduction in
AvrpHA and CRYSTAL, and a dual reduction, called functional reduction, whose
interest is presented on a simple example.

2 Definition of the formalism Pei

2.1 Specifications and programs

PE1 defines a problem P as a relation between multisets. Its graph is a set of
pairs (D, R) where D and R are tuples of multisets, respectively called input and
output multisets. Such a relation is specified as a system of unoriented equations,
each of them defining two equal expressions of some data field, i.e. a geometri-
cal representation of a multiset. These expressions are defined from data fields
identifiers and operations on data fields. A specification states the inputs and
outputs identifiers : inputs are the parameters of the system and the outputs
are its unknowns. Any equation whose arguments are only inputs defines pre-
conditions on these input data fields. Any other one, whose arguments may be
intermediates or outputs defines postconditions on these data fields.

Ezxample 1. Part (a) is the specification of a problem which calculates the square
root of the values, between 0 and 9, of a given multiset :

SquareRoot : X > Y SquareRoot : X > Y
{X=24dom [> X { X =4dom |>X
sqr |[> Y = X Y = sqrt [> X
} }
dom = \x |(0<=x<=9) dom = \x |[(0<=x<=9)
sqr = \y .y*y sqrt = \x .x70.5
(a) (®)

The first equation defines a precondition on the input data field X to select values
between 0 and 9. The second one defines a postcondition on the output data field
Y : it means that applying function sqr on Y results in X.

A specification is called a program if its system of equations defines a function,
i.e. the system has at most one solution. Such a program may be derived by
constraining the relation or by introducing an inverse operation in order to get
an explicit definition of the outputs. For example, the previous specification may
yield the program presented in part (b).

2.2 Data fields

In this theory, objects called data fields, represent multisets in a geometrical way
by associating a coordinate in Z” with any of their values.

Definition1l. A geomeirical representation v of a multiset M of values in V, is
a partial function from Z”, n € N, in V such that M = < v(z), z € dom(v) ».
The domain dom(v) of v, is called the drawing of the representation.

There are an infinity of geometrical representations for a given multiset. They
differ one another by a bijection. This is expressed by the concept of data field,
which recalls that a representation is always drawn within a bijection.

Definition2. A data field X is a pair (v :), composed of a geometrical repre-
sentation v of a multiset Mx and of a bijection o such that dom(v) C dom(o)

and v o 0! is an other geometrical representation of Mx.

g By O O
Bl Bl B} O
O & BB
OO0 B &

Fig.1. An example of data field

Data fields are built from an internal associative operation, called superimposi-
tion and denoted as /&/. The drawing of any data field obtained by this operation
is the union of its arguments drawings. The values of the resulting data field, as-
sociated with the intersection of its argument drawings, are sequences of values.
Restrictions of this operation to the disjunction and intersection of drawings are
respectively called sum and product, and denoted as /+/ and /;/. In the follow-
ing we will use three operators defined on sequences : an associative constructor
denoted as ; and the two classical functions tail and head.

2.3 External operations on data fields

External operations either define the computations of the values of a data field,
or express data dependencies, or else redraw a data field. These operations apply
a partial function on a data field. According to the way the function is applied,
the operation is called a functional operation, or a geometrical one, or else a
change of basis operation.

The notation PEI for partial functions is derived from lambda-calculus : any
function f of domain dom(f) = {« | P(x)} is denoted as \z | P(z). f(z). More-
over, we denote \z. f(z) for \z|true. f(z), and \z| P(z) for \z| P(z).x.

Let us recall a few useful concepts about functions :

— An inverse function can be associated with any function f. If f is bijective,
its inverse, denoted as f~1, satisfies f=1(f(z)) = « for any z € dom(f). If f
is not injective, it is still possible to specify a function ¢ by the requirement
that f(g(y)) = y for any y such that g(y) € dom(f). In general such an
inverse function is not unique, and in the absence of any more determinis-
tic constraints, each definition is satisfactory : this will be used later as a
method of specification, which gives no hint as to how a deterministic exe-
cutable definition might be formulated. The way such a program can meet
the specification is the matter of a refinement calculus.

— A function f can be defined as a partition fi+fo+...+f, of functions where
the f; are defined on disjunctive sub-domains.

— The domain of a composed function fo g is {x € dom(g) | g(z) € dom(f)}.

