=

ol

&

[ICPS

Informatique et
Calcul Parallele
de Strasbourg

Publication 94-05

PEI : a Theoretical Framework for Data Parallel
Programming

G.-R. Perrin, E. Violard and S. Genaud

Published in French-british Workshop on Data Parallel Languages and
Compilers, April 20-22, 1994, Lille (France)

ICPS - Université Louis Pasteur
Pole API, Boulevard Sébastien Brant, F-67400 Illkirch

PEI : a Theoretical Framework
for Data Parallel Programming

G.-R. Perrin, E. Violard and S. Genaud

ICPS, Université Louis Pasteur
F-67400 Illkirch

e-mail: perrin,violard,genaud@icps.u-strasbg.fr

Abstract. This article presents a theoretical framework, called PE;,
which is a foundation for data parallel programming. This formalism
lies on a small but powerful set of primitives : they are operations on
data fields and inverse operations. They induce a clear refinement calcu-
lus to transform specifications in executable programs by ensuring a safe
process of program design, program transformation or code optimization.

Keywords. Data Alignment, Data Parallelim, Environment, Language,
Multiset, Recurrence Equation, Reduction, Refinement.

1 Introduction

Many theories have been proposed in order to derive and map programs onto
target parallel architectures. Some of them (ALPHA [Mau89], CrysTaL [CCL91],
Lacs [Raj93], etc.) define a program as a set of recurrence equations and pro-
pose synthesis techniques, which are founded on the Polytope Model [Len94].
Other ones (LINDA [Gel85], UNITY [CM88], GAMMA [BM90], etc.) are based on

a refinement calculus : specifications are then expressed as predicates.

The theory PEI was defined [VP92, VP93, Vio94] in order to unify these two
approaches and benefit from their advantages. PEI provides a formal frame to
describe problem specifications and reason on programs. It lies on a small but
powerful set of mathematical issues : first of all, the notion of multiset of values.
In order to address these values they are mapped onto geometrical domains, and
form data fields. From an operational point of view, such domains can abstract
the mapping of calculations onto a mesh of virtual processors, whereas from a
specification point of view, they can express the natural geometry of data struc-
tures such as arrays, for example. The set of data fields is supplied with three
external operations, which either compute values of data fields (functional op-
eration), or express data dependencies (geometrical operation), or else redraw a
data field (change of basis operation). These operations are bricks for a refine-
ment calculus to derive or transform programs. Programs themselves are a set of
equations between data fields : in that sense, PEI is a sort of abstract notation
for systems of recurrence equations.

In order to overcome the intrinsic determinism of definitions expressed in
term of recurrence equations, most languages include a non-deterministic no-
tation, called reduction operator. It is one of the major issues in data parallel
languages too. It means the definition of a n-ary operation from a binary one,
for example to express the sum of a series of n numbers such as s =", , | a;.
A sort of program refinement then consists in reducing this non-determinism in
order to generate an efficient reduce function code for some target architecture.
In PEI reduction is defined as the inverse operation of a geometrical operation.

The refinements 1t involves can lead to different reduction or scan functions.

This article aims to convince that all these issues ensure that PEI is a theo-
retical framework for data parallel languages : it supports the concepts of data
alignment, global operation, regular communication, broadcast and reduction in
a very general sense. Moreover, the simple mathematical issues it involves and its
refinement calculus provide a powerful data parallel programming environment.

2 Definition of the formalism Pei

2.1 Specifications and programs

PE1 specifies a problem as a relation between multisets. Its graph is a set of pairs
(D, R) where D and R are tuples of multisets of values, respectively called input
and output multisets.

Such a specification is expressed as a system of unoriented equations', each
of them defining two equal expressions of some data field, i.e. of a geometrical
drawing of a multiset. These expressions are defined from data field identifiers
and operations on data fields. A specification states the inputs and outputs
identifiers : inputs are the parameters of the system and the outputs are its un-
knowns. Any equation whose arguments are only inputs defines preconditions on
these input data fields. Any other one, whose arguments may be intermediates
or outputs defines postconditions on these data fields.