Definition3. Let (v : o) be a data field whose values are in V and f a partial
function from V to W. The functional operation defines data field f |> (v: o)
whose values are in W as

1> (v:o) = (fov:o)

OO0 @ o O0OdOd
O G & G . OO0 o &
& 6 6 O o e OO0
Bl & O O OWd OO0

Fig. 2. Functional operation : \x |(x mod 2 =0) .x/2 [> X

Definition4. Let (v : 0) be a data field drawn on Z" and g a partial function
from Z" to dom(v). The geometrical operation, or routing, defines the data field
(v:0) <l gas

(vio) <l ¢ e (vog:0o)

0o @@ @@ @ 0
0@ @ @ @E 00
PE@EO0 20 @000
Gl OO OO0 0O O

Fig. 3. Geometrical operation : X <| \(i,j) 1(i<j) .(i+1,j-1)

Definition 5. Let (v : o) be a data field drawn in Z” and h a bijection from
dom(v) onto ZP. The change of basis defines the data field h :: (v: o) as

h 1 (v:o) def (voh_lzooh_l)

0o @ o
0@ @ @
@@ o
@@ 00

Fig.4. Change of basis : \(i,j) .(i,j,1) :: X

3 Inverse operations

As previously said, an elegant expression for specifications may use inverse func-
tions, to be refined in a deterministic executable program. This leads to introduce
inverse operations in PEL. Of course the inverse of a change of basis operation is
a change of basis defined from the inverse of its bijection h. Other inverse oper-
ations are crucial since they define reduction operators. Their definition requires
more explanations because they are non-deterministic operations if associated
partial functions are not bijective.

Definition 6. Let (v : o) be a data field whose values are on V and f a partial
function from W to V. A data field (w : o), denoted as (v : o) <; f, is said to
be a functional inverse of (v : o) by fiff

— dom(w) = {z € dom(v) | Ju € dom(f) - f(u) = v(2)}

— w(z) is any sequence formed with the values of < u, f(u) = v(z) »

Property 1 The data field X <; f is equal to f~1 |> X iff f is bijective.

Definition7. Let (v : o) be a data field drawn in Z” and ¢ a partial function
from dom(v) to Z". A data field (w :), denoted as g ;> (v : o), is said to be
a geometrical inverse of (v : o) by g iff

— dom(w) ={z € Z" | Jy € dom(v) - g(y) = z} = g(dom(v))
— w(z) is any sequence formed with the values of < v(y), g(y) = z >

Property 2 The data field g ;> X is equal to X </ g~' iff ¢ is bijective.

4 Refinement

Refinement of specification is a powerful programming concept [Mor90]. In the
theory PEI it consists in defining some operational order from an initial specifi-
cation, in the following sense.

A program characterizes a function between input and output data fields. In or-
der to get an operational definition of this function, i.e. the set of computations
of an abstract computer it envolves, it is necessary to introduce a partial order
on the data field elements. This order is defined by using the bijection ¢ from
Z"™ to Z™ of the considered data field.

Definition8. Let < be any partial order on Z™ and (v : o) a data field whose
bijection o is a function from Z™ to Z™. The relation - defined as

Vz,z' € dom(v), v(z) b v(z") iff o(z) < o(2")
is a partial order on dom(v), called an operational order.

The choice of an order < on Z™ predetermines the operational definition of
a program, for example in defining a schedule and maybe a mapping of the
computations onto a set of virtual processors. The aim of program transforma-
tions, indeed, is to make explicit a bijection ¢ which introduces a convenient
operational order. These transformations lie on the change of basis operation.

Ezample 2. The previous program may be transformed as following, to define an
operational order :

SquareRoot : X > Y
{ X =\(p,t) I(t=0) :: X
Y = (sqrt [> X) <] \(p,t) .(p,t-1)

}
sqrt = \x .x70.5

The first equation applies a change of basis which defines the drawing of the
input data field X onto a set of points (p, 0) in Z? : p expresses a virtual processor
index and ¢ means a computation instant. The second equation tells that all the
output values are computed at the same instant, from the initial values of X.
Such a program may be translated in a common parallel language as :

x,y : array (...) of real;
forall p do

y(p) := x(p)"0.5
end forall;

Intuitively, we will say that a specification S is refined by a specification S’ if
any solution of S’ is equivalent to a solution of S for some equivalent parameters,
where this equivalence means that different data fields represent the same mul-
tiset. We define two kinds of refinement. They form the links of the derivation
chain S°C S'C, ..., C 8" where 8% is a specification and 8" a program :

— Denotational refinement. It defines a stepwise process going from a relation
towards a function. It decreases the number of solutions of a system of equa-
tions, until there is only one solution : then, the system defines a program.
Such a refinement consists in inversing some geometrical or functional oper-
ations in order to make the specification executable. Reduction of operators
is an example of such a refinement.

— Operational refinement. It defines a schedule and a mapping of the com-
putations with regard to some target architecture. It consists in choosing
a convenient geometrical representation by using a change of basis. Such a
refinement defines equivalent data fields.

Definition9. Let S and S’ be two specifications. S is said refined by S’, denoted
as S C S,

— either if Pre = Pre’ A Post’ = Post, where Pre, Pre’ and Post, Post’
are the predicates associated with pre- and postconditions of S and S’,
— or if S is identical to S’ by substituting A :: X for all occurrences of X.

These two kinds of refinement may apply whatever the step in the design of
a solution. The previous example SquareRoot emphasized first a denotational
refinement and then an operational one. In fact, the last statement results from
a denotational refinement too, since the precondition was weakened.

Since it is monotonic, the denotational refinement definition induces a refine-
ment calculus which is founded on the following rules on functional, geometrical,
change of basis or inverse operations :

Y =f1o0 f2 |>X = Y=f1[>(£f2 > X) (1)
Y=X<| glog2 C Y=(Xc<l|gl <l g2 (2)
Y =h1oh2 :: X = Y="ht :: (h2 :: X) (3)
Y=Ff [>(X/+/ X)) = Y=(£I[>X) /+/ (£ [>X) (4)
Y= /;/X)<lg C Y=@Q&<| g /;/ & <lg (5)
Y=(£[>%) <l g C Y=1fI[> &<l g (6)
Y=(:: X)<l g E Y=h:: (X<l h-10goh) (7)
Y = (gi+g2) ;> X C Y=gl;>X/8 g2 ;>X (8)
Y=(glog2) ;>X LC Y=gl;>(g2;>Xx) (9)
Y = X <; (£f1+£2) C Y =X<; f1 /&/ X <; £2 (10)
Y=X< (f10f2) LC Y= (X<; f1) <; £2 (11)

5 Geometrical and functional reductions

Reduction operator is one of the major issues in data parallel languages : it ex-
presses, in a global way, a n-ary operation from a binary one. In our formalism,
it means an operation defined on a sequence of n values, whatever the sequence
order if the original binary operation is commutative and associative, i.e. what
we called an inverse operation. As we introduced two kinds of inverses, we define
two kinds of reduction : the functional reduction and the geometrical one.

The classical notion of reduction is the geometrical one. We introduce this reduc-
tion first with an example, after this short explanation : let ¢ be a non-injective
function and let us consider a geometrical inverse data field g ;> (v :). One
can define an inverse function g; such that g(g;(z)) = z for g;(z) € dom(g). So,
there are as many functions g; as there are different 21, ..., 2 € dom(g) nailed
as a sequence on the same point by g. A binary operation can apply step by
step on such a sequence by defining a path in Z”, going from these z1, ...,z
to z. Such a path can be defined by introducing geometrical operations, i.e. as
Property 2 says, by decomposing or partitioning ¢ in bijective components (us-
ing refinement rules (8) or (9)). This is illustrated with the classical example of
the n-ary summation.

5.1 An example of geometrical reduction

Let us consider again the summation of n numbers. This problem is expressed
by the following specification :

Sum : A -> S

{ A = \i |(1<=i<=n) :: A

S = sum |> (\i |(1<=i<=n) .0 ;> A)
¥
sum = \x |[(x = tail(x)) .x

+ \x [(x<> tail(x)) .head(x)+sum(tail(x))

where the first equation defines a precondition on the input data field A by
defining its drawing onto exactly n points. The geometrical inverse of the second
equation puts some sequence of all the values of 4 at index 0. These values are
then added by using the operation sum.

Other equivalent specifications can be written by choosing an other drawing for
A and an other target index for the sequence. For example :

Sum : A -> S
{4
S

¥
path = \(i,j) |(1<=i<=n & j=0) .(m,n)

\(i,j) |(1<=i<=n & j=0) :: A
sum |> (path ;> &)

The first equation applies a change of basis to redraw the input data field A
in Z2. The second one moves the target index to (n,n).
Neither this last specification, nor the previous one, defined a deterministic way
to form the sequence of values of A : hence, function path is not bijective,

so the definition of the geometrical inverse of A by path is non-deterministic.
This is a way to mean that operator) is non-deterministic. Reduce this non-
determinism, in order to implement this specification, consists in applying some
refinement rules on inverse operations : these rules consist in decomposing path
to make a reduction path explicit by introducing bijective functions. Since func-
tion path can be decomposed as

path = lowdiag o ... o lowdiag o \(i,j) |(1<=i<=n & j=0)

with lowdiag = \(i,3j) 1(i=j) .(i+1,j+1) + \(i,3) 1(i>j) .(4,j+1),
the refinement rule (9) gives :

S = sum |> (lowdiag ;> ... (lowdiag ;>
(\(i,j) |(1<=i<=n & j=0) ;> A)) ...)