A specification is called a program if its system of equations defines a function,
i.e. the system has at most one solution.

Ezample 1. s =)o, | a;.
sum : A -> S
{A = dom :: A
X = A <| first /+/ add |> (A /;/ (X <| pre))
S = X <| last
¥

! PEI means Parallel Equations Interpretor and pays hommage to the architect of the
Pyramide du Louvre.

dom = \i |(1<=i<=n)

pre = \i |(i<i<=n) .i-1
first = \i [(i=1)

last = \i |(i=n)

add = \(x;y) .x+y

B A
[H X
i1 3 6 i

0 15 X <| pre

%2;1 3;3 46 510 615 Al;l (X<| pre)

add |> (A /;/ (X <| pre))

3 6 10 15 21
TTNNET # srse 0 w001 a1t x4 ro

Fig.1. X is a solution of the second equation

— the first equation defines an initial drawing of an input data field 4 : its
values are mapped onto a line segment [1..n],

— fig. 1 intuitively shows that data field X is a solution of the second equation :
its values are the prefix computations of the sums of the values in A. The
first expression X <| pre defines a data field resulting from X by shifting its
values. They are then composed with the valuesof Ain 4 /;/ (X <| pre)
and added one another by add |> (4 /;/ (X <| pre)). The expression
A <| first /+/ add |> (4 /;/ (X <| pre)) links two parts to form a
data field equal to X,

— the last equation defines the output S.

¢

2.2 Mathematical issues

The mathematical issues of PEI are very simple. The basic notion is the notion
of multiset of values, whose elements can be mapped onto a geometrical domain,
in such a way that any element can be distinguished by integer coordinates.

This defines a drawing as a mapping from Z" to a set of values. A major
point to notice is that any program transformation consists in associating an
other drawing with the considered multiset : for example, substitute a space-time

domain for an iteration space. It is then essential to remember that a drawing is
always defined within a bijection : these potential drawing transformations are
expressed by the concept of data field.

Definition1. A drawing v of a multiset M of values in V| is a partial function
from Z", n € N, in V such that M = < v(2), z € dom(v) ».

O & B R
OO0 B &

By B O O
Bl Bl B} O

Fig.2. An example of data field

Definition2. A data field X is a pair (v : o), composed of a drawing v of a
multiset My and of a bijection o such that dom(v) C dom(c) and voo~! is an
other drawing of Mx.

Data fields are built from an internal associative operation, called superim-
position and denoted as /&/. The drawing of any data field obtained by this
operation is the union of its arguments. The values of the resulting data field,
associated with the intersection of its arguments, are sequences of values. Re-
strictions of this operation to the disjunction and intersection of drawings are
respectively called sum and product, and denoted as /+/ and /;/.

ooQo
oG &o
O@ &0
o& G &0
OoQo

Fig. 3. Superimposition operation

External operations either define the computations of the values of a data
field, or express data dependencies, or redraw a data field. These operations

apply a partial function on a data field. According to the way the function is
applied, the operation is called a functional operation, or a geometrical one, or
else a change of basis operation.

The notation PEI for partial functions is derived from lambda-calculus :
any function f of domain dom(f) = {z | P(x)} is denoted as \z|P(z). f(z).
Moreover, we denote \z. f(z) for \z|true. f(z), and \z|P(z) for \z|P(z).x.
Last, a function f defined on disjunctive sub-domains is denoted as f;+f5, and
the domain of a composed function fo g is {z € dom(g) | g(x) € dom(f)}.

Definition 3. Let (v : o) be a data field whose values are in V' and f a partial
function from V to W. The functional operation defines data field f [> (v : o)
whose values are in W as

1> (v:o) = (fov:o)

OO0 @ o O0OdOd
O G & G . OO0 o &
& 6 6 O o e OO0
Bl & O O OWd OO0

Fig. 4. Functional operation : \x |(x mod 2 =0) .x/2 [> X

Definition4. Let (v : o) be a data field drawn on Z™ and ¢ a partial function
from Z" to dom(v). The geometrical operation, or routing, defines the data field

(vio) <| gas
(v:o) <l ¢ = (vog: o)

Gl 2 @ O
[a] 6 B O O
O Gl O O O
O oooao

Fig.5. Geometrical operation : X <| \(i,j) 1(i<j) .(i+1,j-1)

Definition5. Let (v : 0) be a data field drawn in Z” and h a bijection from
dom(v) onto ZP. The change of basis defines the data field h :: (v : o) as

h :: (v:o) def (voh_l:aoh_l)

ZIN S|
OO0 B &

g &y O O
Bl Bl B} O
O

Fig. 6. Change of basis : \(i,3j) .(i,j,1) :: X

Notice that both data fields X and h :: X draw the same multiset : they are
said to be equivalent data fields.

3 Refinement

3.1 Definition

Refinement of specification is a powerful programming concept [Mor90]. In the
theory PEI it consists in defining some operational order from an initial specifi-
cation, in the following sense.

— As said in section 2.1, a program characterizes a function between input and
output data fields. In order to get an operational definition of this function,
i.e. the set of computations it involves, it is necessary to introduce a partial
order on the data field elements. This order is defined by using the bijection
o from Z” to Z™ of the considered data field.

Definition6. Let < be any partial order on Z™ and (v : o) a data field
whose bijection ¢ is a function from Z” to Z™. The relation F defined as

Vz,z2' € dom(v), v(z) b v(z") iff o(z) < o(2")
is a partial order on dom(v), called an operational order.

The choice of an order < on Z™ predetermines the operational definition
of a program, for example by defining a schedule and maybe a mapping
of the computations onto a set of virtual processors. The aim of program
transformations, indeed, is to make explicit a bijection ¢ which introduces
a convenient operational order. These transformations lie on the change of
basis operation.

— Intuitively, we will say that a specification S is refined by a specification
S’ if any solution of S’ is equivalent to a solution of S for some equivalent
parameters, where, as said before, this equivalence means that equivalent
data fields draw the same multiset. Such a refinement defines a stepwise
process going from a relation towards a function. It decreases the number
of solutions of a system of equations, until only one solution remains : the
system then defines a program and can define some operational order.

Definition7. Let S and S’ be two specifications. S is said refined by S’
denoted as S C S,

e cither if Pre = Pre’ A Post’ = Post, where Pre, Pre’ and Post, Post’

are the predicates associated with pre- and postconditions of S and S’,

e or if S is identical to S’ by substituting h :: X for all occurrences of X.

3.2 Refinement rules

Since it is monotonic, the refinement induces a refinement calculus which is
founded on the following rules on functional, geometrical, change of basis or
superimposition operations :

=f1 o f2 [> X
=X<| gl og2
=hl o h2 :: X
(£ I>X) <l g
=(h :: X) <l g
=f |> (X /+/ X?)
= (X /;/ %) <l g

= f£1 |> (£2 |[> X)

= (X <| g1) <| g2

=ht :: (h2 :: X)

=f |> X<l g

=h :: (X<| h"-1 0 g o h)
= (f |>X) /+/ (£ |> X)

= (X<l g /;/ X <l g

<o
1]

I N e

<o

O File Displa Edit Selections
<{GaussH> : A -> A7

Simplify
Eval

{
N, §ak) L (LK, iKY SR = y[Abstract

k Sob S
(i, 1 Rename [s—2;(d,_)).ta-b*c/d, (i,3) 1>
1, /

!

Reurite |

F57 K < mave fif x <L 14ed

A7 = K NG g, k) Ek=1-1)
¥

pre = \(i,3,k).(1,],k-1)
shift = \(i,4,k). (i,k,k-1)
move = N1, 3,k) .0k, j,k-1)

Fig.7. A session in the PEI environment

In order to assist the end user in his programming task, PEI expressions and
transformation rules can be carried out using the interactive PEI environment.

This tool implements equations and applies transformation rules in a CENTAUR
session. It allows definition folding, relabeling, etc., and uses Maple for symbolic
evaluations, such as function compositions, for example. Fig. 7 and 8 show snap-
shots of such a session to refine the Gaussian elimination program.