Notice that this definition of path can be expressed in a recursive style as :

path = rec-path o \(i,j) |(1<=i<=n & j=0)

rec-path = \(i,j) |(j=n)

+ \(i,j) 1(j<n) . rec-path o lowdiag (i,j)
This statement defines a reduction path from points (i,0) to point (n,n).
This path is still non-deterministic since each superimposition defines a sequence

in an undefined order. The next step will precise this order by partitioning the
domain and applying rule (8) :

Y = lowdiag ;> X C Y = low ;> X /&/ diag ;> X

\N(iL,j) 1G>)) .1, 5+1)
\(i,3) 1(i=j) .(i+1,j+D)

where low
diag

Since these functions are bijective, the recursive definition of path leads to
a recursive definition of an intermediate data field T. This yields the following
specification :

Sum : A -> S

{A = \(i,j)|(1<=i<=n & j=0) :: A
T = (low ;> T /&/ diag ;> T) /+/ A
S = sum |> (T <| top)
}
low = \(i,j) 1(i>j) .(1,j+D)
diag = \(i,j) |(i=j) .(i+1,j+1)
top = \(i,j) |(i=n & j=n)

This specification is now a deterministic program because the inverse opera-
tions are bijective. Then, from Property 2, we can write :

Sum : A -> S

{4 = \(i,j) |(1<=i<=n & j=0) :: A
T = (T <| up /&/ T <| antidiag) /+/ A
S = sum |> (T <| top)

}

up =\(i,j) 1G>j-1) .((,j-1D

antidiag = \(i,j) |(i=j) .(i-1,j-1)
top \(i,j) I(i=n & j=n)

Finally, the following program is obtained by distributing addition on the
path. This completes the reduction :

Sum : A -> S

{4 = \(i,j) I(1<=i<=n & j=0) :: A
T = add [> (T <| up /&/ T <| antidiag) /+/ A
S = T <| top

}

up =\(i,3) 1G>j-1) .(i,j-1)

antidiag = \(i,j) [(i=j) .(i-1,j-1)
top =\(i,j) I{i=n & j=n)
add = \(a;b) .a+b

This example was just an introduction for geometrical reduction. Of course
this approach is similar in other favourite examples, such as the matrix prod-
uct. This problem leads to a very elegant and concise data parallel form, which
describes virtual broadcasts of the matrices and a reduction of the summation
to compute each result. This form is achieved by a concise specification in PEI
too, as following :

Prod : (A, B) -> C

{
A = matrix :: A
B = matrix :: B

C = sum |> (reduce-k ;> (mult |> (A <| spread-j /;/ B <| spread-i)))
}
matrix = \(4i,j,k)|(1<=i<=n & 1<=j<=n & k=0)

spread-j = \(i,j,.k) .(i,k,k)
spread-i = \(i,j,.k) .(k,j,k)
reduce-k = \(i,j,k) .(i,j,0)
mult = \(a, (1,k));(b,(k,j)) .(a*b,(1,7))
sum = \x |(x= tail(x)) .x

+ \x | (x<>tail(x))

(car (head(x))+car(sum(tail (x))),cdr(head(x)))

car = \(x,y) .x
cdr = \(x,y) .y

The square matrices & and B are multisets whose values are pairs of the form
(aij,(4,7)) [CM88, Credl], whose elements are accessed by functions car and
cdr. A change of basis aligns & and B in Z3. The definition of ¢ emphasizes
the broadcasts of A and B, respectively along the dimensions j and i, and the
summations by reduction along the dimension k.

From this specification, executable programs can be refined, as routing and re-
ducing macros do for a data parallel language. Such programs can be formally
designed in PEI by applying the previous technique.

5.2 An example of functional reduction

Previous examples dealt with classical reduction, i.e. geometrical reduction.
Thanks to the orthogonality of the concepts we introduced in PEI, a functional

reduction can be defined too. Here is an example : the problem is to search a root
of a discrete function f in an interval (a, b), assuming convenient hypotheses. The
well-known partitioning algorithm can be specified as following :

Root : I0 -> R

{I=10/+4/ inter |> (I <| pre /;/ F <| pre)
F = \(a,x,b) .f(x) [>T
T = head |> (I <; \(a,x,b) |(a<x<b) .(a,b))
R = \(a,b) |[(a=b) .a |> 1

}

pre = \i [(i>0) .i-1

inter = \((a,x,b);fx) [(fx> 0) .(x,b)
+ \((a,x,b);fx) | (£fx<=0) .(a,x)

A data field I is defined from an input data field I0 : its values are successive
intervals (a,b) begining with the initial one, until a last one, such that a=b.
These intervals are defined by applying function inter on a sequence composed
of a triplet (a,x,b) and the value f(x) of the function £ applied on x : this
x may be any point such that a<x<b. The functional inverse in the equation
defining data field T expresses this non-deterministic aspect : the value of T is
any of these triplets, e.g. the first one, which is accessed by the function head
on the sequence of all the (a,x,b).