Gauss0peidd]
B ETTe B Tsp ey EdTE EeTeciions A Expo Equ - Syst
<{GaussH> : A -> A7

{

RGP YN S I B B DRV ik, i+ TR A S

Cb,_)i(e,)5 (d, 200 tamb*e/d, (i, 5)) 1>
k,i+tj+k) /

SR <D shift /5 % <) move f3/ K <] Tied

Y33 (y2+14oyldan & y2>=0 & y3>oyle2éy2+l)

A7 = K NG gk ki)

¥

pre = 01,0,k (1, 1,k-1)
shift = \{i,4,k). (i,k,k-1)
move = N1, k). (K, ,k-1)
Tie = \{i,J k)« (k, ko k=13

Fig. 8. The resulting snapshot in the PEI environment

4 Reduction operator

Previous issues clearly suggested some analogy between PEI and data parallelism
concepts such as data alignment, communications or global operations on par-
allel variables. Moreover, the refinement calculus induces transformations which
suit operational data parallel programs. Last concept in PEI, but not least, is
the notion of reduction [VP94], which is one of the major issues in data parallel
languages too.

Let us consider again the problem s = 3, a;. It solution introduced a
routing of the values of X by shifting from left to right, step by step. As we will
see it later on, this is a particular way to implement the sum of n numbers, using
a scan function : this is an example of refinement of a general non deterministic
definition.

In a general way, reduction means some implementation of a n-ary operation
from a binary one. At a specification level, or a high-level programming, the
user should not mention the way this implementation operates. On this example,
since addition is commutative and associative, the only thing to say is that the
n values must be collapsed, whatever the sequence order is, to form a data
field with a single value. This sort of routing is not a bijective function, but
it must be defined from bijective ones in order to be implemented : such an
implementation expresses some geometrical operation in PEI. So, a reduction in

PE1 is a geometrical inverse, i.e. the inverse of a geometrical operation, denoted
as g ;> (v : o), which routes in any point z any sequence of values v(y) such
that g(y) = z. These issues are precised in the following definition and property.

Definition 8. Let (v : o) be a data field drawn in Z” and ¢ a partial function
from dom(v) to Z™. A data field (w : o), denoted as g ;> (v : o), is said to be
a geometrical inverse of (v : o) by g iff

— dom(w) = g(dom(v))
— w(z) is any sequence formed with the values of < v(y), g(y) = z =

Property 1 The data field g ;> X is equal to X <[g~ iff ¢ is bijective.

Other properties of this geometrical inverse lead to these refinement rules,
which define the reduction process :

Y
Y

(gi+g2) ;> X Y

C gl ;> X /&/ g2 ;> X
(g1 o g2) ;>X L Y

gl ;> (g2 ;> X)

Ezample 2. Let us consider again the summation of n numbers. This problem is
expressed by the following specification :

sum : A -> S

{4 = dom :: A

S = rec_add |> (route ;> A4)
}
dom = \i |(1<=i<=n)

route \i |(1<=i<=n) .n

The geometrical inverse in the second equation maps some sequence of all
the values of A at index n. These values are then added by rec_add, which is
not specified here.

¢

This example was just an introduction for the reduction. Of course this ap-
proach is similar in other favourite examples, such as the matrix product. It
leads to a very elegant and concise data parallel form, which describes virtual
broadcasts of the matrices and a reduction of the summation to compute each
result. This form is achieved by a concise specification in PEI too, as following :

Ezample 3. The matrix product.

prod : (A, B) -> C
{A cube :: A
B = cube :: B
T = mult [> (A <| spread_j /;/ B <| spread_i)
C rec_add |> (reduce_k ;> T)
¥

cube \(i,j,k) [(0<=i<n & 0<=j<n & 0<=k<n)
spread_j = \(i,j,k) .(i,0,k)
spread_i \(i,j,.k) .(0,j,k)
\(i,j,k) .(i,3,0)

reduce_k

The square matrices & and B are multisets aligned in Z3, respectively on the
ceil and on the side of a cube. The definition of C emphasizes

— broadcasts of A and B, respectively along the dimensions j and i,

— n? scalar multiplications,

— n? summations by reduction along the dimension k.

From this specification, executable programs can be refined, as routing and
reducing macros do in data parallel languages. Such programs can be formally
designed in PEI by applying the previous refinement rules. For example, the
reduction can be transformed by introducing a geometrical operation which shifts
the products along k :

prod : (A, B) -> C

{A = cube :: A

B = cube :: B

T = mult [> (A <| spread_j /;/ B <| spread_i)
R = (T <| last_k) /+/ (T /;/ R <| succ_k)

C = rec_add |> (R <| first_k)

¥

cube = \(i,j,k) |(0<=i<n & 0<=j<n & 0<=k<n)
spread_j = \(i,j,k) .(i,0,k)

spread_i = \(i,j,k) .(0,j,k)

last_k = \(i,j,k) |(k=n-1)

first_ .k = \(i,j,k) [|(k=0)

succ_k = \(i,j,k) |(k+1>0) .(i,j,k+1)

¢

5 Pel and Data Parallelism

The main features in PEI lie on a very little set of mathematical concepts. They
express abstract geometrical domains for multisets of values. These domains are
defined and manipulated by using very few formal mappings. It seams clear that
all these issues meet the foundations of the data parallel programming model :

— data alignments look like change of basis and superimposition,

— global operations are defined by functional operations applied on data fields,
— broadcast and global communications are geometrical operations,

— reduction is an intrinsic feature of PEI.

Let us precise these points in the following sections.

5.1 Data alignments

The previous example of the matrix product has shown how the change of basis
operation is used to align arrays on a virtual mesh. The following PEI equations

A = cube :: A
B = cube :: B

and the geometrical operations A <| spread_j and B <| spread_i with

\(i,j,k) .(1,0,k)
\(i,j,k) .(0,j,k)

spread_j
spread_i

lead to the following declarations of template and alignment directives [Hig93] :

'HPF$ TEMPLATE CUBE (N,N,N)

DIMENSION (N,N) :: A4, B
'HPF$ ALIGN A (I,K) WITH CUBE (I,0,K)
'HPF$ ALIGN B (J,K) WITH CUBE (0,J,K)

Moreover, if two data fields have the same drawing, the superimposition
operation in PEI defines a data field which expresses collections of data on the
same shape.

Ezample 4. Summation of two matrices.

sum_mat : (A4, B) -> C
{A = matrix :: A
B = matrix :: B

C= add |> (4 /;/ B)

}

matrix = \(4i,j) |(1<=i<=n & 1<=j<=n)
add = \(a;b) .atb

The data field (& /;/ B) represents a grid of virtual processors storing local
values of A and B. The result C is aligned on the same shape and n? scalar
additions can run in parallel, as this data parallel code says [Thi90] :

shape [n][n] matrix;
float:matrix A, B, C;
C = A+B;

o

5.2 Global operations

A functional operation in PEI clearly defines a global operation on all the el-
ements of a data field : it applies some function f, defined as \z|P(z). f(z),
on these elements, whose type is scalar or sequence of scalars if it results of a
superimposition. The domain of f, defined by the predicate P(z), expresses a
selection statement, such as a where instruction in a data parallel language.

Ezample 5.

sup : (A, B) ->C
{A = dom :: A
B = dom :: B
test |> (& /;/ B)

C =

}

dom = \i |(1<=i<=n)

test = \(a;b) |(a<>0 & b<>0) .max(a,b)

Assuming A and B are aligned on a one-dimensional array, this statement is
expressed in a data parallel language by :

where ((A'=0) && (B!=0))
C = max(4A,B);

5.3 Communications and broadcasts

Previous examples emphasized routings in PEI : some of them defined regular
dependencies, such as uniform translations. Other ones introduced broadcasts
through a non injective function. Such geometrical operations have occurred in
the second statement presented in Example 3 :

T= ... A<| spread_j /;/ B <| spread_i
R= ... R <| succ_k

with
spread_j =\(i,j,k) .(1,0,k)

spread_i
succ_k

\(i,3,k) .(0,j,k)
\(i,j,k) [(k+1>0) .(i,j,k+1)

Such non injective routings are expressed by broadcast primitives in data parallel
languages. This example would use notations like [Thi91] :

SPREAD (A, DIM=2, NCOPIES=N)
SPREAD (B, DIM=1, NCOPIES=N)

Conversely, uniform translations in PEI are expressed by implicit communica-
tions in a data parallel language, such as

R = [.I[.IJ[.+1] R;

for the considered example.