From this specification, one can define this partition of the functional inverse :

\(a,x,b) |(a<x<b) .(a,b) = \(a,x,b) |(x=(atb)/2) .(a,b)
+ \(a,x,b) |(a<x<b & x<>(at+b)/2) .(a,b)

The refinement rule (10) then applies on the definition of T :

T = head |> (I <; \(a,x,b) |(x=(atb)/2) .(a,b) /&/
I <; \(a,x,b) |(a<x<b & x<>(a+b)/2) .(a,b))

which can be simplifiedinT = I <; \(a,x,b) |(x=(a+b)/2) .(a,b),i.e.from
Property 1, T = \(a,b) .(a,(a+b)/2,b) [> I, which defines a program.

6 Conclusion

In the context of data parallelism, main issues of programming languages con-
cern the data alignment for suitable global operations, such as broadcasts or
efficient reductions. PEI offers a convenient framework for all these concepts :
for example, this paper emphasizes reduction. It presents the reduction as a pro-
gram refinement, which involves inverse operations. This approach is more clear
than different concepts in many languages, such as predefined reduction oper-
ators in programming languages, or associative and commutative reductions in
AvrpHA or CRYSTAL : for example, the notion of graph in CRYSTAL expresses the
notion of reduction path in PEI. An other point in favour of PEI is the unifying
approach of concepts such as fan-in and fan-out reduction in CRYSTAL!. Last,

1 CRYSTAL defines a *fan-out reduction” which relies on the concept of broadcast. This
is expressed by the refinement rule (2) in PEIL

the orthogonality of the concepts introduced in PEI, induced the original and
powerful notion of functional reduction.

All these concepts and the refinement rules they induce are based on properties
of the data field operations. These rules are syntactic rules which can be included
in a transformational environment, by using any formal calculus motor such as
Maple [Map89] for example. Such an environment can also benefit from the ge-
ometrical aspect of the objects in PEI : our objective is to specify, design and
transform programs by using graphic tools, in order to generate and optimize
code in a data parallel language.

References

[BM90] J.-P. Banitre and D. Le Métayer. The GAMMA model and its discipline of
programming. Science of Computer Programming, 15(1):55-79, 1990.
[CCL91] M. Chen, Y. Choo, and J. Li. Parallel Functional Languages and Compilers.
Frontier Series. ACM Press, 1991. Chapter 7.

[CM88] K.M. Chandy and J. Misra. Parallel Program Design : A foundation. Addison
Wesley, 1988.

[Cre91] C. Creveuil. Techniques d’analyse et de mise en ocuvre des programmes
GAMMA. PhD thesis, U. Rennes, 1991.

[Gel85] D. Gelernter. Generative communication in LINDA. ACM Transactions on
Programming Languages and Systems, 7(1):80-112, January 1985.

[Lev91] H. Leverge. Reduction operators in ALPHA. Technical report, IRISA, Novem-
ber 1991.

[Map89] Distribution INRIA - Rocquencourt. Maple Reference Manual, 4th Edition,
March 1989.

[Mau89] C. Mauras. ALPHA : un langage équationnel pour la conception et la program-
mation d’architectures paralléles synchrones. PhD thesis, U. Rennes, 1989.

[Mor90] C. Morgan. Programming from specifications. C.A.R. Hoare. Prentice Hall
Ed., Endlewood Cliffs, N.J., 1990.

[Raj93] S. Rajopadhye. LACS : A language for affine communication structures. Tech-
nical report, IRISA Rennes, 1993.

[Vio94] E. Violard. A mathematical theory and its environment for parallel program-
ming. to appear in PPL, 1994.

[VP92] E. Violard and G.-R. Perrin. PEI : a language and its refinement calculus for
parallel programming. Parallel Computing, 18:1167-1184, 1992.

[VP93] E. Violard and G.-R. Perrin. PEI : a single unifying model to design parallel
programs. PARLF’93, LNCS, 694:500-516, 1993.

This article was processed using the INTpX macro package with LLNCS style