5.4 Scan and reduction functions

A powerful issue in data parallel languages leads to generate optimal code for
reduction or scan functions. Considering the example of the summation of n
numbers, we show how these features are supported by PEI.

The expression route ;> A in the statement of Example 2, where the func-
tion route is \i | (1<=i<=n) .n, can be refined by introducing a recursive def-
inition of this function on the domain 1<=i<=n:

route = \i |(i=n)
+ route o \i |(1<=i<n) .i+1

Since \i | (1<=i<n) .i+1 is bijective and its inverse is \i | (1<i<=n) .i-1, we
have the following refinement steps (from rules in Section 4 and Property 1) :

route ;> A

\i |(i=n) ;> A /&/ (route o \i |(1<=i<m) .i+1) ;> A
\i |(i=n) ;> & /&/ route ;> (\i |(1<=i<n) .i+1 ;> A)
A <] \i |(i=n) /&/ route ;> (& <| \i |(1<i<=n) .i-1)

N M

Let pre = \i |(1<i<=n) .i-1 and last = \i |(i=n), the last expression is
A <| last /&/ route ;> (A <| pre)
The same reasoning, leads to the following expression :

A <| last /&/
(4 <| pre) <| last /&/
route ;> ((A <| pre) <| pre)

and so on. We recognize then a recursive definition for this data field, following
this property :

Property 2 Let f be a function defined by the recursion f =1 + fos™ 1, where
t 15 the identity and s is bijective. The PEI equation Y = f ;> Xis refined by the
following statement, which involves the recursive definition of an intermediate

data field T :

T X /8/ (T <[s)
Y = T</ 3

Ezample 6. Refinement of a geometrical inverse by a reduction function.
This last property leads to the following statement in P&1, for the summation :
sum : A -> S
{A = dom :: A

T = A /&/ (T <| pre)

S = rec_add |> (T <| last)
¥

dom = \i |(i1<=i<=n)
pre = \i |(i1<i<=n) .i-1
last = \i |(i=n)

Since for any data fields Xand Y, X /&/ Y = (X /+/ Y) /+/ (X /;/ Y), the
second equation can be rewritten as

T = (A /+/ (T <| pre)) /+/ (& /;/ (T <| pre))

Since A is drawn on the domain 1<=i<=n and (T <| pre) is drawn on 1<i<=n,
this expression can be simplified as

T = (A< \i |(i=1)) /+/ (&4 /;/ (T <| pre))

Last, a scalar addition applied on every (A /;/ (T <| pre) can be substi-
tuted for the recursive function rec_add defined on the sequence mapped onto
the point i=n. This leads to the program first presented in Example 1.

e

This completes the refinement process to transform the previous program by
introducing a reduction function : this development describes the way a com-
piler could generate code from such a macroscopic operation. Of course, other
refinements can be proposed, which can express other parallel efficient imple-
mentations of the reduction, by defining other drawings and other recursive
definitions of the geometrical inverse.

We focused on this example because this particular refinement shows another
classical feature in data parallel languages : the prefix computations of scan
sets by a scan function. Indeed, the data field X hereunder defines the prefix
computations of the summation, as shown in Figure 1 :

prefix_sum : 4 -> X
{4 = dom :: A

X = A<| éirst /+/ add |> (4 /;/ (X <| pre))
}
dom = \i |(1<=i<=n)
pre = \i |(i<i<=n) .i-1
first = \i [(i=1)
add = \(x;y) .x+y

5.5 Visual Programming in Pei

The equational approach of PEI and its refinement calculus offer a convenient
framework to write specifications and derive or transform operational programs,
especially data parallel programs.

In order to achieve in data parallel programming, PEI supports a visual inter-
face called V.PEI, which supplies an interactive programming tool. An example
of V.PEI session for the matrix product is shown in Figure 9.

Top window visualizes the data fields defined in the program, second window
is used to monitor operation results on data fields and lower window receives the
automatically generated PEI equations.

i Visual PEI
File = Varighles r) Oparations r) Functions r) R | Off On
EFEE BY BV EREE
O G O B O

O GFGF EF GF BFEF
O BFBF BF GF BF

Nextstep)

Clear) Validate | SE

tadd 1> (T €I succ_k} /3¢ Tir

e e [
A = (4 <[spread_7)

spread_j = 4(i,3.k).(i,0.k2
B* = (B <| spread_i}

spread_i = \(i,1,k). 0,7,k
AB = (A" /) B")
T = (mult | A_B)

mult = A(azhd, (athd

:
:
i

Fig.9. A session V.PEI for the matrix product

This session shows A and B as being two data fields drawn in the plane, and
then aligned on a cube. They are spread through their cube in order to perform
the products : these two templates are aligned to form the pairs a;b, and the
products operate. This data field T is transformed by a recursion whose definition
appears in the draft window. The whole symbolic execution can be simulated
step by step before validating the definition, and Figure 9 shows one step of the
data field motion towards the rear of the cube. Once the definition validated
the resulting PEI equation is produced and put in the lower text editor. The
program we obtain is the second one presented hereabove in Example 3.

6 Conclusion

In the context of data parallelism, main issues of programming languages con-
cern the data alignment for suitable global operations, such as broadcasts or

efficient reductions. PEI offers a convenient framework for all these concepts.
These concepts and the refinement rules they induce are based on data field
operation properties. These rules are syntactic rules which are included in the
PE1 transformational environment.

Such an environment can also benefit from the geometrical aspect of the
objects in PEI : our current work is to specify, design and transform programs
by using PEI and its visual interface V.PEI, in order to generate and optimize
code in a data parallel language. This is the way we are working, in order to
integrate three approaches :

— PE1 itself and its refinement calculus,
— visual programming using V.PEI,
— effective code generation in a data parallel language.

References

[BM90] J.-P. Banitre and D. Le Métayer. The GAMMA model and its discipline of
programming. Science of Computer Programming, 15(1):55-79, 1990.
[CCL91] M. Chen, Y. Choo, and J. Li. Parallel Functional Languages and Compilers.
Frontier Series. ACM Press, 1991. Chapter 7.

[CM88] K.M. Chandy and J. Misra. Parallel Program Design : A foundation. Addison
Wesley, 1988.

[Gel85] D. Gelernter. Generative communication in LINDA. ACM Transactions on
Programming Languages and Systems, 7(1):80-112, January 1985.

[Hig93] High Performance Fortran Forum. High Performance Fortran Language Spec-
tfication, January 1993.

[Len94] C. Lengauer. Loop parallelization in the polytope model. to appear in PPL,
1994.

[Mau89] C. Mauras. ALPHA : un langage équationnel pour la conception et la program-
mation d’architectures paralléles synchrones. PhD thesis, U. Rennes, 1989.

[Mor90] C. Morgan. Programming from specifications. C.A.R. Hoare. Prentice Hall
Ed., Endlewood Cliffs, N.J., 1990.

[Raj93] S. Rajopadhye. LAcs : A language for affine communication structures. Tech-
nical report, IRISA Rennes, 1993.

[Thi90] Thinking Machines Corp. C* Programming Guide, November 1990.

[Thi91] Thinking Machines Corp. CM Fortran Programming Guide, January 1991.

[Vio94] E. Violard. A mathematical theory and its environment for parallel program-
ming. to appear in PPL 1994.

[VP92] E. Violard and G.-R. Perrin. PEI : a language and its refinement calculus for
parallel programming. Parallel Computing, 18:1167-1184, 1992.

[VP93] E. Violard and G.-R. Perrin. PEI : a single unifying model to design parallel
programs. PARLE’93, LNCS, 694:500-516, 1993.

[VP94] E. Violard and G.-R. Perrin. Reduction in PEI. CONPAR’94, LNCS, 1994.

This article was processed using the INTpX macro package with LLNCS style

